
Flexible Software Profiling of GPU Architectures

Mark Stephenson† Siva Kumar Sastry Hari† Yunsup Lee‡ Eiman Ebrahimi†
Daniel R. Johnson† David Nellans† Mike O’Connor†⇤ Stephen W. Keckler†⇤

†NVIDIA, ‡University of California, Berkeley, and ⇤The University of Texas at Austin
{mstephenson,shari,eebrahimi,djohnson,dnellans,moconnor,skeckler}@nvidia.com, yunsup@cs.berkeley.edu

Abstract
To aid application characterization and architecture design

space exploration, researchers and engineers have developed
a wide range of tools for CPUs, including simulators, pro-
filers, and binary instrumentation tools. With the advent of
GPU computing, GPU manufacturers have developed simi-
lar tools leveraging hardware profiling and debugging hooks.
To date, these tools are largely limited by the fixed menu of
options provided by the tool developer and do not offer the
user the flexibility to observe or act on events not in the menu.
This paper presents SASSI (NVIDIA assembly code “SASS”
Instrumentor), a low-level assembly-language instrumenta-
tion tool for GPUs. Like CPU binary instrumentation tools,
SASSI allows a user to specify instructions at which to inject
user-provided instrumentation code. These facilities allow
strategic placement of counters and code into GPU assembly
code to collect user-directed, fine-grained statistics at hard-
ware speeds. SASSI instrumentation is inherently parallel,
leveraging the concurrency of the underlying hardware. In
addition to the details of SASSI, this paper provides four case
studies that show how SASSI can be used to characterize ap-
plications and explore the architecture design space along the
dimensions of instruction control flow, memory systems, value
similarity, and resilience.

1. Introduction
Computer architects have developed and employed a wide
range of tools for investigating new concepts and design al-
ternatives. In the CPU world, these tools have included simu-
lators, profilers, binary instrumentation tools, and instruction
sampling tools. These tools provide different features and
capabilities to the architect and incur different design-time
and runtime costs. For example, simulators provide the most
control over architecture under investigation and are necessary
for many types of detailed studies. On the other hand, sim-
ulators are time-consuming to develop, are slow to run, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’15, June 13-17, 2015, Portland, OR USA
c� 2015 ACM. ISBN 978-1-4503-3402-0/15/06...$15.00

DOI: http://dx.doi.org/10.1145/2749469.2750375

are often difficult to connect to the latest software toolchains
and applications. Binary rewriting tools like Pin [21] allow a
user to instrument a program to be run on existing hardware,
enabling an architect insight into an application’s behavior and
how it uses the architecture. Such tools have been used in a
wide variety of architecture investigations including, determin-
istic replay architectures [26], memory access scheduling [25],
on-chip network architectures [24], and cache architecture
evaluation [18]. They have even been used as the foundation
for multicore architecture simulators [23]. In addition, these
types of tools have been used in a wide range of application
characterization and software analysis research.

With the advent of GPU computing, GPU manufacturers
have developed profiling and debugging tools, similar in nature
to their CPU counterparts. Tools such as NVIDIA’s NSight
or Visual Profiler use performance counters and lightweight,
targeted binary instrumentation to profile various aspects of
program execution [34, 35]. These tools have the advantage
that they are easy to use, and run on hardware, at hardware
speeds. Unfortunately for computer architects and compiler
writers, the production-quality profilers are not flexible enough
to perform novel studies: one must choose what aspects of
program execution to measure from a menu of pre-selected
metrics. They also cannot be used as a base on which to build
other architecture evaluation tools.

As one solution to the shortcoming described above, the
architecture community has turned toward simulators, such
as GPGPU-Sim to analyze programs and guide architecture
development [1]. Simulators are immensely flexible, and al-
low architects to measure fine-grained details of execution.
The major disadvantage of simulators is their relatively slow
simulation rates. This forces researchers and architects to use
trimmed-down input data sets so that their experiments finish
in a reasonable amount of time. Of course, application profiles
can be highly input-dependent, and there is no guarantee that
simulation-sized inputs are representative of real workloads.

This paper presents a new GPU tool called SASSI for use in
application characterization and architecture studies. Unlike
the current suite of GPU profiling tools, which are tailor-made
for a particular task or small set of tasks, SASSI is a versatile
instrumentation framework that enables software-based, se-
lective instrumentation of GPU applications. SASSI allows a
user to select specific instructions or instruction types at which
to inject user-level instrumentation code. Because SASSI
is built into NVIDIA’s production machine-code-generating

compiler, and runs as its last pass, injection of instrumentation
code does not affect compile-time code generation optimiza-
tions. Further SASSI is highly portable and gracefully handles
the latest versions of CUDA, and can be extended to handle
OpenGL and DirectX 11 shaders. The tool allows us to collect
results across multiple generations of NVIDIA architectures
including Fermi, Kepler, and Maxwell.

As with the production-quality profiling tools, selective
instrumentation allows hardware-rate analysis, yet, as the
case studies we demonstrate confirm, our approach is flex-
ible enough to measure many interesting and novel aspects of
execution. Because selective instrumentation is far faster than
simulation, users can easily collect data based on real-world
execution environments and application data sets.

Because GPU architectures follow a different programming
paradigm than traditional CPU architectures, the instrumen-
tation code that SASSI injects contains constructs and con-
straints that may be unfamiliar even to expert CPU program-
mers. Also unlike their CPU counterparts, GPU instrumen-
tation tools must cope with staggering register requirements
(combined with modest spill memory), and they must operate
in a truly heterogeneous environment (i.e., the instrumented
device code must work in tandem with the host system).

In the remainder of this paper, we first discuss background
information on GPU architecture and software stacks. Then
we describe the details of SASSI, focusing on the key chal-
lenges inherent with GPU instrumentation, along with their
solutions. Finally, we demonstrate the tool’s usefulness for ap-
plication profiling and architectural design space exploration
by presenting four varied case studies (in Sections 5–8) that
investigate control flow, memory systems, value similarity,
and resilience.

2. Background
This section provides background on basic GPU architecture
terminology and the NVIDIA GPU compilation flow. While
SASSI is prototyped using NVIDIA’s technology, the ideas
presented in this paper are not specific to NVIDIA’s architec-
tures, tools, or flows, and can be similarly applied to other
compiler backends and GPUs.

2.1. GPU Architecture Terminology

GPU programming models allow the creation of thousands of
threads that each execute the same code. Threads are grouped
into 32-element vectors called warps to improve efficiency.
The threads in each warp execute in a SIMT (single instruction,
multiple thread) fashion, all fetching from a single Program
Counter (PC) in the absence of control flow. Many warps
are then assigned to execute concurrently on a single GPU
core, or streaming multiprocessor (SM) in NVIDIA’s termi-
nology. A GPU consists of multiple such SM building blocks
along with a memory hierarchy including SM-local scratch-
pad memories and L1 caches, a shared L2 cache, and multiple
memory controllers. Different GPUs deploy differing numbers

GP
U

pt
xa

s

SASSI

A
pp

lic
at

io
n.

cu
H

an
dl

er
.c

u

Di
sp
la
y
dr
iv
er

SA
SS
I

nv
cc

Pt
xa

s

nv
cc

Compile instrumentation handler

Compile/instrument application

PTX

PTX

nv
li

nk

SASS

SASS
Ahead-of-time
instrumentation

Just-in-time instrumentation

Use --maxrregs=16 to
cap register usage of

instrumentation handler

Figure 1: SASSI’s instrumentation flow.

of SMs. Further details of GPU application execution, core,
and memory architecture are explained in the case studies of
Sections 5–8.

2.2. GPU Software Stack

Historically, NVIDIA has referred to units of code that run
on the GPU as shaders. There are several broad categories
of shaders, including DirectX shaders, OpenGL shaders, and
compute shaders (e.g., CUDA kernels). A front-end com-
piler can be used to simplify the task of writing a shader.
For example, for compute shaders, a user can write parallel
programs using high-level programming languages such as
CUDA [32] or OpenCL [39], and use a front-end compiler,
such as NVIDIA’s NVVM, to generate intermediate code in a
virtual ISA called parallel thread execution (PTX).

PTX exposes the GPU as a data-parallel computing device
by providing a stable programming model and instruction set
for general purpose parallel programming, but PTX does not
run directly on the GPU. A backend compiler optimizes and
translates PTX instructions into machine code that can run on
the device. For compute shaders, the backend compiler can
be invoked in two ways: (1) NVIDIA supports ahead-of-time
compilation of compute kernels via a PTX assembler (ptxas),
and (2) a JIT-time compiler in the display driver can compile a
PTX representation of the kernel if it is available in the binary.

Compute shaders adhere to a well-defined Application Bi-
nary Interface or ABI, which defines different properties of
the interface between a caller and a callee. Examples include
what registers are caller-saved vs. callee-saved, what registers
are used to pass parameters, and how many can be passed in
registers before resorting to passing parameters on the stack.
In particular, this paper focuses on the ABI between on-device
(GPU) callers and callees.

3. SASSI
This section describes SASSI, our backend compiler-based

instrumentation tool. SASSI stands for SASS Instrumentor,
where SASS is NVIDIA’s name for its native ISA. We ex-
plain where SASSI sits in the compiler flow, describe SASSI
injection and instrumentation code, and discuss how the in-
strumentation interoperates with host (CPU) code.

 IADD R1, R1, -0x80
 STL [R1+0x18], R0
 STL [R1+0x40], R10
 STL [R1+0x44], R11
 P2R R3, PR, RZ, 0x1
 STL [R1+0x10], R3
 IADD R4, RZ, 0x15
 STL [R1], R4
 MOV32I R5, vadd
 STL [R1+0x8], R5
 MOV32I R4, 0x640
 STL [R1+0xc], R4
 IADD R5, RZ, 0x29a
 STL [R1+0x58], R5
 @P0 IADD R4, RZ, 0x1
 @!P0 IADD R4, RZ, 0x0
 STL [R1+0x4], R4
 LOP.OR R4, R1, c[0x0][0x24]
 IADD R5, RZ, 0x0
 IADD R6.CC, R10, 0x0
 IADD.X R7, R11, RZ
 STL.64 [R1+0x60], R10
 IADD R6, RZ, 0x2
 STL [R1+0x68], R6
 IADD R7, RZ, 0x4
 STL [R1+0x6c], R7
 IADD R6, RZ, 0x2
 STL [R1+0x70], R6
 LOP.OR R6, R1, c[0x0][0x24]
 IADD R6, R6, 0x60
 IADD R7, RZ, 0x0
 JCAL sassi_before_handler
 LDL R3, [R1+0x10]
 R2P PR, R3, 0x1
 LDL R11, [R1+0x44]
 LDL R10, [R1+0x40]
 LDL R0, [R1+0x18]
 IADD R1, R1, 0x80
 @P0 ST.E [R10], R0;

1

2

3

4

5

6

8

9

7

(a) Instrumented code.

class SASSIBeforeParams {
public:
const int32_t id;
const bool instrWillExecute;
const int32_t fnAddr;
const int32_t insOffset;
int32_t PRSpill;
int32_t CCSpill;
int32_t GPRSpill[16];
const int32_t insEncoding;

__device__ SASSIOpcodes GetOpcode() const;
__device__ int32_t GetID() const;
__device__ int32_t GetFnAddr() const;
__device__ int32_t GetInsOffset() const;
__device__ int32_t GetInsAddr() const;
__device__ bool IsMem() const;
__device__ bool IsMemRead() const;
__device__ bool IsMemWrite() const;
__device__ bool IsSpillOrFill() const;
__device__ bool IsSurfaceMemory() const;
__device__ bool IsControlXfer() const;
__device__ bool IsCondControlXfer() const;
__device__ bool IsSync() const;
__device__ bool IsNumeric() const;
__device__ bool IsTexture() const;

};

(b) bp is an instance of this C++ class.

class SASSIMemoryParams
{
public:
const int64_t address;
const int32_t properties;
const int32_t width;
const int32_t domain;

__device__ int64_t GetAddress() const;
__device__ bool IsLoad() const;
__device__ bool IsStore() const;
__device__ bool IsAtomic() const;
__device__ bool IsUniform() const;
__device__ bool IsVolatile() const;
__device__ int32_t GetWidth() const;
__device__ SASSIMemoryDomain GetDomain() const;

};

(c) mp is an instance of this C++ class.

Figure 2: SASSI instrumentation. (a) The instruction at “ is the original store instruction. The other instructions are the code that
SASSI has inserted to construct an ABI-compliant function call. The sequence does the following: Stack allocates two objects,
bp and mp, instances of SASSIBeforeParams and SASSIMemoryParams. The class definitions of SASSIBeforeParams and
SASSIMemoryParams are shown in (b) and (c), respectively. À Saves live registers R0, R10, and R11 to the bp.GPRSpill array,
and saves the live predicate registers to bp.PRSpill. Ã Initializes member variables of bp, including instrWillExecute
(which is true iff the instruction will execute), fnAddress and insOffset (which can be used to compute the instruction’s PC),
and insEncoding (which includes the instruction’s opcode and other static properties). Õ Passes a generic 64-bit pointer to bp
as an argument to sassi_before_handler in registers R4 and R5 per NVIDIA’s compute ABI. Œ Initializes member variables of
mp, including address (which contains the memory operation’s effective address), width (which is the width of the data in bytes),
properties (which contains static properties of the operation, e.g., whether it reads memory, writes memory, is atomic, etc.). œ
Passes a generic 64-bit pointer to mp in R6 and R7 per NVIDIA’s compute ABI. – Performs the call to sassi_before_handler.
— Restores live registers, and reclaims the allocated stack space. “ Executes the original store instruction.

3.1. SASSI Tool Flow

Figure 1 shows the compiler tool flow that includes the SASSI
instrumentation process. Shaders are first compiled to an
intermediate representation by a front-end compiler. Before
they can run on the GPU, however, the backend compiler must
read the intermediate representation and generate SASS. For
compute shaders, the backend compiler is in two places: in
the PTX assembler ptxas, and in the driver.

SASSI is implemented as the final compiler pass in ptxas,
and as such it does not disrupt the perceived final instruction
schedule or register usage. Furthermore as part of ptxas,
SASSI is capable of instrumenting programs written in lan-
guages that target PTX, which includes CUDA and OpenCL.
Apart from the injected instrumentation code, the original
SASS code ordering remains unaffected. With the SASSI pro-
totype we use nvlink to link the instrumented applications
with user-level instrumentation handlers. SASSI could also be
embedded in the driver to JIT compile PTX inputs, as shown
by dotted lines in Figure 1.

SASSI must be instructed where to insert instrumentation,
and what instrumentation to insert. Currently SASSI supports

inserting instrumentation before any and all SASS instructions.
Certain classes of instructions can be targeted for instrumen-
tation: control transfer instructions, memory operations, call
instructions, instructions that read registers, and instructions
that write registers. SASSI also supports inserting instrumen-
tation after all instructions other than branches and jumps.
Though not used in any of the examples in this paper, SASSI
supports instrumenting basic block headers as well as kernel
entries and exits. As a practical consideration, the where and
the what to instrument are specified via ptxas command-line
arguments.

3.2. SASSI Instrumentation

For each instrumentation site, SASSI will insert a CUDA
ABI-compliant function call to a user-defined instrumentation
handler. However, SASSI must be told what information
to pass to the instrumentation handler(s). We can currently
extract and pass to an instrumentation handler, the following
information for each site: memory addresses touched, registers
written and read (including their values), conditional branch
information, and register liveness information.

/// [memory, extended memory, controlxfer, sync, ...
/// numeric, texture, total executed]
__device__ unsigned long long dynamic_instr_counts[7];

/// SASSI can be instructed to insert calls to this handler
/// before every SASS instruction.
__device__ void sassi_before_handler(SASSIBeforeParams *bp,

SASSIMemoryParams *mp) {
if (bp->IsMem()) {
atomicAdd(dynamic_instr_counts + 0, 1LL);
if (mp->GetWidth() > 4 /*bytes*/)

atomicAdd(dynamic_instr_counts + 1, 1LL);
}
if (bp->IsControlXfer()) atomicAdd(dynamic_instr_counts + 2, 1LL);
if (bp->IsSync()) atomicAdd(dynamic_instr_counts + 3, 1LL);
if (bp->IsNumeric()) atomicAdd(dynamic_instr_counts + 4, 1LL);
if (bp->IsTexture()) atomicAdd(dynamic_instr_counts + 5, 1LL);
atomicAdd(dynamic_instr_counts + 6, 1LL);

}

Figure 3: A trivial example instrumentation handler. SASSI
can be instructed to insert a function call to this handler before
all instructions.

Figure 2(a) shows the result of one memory operation be-
ing instrumented by SASSI. The instruction at (9) is the
original memory instruction, and all prior instructions are
SASSI-inserted instrumentation code. In this example, the
user has directed SASSI to insert instrumentation before all
memory operations (the where), and for each instrumentation
site to extract memory-specific details (such as the address
touched) about the memory operation (the what). SASSI cre-
ates a sequence of instructions that is an ABI-compliant call
to a user-defined instrumentation handler. The caption of Fig-
ure 2 provides a detailed explanation of the sequence. SASSI
creates extra space on a thread’s stack in this example to store
parameters that will be passed to the instrumentation handler.

While generating an ABI-compliant function call incurs
more instruction overhead than directly in-lining the instru-
mentation code, maintaining the ABI has two main benefits.
First, the user is able to write handlers in straight CUDA code.
They do not need to understand SASS, PTX, or even details
of the target architecture. Second, our approach is portable;
the same handler can be used for Fermi, Kepler, and Maxwell
devices, which are significantly different architectures.

Figure 3 shows a pedagogical instrumentation handler,
sassi_before_handler, from the setup shown in Figure 2.
The handler takes two parameters, pointers to instances of
SASSIBeforeParams (bp) and SASSIMemoryParams (mp),
respectively, and uses them to categorize instructions into
six overlapping categories. Note that a single SASS instruc-
tion can simultaneously belong to more than one of these
categories. As Figure 2(b) shows, the C++ object of class
SASSIBeforeParams contains methods that allow a handler
to query for basic properties of the instruction, including the
instruction’s address, whether it uses texture memory, and
whether it alters control flow. This example uses several of
bp’s methods to categorize the instruction, and it uses CUDA’s
atomicAdd function to record instances of each category. Ad-
ditionally, the handler uses the mp object to determine the
width in bytes of a memory operation’s data. We can easily

instruct SASSI to inject calls to this function before all SASS
instructions, the mechanics of which we describe later.

One challenging aspect of GPU instrumentation is the sheer
number of registers that may have to be spilled and filled in
the worst case to create an ABI-compliant function call. Even
though the compiler knows exactly which registers to spill,
there are many instrumentation sites in typical GPU programs
that require spilling 32 or more registers per thread if done
naively. NVIDIA’s Kepler and Maxwell architectures require
spilling ⇠128 registers per thread in the worst case. Com-
pounding this problem, threads are executed in SIMT fashion;
thus all the threads try to spill their live state to memory at
the same time, creating serious bandwidth bottlenecks. To
alleviate this issue, we impose a simple constraint on SASSI
instrumentation handlers; handlers must use at most 16 reg-
isters, the minimum number of registers required per-thread
by the CUDA ABI. This limit can trivially be enforced by
using the well-known -maxrregcount flag of nvcc to cap
the maximum number of registers used when compiling the
instrumentation handler.

It is important to note that SASSI does not change the orig-
inal SASS instructions in any way during instrumentation.
Furthermore, the register limit of 16 that we impose on the
instrumentation handler may increase the runtime overhead of
instrumentation, but it will not reduce an instrumentation han-
dler’s functional utility. With handlers for which the compiler
does not find an allocation that uses 16 or fewer registers, the
compiler will simply insert register spill code.

3.3. Initialization and Finalization

Unlike CPU instrumentation, GPU instrumentation must coor-
dinate with the host machine (CPU) to both initialize instru-
mentation counters, and to gather their values (and perhaps
log them to a file). For CUDA, SASSI leverages the CUPTI
library, which allows host-side code to register for callbacks
when certain important CUDA events occur, such as kernel
launches and exits [33]. In all of the case studies in this paper,
we use CUPTI to initialize counters on kernel launch and copy
counters off the device on kernel exits. On kernel launch, our
CUPTI “kernel launch” callback function uses cudaMemcpy to
initialize the on-device counters appropriately. On kernel exits,
our CUPTI “kernel exit” callback function uses cudaMemcpy
to collect (and possibly aggregate) the counters on the host
side. Furthermore, cudaMemcpy serializes kernel invocations,
preventing race conditions that might occur on the counters.
This approach is excessive for the cases where we do not need
per-kernel statistics. If instead we only wanted to measure
whole-program statistics, we could simply initialize counters
after the CUDA runtime is initialized, and copy counters off
the device before the program exits (taking care to register
callbacks for CUDA calls that reset device memory, which
would clear the device-side counters). The appropriate initial-
ization and finalization mechanisms can be chosen by the user
depending on the specific use case.

4. Methodology

The case studies we present in this paper are meant to demon-
strate how SASSI’s capabilities can be used for different types
of architecture experiments. Section 5 explores SASSI’s abil-
ity to inspect application control flow behavior, which can be a
critical performance limiter on modern GPUs. Section 6 lever-
ages SASSI to perform a detailed memory analysis, which
specifically characterizes an application’s memory divergence.
Section 7 shows how SASSI allows access to an instrumented
application’s register contents to enable value profiling.

While SASSI is capable of instrumenting applications that
target Fermi, Kepler, and Maxwell devices, the results we
present in this paper were gathered on Kepler-based architec-
tures. Specifically, the experiments presented in the aforemen-
tioned case studies target an NVIDIA Tesla K10 G2 with 8GB
memory and display driver version 340.21. In addition, all
experiments use the CUDA 6 toolkit, and we simply replace
the standard ptxas with our SASSI-enabled version.

The final case study in Section 8, characterizes an appli-
cation’s sensitivity to transient errors by injecting faults into
the architecturally visible state of a GPU. The experiments
demonstrate how SASSI can be used to change a kernel’s be-
havior (e.g., by altering register values and memory locations).
The experimental flow targets a Tesla K20 with 5GB memory,
display driver version 340.29, and uses the CUDA 6.5 toolkit.

We choose benchmarks to present in each of the case study
sections that reveal interesting behavior. With the exception of
NERSC’s miniFE application [17, 27], all of the benchmarks
come from Parboil v2.5 [40] and Rodinia v2.3 [7].

5. Case Study I: Conditional Control Flow

Our first case study discusses a tool based on SASSI for ana-
lyzing SIMT control flow behavior. Explicitly parallel Single
Program Multiple Data (SPMD) languages such as CUDA and
OpenCL allow programmers to encode unconstrained control
flow, including gotos, nested loops, if-then-else statements,
function calls, etc. For GPUs when all of the threads in a warp
execute the same control flow (i.e., the threads in the warp
share the same PC), they are said to be converged, and each
thread in the warp is therefore active. Conditional control
flow however, can cause a subset of threads to diverge. Such
divergence has serious performance ramifications for GPU ar-
chitectures. For NVIDIA’s architectures, the hardware chooses
one path to continue executing, and defers the execution of
threads on the alternate paths by pushing the deferred thread
IDs and their program counters onto a divergence stack [19].
At this point, only a subset of the threads actually execute,
which causes warp efficiency to drop. At well-defined recon-
vergence points (which are automatically determined by the
compiler), the hardware pops the deferred threads off the stack
and begins executing the deferred threads.

This case study uses SASSI to collect per-branch control
flow statistics. Specifically, we will show an instrumentation

1 __device__ void sassi_before_handler(SASSIBeforeParams *bp,
2 SASSICondBranchParams *brp)
3 {
4 // Find out thread index within the warp.
5 int threadIdxInWarp = threadIdx.x & (warpSize-1);
6
7 // Find out which way this thread is going to branch.
8 bool dir = brp->GetDirection();
9

10 // Get masks and counts of 1) active threads in this warp,
11 // 2) threads that take the branch, and
12 // 3) threads that do not take the branch.
13 int active = __ballot(1);
14 int taken = __ballot(dir == true);
15 int ntaken = __ballot(dir == false);
16 int numActive = __popc(active);
17 int numTaken = __popc(taken), numNotTaken = __popc(ntaken);
18
19 // The first active thread in each warp gets to write results.
20 if ((__ffs(active)-1) == threadIdxInWarp) {
21 // Find the instruction’s counters in a hash table based on
22 // its address. Create a new entry if one does not exist.
23 struct BranchStats *stats = find(bp->GetInsAddr());
24
25 // Increment the various counters that are associated
26 // with this instruction appropriately.
27 atomicAdd(&(stats->totalBranches), 1ULL);
28 atomicAdd(&(stats->activeThreads), numActive);
29 atomicAdd(&(stats->takenThreads), numTaken);
30 atomicAdd(&(stats->takenNotThreads), numNotTaken);
31 if (numTaken != numActive && numNotTaken != numActive) {
32 // If threads go different ways, note it.
33 atomicAdd(&(stats->divergentBranches), 1ULL);
34 }}}

Figure 4: Handler for conditional branch analysis.

handler that uses counters to record for each branch 1) the
total number of times the branch was executed, 2) how many
threads were active, 3) how many threads took the branch, 4)
how many threads “fell through”, 5) and how often it caused a
warp to split (i.e., divergent branch).

5.1. SASSI Instrumentation

Instrumentation where and what: This analysis targets pro-
gram control flow. We instruct SASSI to instrument before all
conditional control flow instructions, and at each instrumen-
tation site, we direct SASSI to collect and pass information
about conditional control flow to the instrumentation handler.
Instrumentation handler: Figure 4 shows the instrumenta-
tion handler we use for this case study. SASSI will insert calls
to this handler before every conditional branch operation.

The handler first determines the thread index within the
warp (line 5) and the direction in which the thread is going to
branch (line 8). CUDA provides several warp-wide broadcast
and reduction operations that NVIDIA’s architectures effi-
ciently support. For example, all of the handlers we present in
this paper use the __ballot(predicate) instruction, which
“evaluates predicate for all active threads of the warp and re-
turns an integer whose Nth bit is set if and only if predicate
evaluates to non-zero for the Nth thread of the warp and the
Nth thread is active” [32].

The handler uses __ballot on lines 13-15 to set masks
corresponding to the active threads (active), the threads that
are going to take the branch (taken), and the threads that are
going to fall through (ntaken). With these masks, the handler

Table 1: Average branch divergence statistics.

Static Dynamic

Benchmark Total Divergent Divergent Total Divergent Divergent
(Dataset) Branches Branches % Branches Branches %

Pa
rb

oi
l

bfs (1M) 41 19 46 3.66 M 149.68 K 4.1
bfs (NY) 41 22 54 933.88 K 119.45 K 12.8
bfs (SF) 51 26 51 3.75 M 184.63 K 4.9
bfs (UT) 41 20 49 697.28 K 104.08 K 14.9
sgemm (small) 2 0 0 1.04 K 0 0.0
sgemm (medium) 2 0 0 528.00 K 0 0.0
tpacf (small) 25 5 20 14.85 M 3.75 M 25.2

R
od

in
ia

bfs 7 2 29 3.71 M 525.54 K 14.2
gaussian 10 4 40 492.38 M 1.18 M 0.2
heartwall 161 50 31 226.85 M 95.44 M 42.1
srad_v1 28 7 25 9.44 M 46.03 K 0.5
srad_v2 19 12 63 11.20 M 2.38 M 21.3
streamcluster 7 0 0 442.11 M 0 0.0

uses the population count instruction (__popc) to efficiently
determine the number of threads in each respective category
(numActive, numTaken, numNotTaken).

On line 20 the handler elects the first active thread in the
warp (using the find first set CUDA intrinsic, __ffs) to record
the results. Because this handler records per-branch statistics,
it uses a hash table in which to store counters. Line 23 finds the
hash table entry for the instrumented branch (using a function
not shown here). Lines 27-33 update the counters.

As we described in Section 3, we rely on the CUPTI library
to register callbacks for kernel launch and exit events [33].
Using these callbacks, which run on the host, we can appro-
priately marshal data to initialize and record the values in the
device-side hash table.

5.2. Results

Table 1 summarizes the average per-branch divergence statis-
tics for a selected set of Parboil and Rodinia benchmarks with
different input datasets. For each benchmark, we calculate the
fraction of branches in the code that were divergent (“Static”
column), and how often branches diverged throughout execu-
tion (“Dynamic” column) thereby reducing warp efficiency.

Some benchmarks are completely convergent, such as
sgemm and streamcluster, and do not diverge at all.
Other benchmarks diverge minimally, such as gaussian and
srad_v1, while, benchmarks such as tpacf and heartwall

experience abundant divergence. An application’s branch
behavior can change with different datasets. For example,
Parboil’s bfs shows a spread of 4.1–14.9% dynamic branch
divergence across four different input datasets. In addition,
branch behavior can vary across different implementations of
the same application (srad_v1 vs. srad_v2, and Parboil bfs
vs. Rodinia bfs).

Figure 5 plots the detailed per-branch divergence statistics
we can get from SASSI. For Parboil bfs with the 1M dataset,
two branches are the major source of divergence, while with
the UT dataset, there are six branches in total (including the
previous two) that contribute to a 10% increase in dynamic
branch divergence. SASSI simplifies the task of collecting per-

0

100 K

200 K

300 K

400 K

500 K

600 K

700 K

R
un

tim
e

B
ra

nc
h

In
st

ru
ct

io
n

C
ou

nt
 Parboil bfs (1M) Divergent Branches Non-Divergent Branches

0
10 K
20 K
30 K
40 K
50 K
60 K
70 K
80 K
90 K

100 K
110 K

R
un

tim
e

B
ra

nc
h

In
st

ru
ct

io
n

C
ou

nt
 Parboil bfs (UT)

Figure 5: Per-branch divergence statistics of the Parboil bfs
benchmark with different input datasets. Each bar represents
an unique branch in the code. The branches are sorted in a
descending order of runtime branch instruction count.

branch statistics with its easy-to-customize instrumentation
handler, and also makes it tractable to run all input datasets
with its low runtime overhead.

6. Case Study II: Memory Divergence
Memory access patterns can impact performance, caching ef-
fectiveness, and DRAM bandwidth efficiency. In the SIMT
execution model, warps can issue loads with up to 32 unique
addresses, one per thread. Warp-wide memory access patterns
determine the number of memory transactions required. To
reduce total requests sent to memory, accesses to the same
cacheline are combined into a single request in a process
known as coalescing. Structured access patterns that touch
a small number of unique cachelines are more efficiently co-
alesced and consume less bandwidth than irregular access
patterns that touch many unique cachelines.

Warp instructions that generate inefficient access patterns
are said to be memory address diverged. Because warp in-
structions execute in lock-step in the SIMT model, all memory
transactions for a given warp must complete before the warp
can proceed. Requests may experience wide variance in la-
tency due to many factors, including cache misses, memory
scheduling, and variable DRAM access latency.

Architects have studied the impact of memory divergence
and ways to mitigate it in simulation [6, 22, 36, 37, 42]. For
this case study, we demonstrate instrumentation to provide
in-depth analysis of memory address divergence. While pro-
duction analysis tools provide the ability to understand broad
behavior, SASSI can enable much more detailed inspection
of memory access behavior, including: the frequency of ad-
dress divergence; the distribution of unique cachelines touched
per instruction; correlation of control divergence with address
divergence; and detailed accounting of unique references gen-
erated per program counter.

6.1. SASSI Instrumentation

Instrumentation where and what: We instruct SASSI to
instrument before all memory operations, and at each instru-
mentation site, we direct SASSI to collect and pass memory-
specific information to the instrumentation handler.

1 __device__ void sassi_before_handler(SASSIBeforeParams *bp,
2 SASSIMemoryParams *mp)
3 {
4 if (bp->GetInstrWillExecute()) {
5 intptr_t addrAsInt = mp->GetAddress();
6 // Only look at global memory requests. Filter others out.
7 if (__isGlobal((void*)addrAsInt)) {
8 unsigned unique = 0; // Num unique lines per warp.
9

10 // Shift off the offset bits into the cache line.
11 intptr_t lineAddr = addrAsInt >> OFFSET_BITS;
12
13 int workset = __ballot(1);
14 int firstActive = __ffs(workset)-1;
15 int numActive = __popc(workset);
16 while (workset) {
17 // Elect a leader, get its cache line, see who matches it.
18 int leader = __ffs(workset) - 1;
19 intptr_t leadersAddr = bcast(lineAddr, leader);
20 int notMatchesLeader = __ballot(leadersAddr != lineAddr);
21
22 // We have accounted for all values that match the leader’s.
23 // Let’s remove them all from the workset.
24 workset = workset & notMatchesLeader;
25 unique++;
26 }
27
28 // Each thread independently computes ’numActive’, ’unique’.
29 // Let the first active thread actually tally the result
30 // in a 32x32 matrix of counters.
31 int threadIdxInWarp = threadIdx.x & (warpSize-1);
32 if (firstActive == threadIdxInWarp) {
33 atomicAdd(&(sassi_counters[numActive-1][unique-1]), 1LL);
34 }}}}

Figure 6: Handler for memory divergence profiling.

Instrumentation handler: Figure 6 shows the instrumenta-
tion handler for this case study. SASSI inserts a call to this
handler before every operation that touches memory. Because
NVIDIA’s instruction set is predicated, this handler first filters
out threads whose guarding predicate is false (line 4). This
handler then selects only addresses to global memory (line
7).1 Next, the handler computes each thread’s requested cache
line address (line 11). For this work, we use a 32B line size.
Each active thread in the warp will have a thread-local value
for the computed address in lineAddr. Lines 16-26 use re-
duction and broadcast operations to iteratively find the number
of unique values of lineAddr across a warp.

This handler elects a leader thread to record the statistics
(line 32). The leader populates a 32⇥ 32 (lower triangular)
matrix of values in sassi_counters[][], where the rows
of the matrix record the number of active threads in the warp
(numActive) and the columns correspond to the number of
unique line addresses found. This handler also uses CUPTI to
initialize and dump the statistics kept in sassi_counters.

6.2. Results

Figure 7 shows the the distribution (PMF) of unique cache
lines (32B granularity) requested per warp instruction for a
selection of address divergent applications. The distributions
show the percentage of thread-level memory accesses issued
from warps requesting N unique cache lines, where N ranges
from 1 to 32.

1NVIDIA GPUs feature several memory spaces, including local memory,
global memory, and shared memory.

0.510.44 0.43 0.45 0.73

0%

5%

10%

15%

20%

25%

30%

bf
s

(N
Y

)

bf
s

(S
F)

bf
s

(U
T)

sp
m

v
sm

al
l

sp
m

v
m

ed
iu

m

sp
m

v
la

rg
e

bf
s

he
ar

tw
al

l

m
ri-

gr
id

di
ng

E
LL

C
S

R

Parboil Rodinia miniFE

Fr
ac

tio
n

of
 m

em
or

y
re

qu
es

ts

Figure 7: Distribution (PMF) of unique cachelines requested
per warp memory instruction for a selection of memory ad-
dress divergent applications.

4 8 12 16 20 24 28 32

32

28

24

20

16

12

8

4

Student Version of MATLAB

(a) CSR

4 8 12 16 20 24 28 32

32

28

24

20

16

12

8

4

Student Version of MATLAB

(b) ELL

4 8 12 16 20 24 28 32

32

28

24

20

16

12

8

4

0

10

100

1000

10000

100000

Student Version of MATLAB

Figure 8: Memory access behavior for miniFE variants using
different data formats. Warp occupancy is along the x-axis,
address divergence is along the y-axis.

The applications shown exhibit complex data access pat-
terns to irregularly structured data. Graph traversal operations
such as bfs (breadth-first search) have unpredictable, data-
dependent accesses that are frequently irregular. We can see
how data-dependent behavior impacts memory divergence
for three different datasets for bfs from the Parboil suite;
each exhibits similar overall behavior, but the extent of the
problem varies across datasets. Other applications such as
mri-gridding, spmv, and miniFE use sparse data represen-
tations or indirection that limits dense, regular access.

Advanced developers structure their code to use access
patterns or data formats that improve memory access regu-
larity [2, 30]. For instance, Figure 7 shows two variants of
miniFE that use different matrix formats (ELL vs. CSR). We
can see that miniFE-ELL makes most of its memory requests
from warp instructions with low address divergence. On the
other hand, miniFE-CSR makes the majority of its accesses
from warp instructions with high address divergence – with
73% of memory accesses being fully diverged (from warp in-
structions requesting the maximum 32 unique lines). Figure 8
provides an in-depth look at the two variants of miniFE. We
see a two-dimensional plot that accounts for both warp occu-
pancy (number of active threads) as well as address divergence
(number of unique cachelines requested). In the case of CSR,
an irregular access pattern results. In this implementation,
many instructions are maximally address divergent, generat-
ing as many unique requests as active threads (the diagonal).
For ELL, we can see that the distribution of unique requests,

__device__ void sassi_after_handler(SASSIAfterParams* ap,
SASSIRegisterParams *rp)

{
int threadIdxInWarp = threadIdx.x & (warpSize-1);
int firstActiveThread = (__ffs(__ballot(1))-1); /*leader*/

// Get the address of this instruction, use it as a hash into a
// global array of counters.
struct handlerOperands *stats = find(ap->GetInsAddr());

// Record the number of times the instruction executes.
atomicAdd(&(stats->weight), 1);
stats->numDsts = rp->GetNumGPRDsts();
for (int d = 0; d < rp->GetNumGPRDsts(); d++) {
// Get the value in each destination register.
SASSIGPRRegInfo regInfo = rp->GetGPRDst(d);
int valueInReg = (int)rp->GetRegValue(ap, regInfo);
stats->regNum[d] = rp->GetRegNum(regInfo);

// Use atomic AND operations to track constant bits.
atomicAnd(&(stats->constantOnes[d]), valueInReg);
atomicAnd(&(stats->constantZeros[d]), ~valueInReg);

// Get the leader’s ’valueInReg’, see if all threads agree.
int leaderValue = __shfl(valueInReg, firstActiveThread);
int allSame = (__all(valueInReg == leaderValue) != 0);

// The warp leader gets to write results.
if (threadIdxInWarp == firstActiveThread) {
atomicAnd(&(stats->isScalar[d]), allSame);

}}}

Figure 9: A simplified handler for value profiling.

while still correlated to the number of active threads, is shifted
lower. In this case, threads are making more aligned requests
that are better coalesced.

7. Case Study III: Value Profiling and Analysis

This section presents a simple profiling handler that tracks all
instructions that produce register values and determines the
following properties: (1) which bits of the generated values are
always constant across all warps, and (2) which instructions
are scalar, i.e., the instruction produces the same values for all
threads within a warp. Scalar analysis has been proposed to
reduce register file capacity by allowing a significant amount
of sharing across threads in a warp [20]. Similarly, there have
been proposals to pack multiple, narrow-bitwidth operands
into a single register [41], and hardware mechanisms exist for
exploiting narrow-bitwidth computations (e.g., by aggressively
clock-gating unused portions of the datapath) [5]. This sec-
tion’s analysis provides insight into how many register file bits
(a premium in GPUs) current applications are wasting. Such
insight is a valuable guide to the opportunities that architecture
mechanisms can provide.

7.1. SASSI Instrumentation

Instrumentation where and what: To track the values a
shader’s instructions produce, we use SASSI to instrument
after all instructions that write to one or more registers. We in-
struct SASSI to collect and pass to the instrumentation handler
the register information for each instrumented instruction.
Instrumentation handler: Figure 9 shows a simplified ver-
sion of the value profiling instrumentation handler for this case
study. The handler performs the following five steps: (1) it

Table 2: Results for value profiling.

Dynamic % Static %

Benchmark const bits scalar const bits scalar

Pa
rb

oi
l

bfs 72 46 79 52
cutcp 16 25 45 42
histo 70 20 65 27
lbm 25 4 28 7
mri-gridding 66 66 60 35
mri-q 19 40 52 51
sad 51 5 58 35
sgemm 17 47 27 44
spmv 54 43 60 48
stencil 49 35 58 42
tpacf 70 26 72 33

R
od

in
ia

b+tree 73 76 74 80
backprop 73 37 72 33
bfs 72 44 68 38
gaussian 71 54 57 50
heartwall 60 11 75 54
hotspot 65 43 67 43
kmeans 38 33 59 51
lavaMD 46 30 54 40
lud 33 19 42 22
mummergpu 57 12 62 18
nn 40 31 40 31
nw 23 16 27 18
pathfinder 66 19 65 37
srad_v1 47 26 53 35
srad_v2 48 28 60 35
streamcluster 38 54 54 42

elects a leader from the warp’s active threads to write back re-
sults about whether a write is scalar; (2) it gets a pointer to the
current instruction’s statistics by hashing into a device-global
hash table; (3) it iterates through the destination registers, ex-
tracting the value to be written to each destination; (4) it uses
the atomicAnd function to keep track of constant one- and
zero-bits; and (5) it uses __shfl and __all to communicate
and decide whether a value is scalar. The leader records the
outcome in the hash table.

The instrumentation library uses the CUPTI library to reg-
ister callbacks for kernel launch and exit events [33]. Our
launch callback initializes the hash table, and our exit callback
copies the hash table off the device. This approach allows us
to track statistics per kernel invocation.

7.2. Results

In our library’s thread exit callback function, the library dumps
the value profile for the associated kernel invocation, recording
the profile for each instruction that writes one or more registers.
For example, the output for a texture load from Parboil’s bfs
that loads a 64-bit quantity into two adjacent registers is:

TLD.LZ.P R12, R16, RZ, 0x0000, 1D, 0x3;

R12 <- [00000000000000TTTTTTTTTTTTTTTTTT]

R13* <- [00000000000000000000000000000001]

This output shows that this instruction always loaded the
value 1 into R13, across all threads in the kernel. At the same
time, only the lower 18 bits of R12 varied (as is indicated by
the T values) during the kernel’s execution; the upper 14 bits
were always 0. The analysis identifies R13 as scalar, as noted
by the asterisk.

Our instrumentation library generates a coarse summary of
the scalar and bit invariance properties of the instrumented pro-
gram. Table 2 summarizes the results for Parboil and Rodinia.
We use the largest input data set available for Parboil, and
the default inputs for Rodinia. For each benchmark we show
the dynamic and static percentage of register bit assignments
that are constant and scalar. The static metrics weigh each
instruction equally, while the dynamic metrics use instruction
frequency to approximate the true dynamic statistics.

These results show that for these suites of benchmarks, the
architecture is making poor use of the register file. Most
benchmarks have a significant percentage of dynamic scalar
operations, ranging up to 76% for b+tree. In addition, for
these profile runs, most of the operands in these benchmarks
require only a fraction of the 32-bit register allotted to them.
With a remarkably concise amount of code, SASSI exposes
interesting insights that can drive architecture studies that aim
to improve register file efficiency.

8. Case Study IV: Error Injection
This section demonstrates how SASSI can be employed to
evaluate and analyze GPU application sensitivity to transient
hardware errors, by injecting errors into the architecture state
of a running GPU. To the best of our knowledge, the only prior
research that examines GPU error vulnerability used CUDA-
GDB [14, 31]. That work also performed instruction-level
statistical error injection to study application vulnerability, but
lacked the ability to modify predicate registers and condition
codes. Furthermore, because breaking after every instruction
using CUDA-GDB and transferring control to the host system
is prohibitively expensive, that work required a complex and
heuristic-based profiling step to select error injection sites.

A SASSI-based error injection approach overcomes these
two challenges as it can modify any ISA visible state, in-
cluding predicate registers and condition codes. Further, the
instrumented code executes on the GPU, which makes the pro-
filing step much faster and more accurate. Performing error
injections using SASSI requires three main steps: (1) profil-
ing and identifying the error injection space; (2) statistically
selecting error injection sites; and (3) injecting errors into
executing applications and monitoring error behavior. Steps
(1) and (3) occur on different executions using two different
SASSI instrumentation handlers.

In this study, we define an architecture-level error as a single-
bit flip in one of the destination registers of an executing
instruction. If the destination register is a general purpose
register (32-bit value) or a condition code (4-bit value), one
bit is randomly selected for flipping. For predicate registers,
we only flip a destination predicate bit that is being written by
the instruction.

8.1. SASSI Instrumentation

Instrumentation where and what: For the profiling step, we
instrument after all instructions that either access memory or

write to a register and exclude instructions that are predicated
out. We collect and pass the register and memory information
for each instrumented instruction to the handler, which records
the state modifications so that an off-line tool can stochasti-
cally select the error injection site. For error injections, we
instrument the same set of instructions and use the handler
to inject the error into the location selected by the stochastic
process.
Instrumentation handler: In the profiling step, we collect
the following information to identify the error injection space:
(1) static kernel names, (2) the number of times each kernel
executes, (3) the number of threads per kernel invocation, and
(4) the number of dynamic instructions per thread that are
not predicated out and either write to a register or a memory
location. We use CUPTI to collect (1) and (2) and instrument
the instructions using SASSI to collect (3) and (4).

Using this information we randomly select 1,000 error in-
jection sites per application, which is a tuple consisting of the
static kernel name, dynamic kernel invocation ID, thread ID,
dynamic instruction count, seed to select a destination register,
and seed to select the bit for injection. This step is performed
on the host CPU.

In the last and the most important step, we inject one error
per application run and monitor for crashes, hangs, and output
corruption. In each injection run, we check if the selected
kernel and its dynamic invocation count has been reached
using CUPTI. If so, we copy the remaining error site tuple
into the device memory. During kernel execution, we check
if the current thread is the selected thread for injection in the
instrumentation handler. For the selected thread, we maintain a
counter and check if the dynamic instruction that just executed
is the selected instruction for injection. If it is the selected
instruction, we inject the error into the bit and the register
specified by the seeds in the tuple.

After the handler injects the error the application contin-
ues unhindered (unless our experimental framework detects a
crash or a hang). We categorize the injection outcome based
on the exit status of the application, hang detection, error mes-
sages thrown during execution, and output differences from
that of an error-free reference run.

8.2. Results

Figure 10 shows how different applications respond to
architecture-level errors. As mentioned earlier, we performed
1,000 error injection runs per application. This figure shows
that approximately 79% of injected errors on average (using
our error model) did not have any impact on the program out-
put. Only 10% resulted in crashes or hangs. Approximately
4% of injections showed symptoms of failures (unsuccessful
kernel execution or explicit error messages in stdout/stderr),
which can be categorized as potential crashes with appropriate
error monitors. The remaining injections corrupt some appli-
cation output (stdout or stderr or a program defined output
file). We categorize such cases as potential silent data corrup-

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Masked Crashes Hangs Failure symptoms Stdout only different Output file different
Potential Silent Data Corruptions Potential Detected Unrecoverable Errors

Figure 10: Error injection outcomes of different applications.
Each bar shows the results from 1,000 error injection runs.

tions (SDCs). We observed that 1.5% of injections showed
differences only in stdout/stderr when compared to error-free
executions without corrupting program output files, which
may be acceptable for some applications. Lastly, only 5.4%
showed differences in program output files. Additional details
can be found in [16].

SASSI provides the ability to explore the architecture vul-
nerability of GPUs. We further expect that SASSI will be a
valuable tool in exploring hardware and software error mitiga-
tion schemes.

9. Discussion

This section discusses additional SASSI usage considerations,
including runtime overheads, instrumentation side-effects, lim-
itations, and possible extensions.

9.1. Runtime Overhead

The overhead of SASSI instrumentation depends on where
we insert instrumentation and what instrumentation we insert.
Table 3 shows the overheads of instrumentation for each of the
case studies. For each benchmark, the three columns under the
“Baseline” heading show the wall clock runtime t (in seconds),
the total time spent executing kernels k (in milliseconds), and
the total number of kernel launches. The benchmarks in the
table are sorted by the fraction of total runtime spent in the
GPU kernel, from smallest to largest.

We use nvprof [35] to collect device-side statistics and the
Linux time command to measure whole-program runtimes.
All results were collected on a 3GHz Intel R� Xeon R� E5-2690
v2 with an NVIDIA Tesla K40m and driver version 346.41.
We use the median of five runs for each experiment, compile
benchmarks at the “-O3” optimization level, and invoke the
applications with the largest supplied input data set.

For each case study we measure the total wall-clock runtime
T and device-side runtime K of instrumentation relative to the
baselines t and k, respectively. As the two instances where
instrumentation leads to performance improvements indicate,
these measurements contain some jitter.

As expected, the fewer SASS instructions SASSI instru-
ments, the lower the overhead of instrumentation. As Case
Study I only instruments conditional branches, it sees rela-
tively modest slowdowns. However, as Case Studies III and IV
add instrumentation after every SASS instruction that writes
a register, the slowdowns can be significant. The maximum
slowdown we see is over 160⇥ for whole-program execution.

For applications with a considerable fraction of CPU and
data transfer time, the whole-program overhead of instrumen-
tation is typically negligible, whereas for GPU-bound appli-
cations, the overhead can be large. Even heavy instrumenta-
tion does not significantly disrupt many of these applications,
simply because they are CPU-bound. Also of note, nvprof
treats the marshalling of data between the device and host as
kernel time, which reduces the apparent kernel-level impact
of instrumentation on memory-bound applications such as
mummergpu.

We removed the body of the instrumentation handlers to
measure the overhead of spilling and setting up ABI-compliant
calls. Surprisingly the runtime overhead does not decrease
dramatically when we stub out the code in the instrumentation
handlers. For all case studies, the overhead of ABI-compliance
and spilling live registers dominates, consuming roughly 80%
of the total overhead.

Future work will consider optimizations to reduce the base-
line overhead of instrumentation. One approach involves track-
ing which live variables are statically guaranteed to have been
previously spilled but not yet overwritten, which will allow
us to forgo re-spilling registers. In addition, while passing
references to C++ objects is convenient for programmers,
stack-allocating the objects is expensive; We may consider
mechanisms to more efficiently pass parameters to the han-
dlers.

Because SASSI-instrumented programs run at native hard-
ware rates, it enables users to quickly refine their experiments,
a feature not possible in the context of GPU simulation frame-
works. Our worst kernel-level slowdown of 722⇥ is much
faster than simulators such as GPGPU-Sim, which are 1–10
million times slower than native execution.

9.2. Instrumentation Side-effects

While SASSI is intended to be minimally invasive, additional
instructions, register pressure, and cache effects of SASSI
instrumentation can alter the behavior of applications that
contain race-conditions or rely on specific scheduling or tim-
ing assumptions. Even without instrumentation, tpacf in
the Parboil suite produces inconsistent results across differ-
ent architectures, particularly on the medium and large input
sets. While we did not observe applications that exhibited
non-deterministic behavior with the addition of SASSI, if an
application is already susceptible to non-deterministic behav-
ior, SASSI instrumentation will likely exacerbate this non-
determinism.

Table 3: Instrumentation overheads. The “Baseline” column shows the wall clock time t, and the time spent executing kernels k,
for each of the benchmarks. The “T ” column for each case study shows the total runtime of the instrumented application with
respect to t, and the “K” column shows the device-side runtime with respect to k.

Case Study I Case Study II Case Study III Case Study IV
Baseline Cond. Branches Memory Divergence Value Profiling Error Injection

Benchmark t=Total time (s) k=Kernel time (ms) Kernel launches T K T K T K T K

Pa
rb

oi
l

sgemm 2.0 7.8 4 1.0t 1.9k 1.5t 111.8k 2.1t 293.3k 2.2t 286.4k
spmv 2.2 24.3 58 1.0t 3.5k 1.3t 19.9k 1.8t 72.8k 1.8t 73.1k
bfs 2.3 54.3 37 1.1t 3.7k 1.2t 11.7k 1.6t 25.5k 1.4t 20.8k

mri-q 0.3 9.2 15 1.5t 16.1k 1.1t 1.2k 22.3t 722.1k 21.1t 678.3k
mri-gridding 9.6 374.2 81 1.5t 17.3k 1.4t 13.9k 6.3t 139.8k 4.7t 98.9k

cutcp 3.0 176.1 31 5.1t 81.3k 3.8t 60.3k 42.6t 714.4k 40.3t 676.2k
histo 40.4 4466.1 71042 4.4t 29.8k 5.9t 46.0k 30.8t 270.4k 29.1t 257.0k

stencil 1.6 188.2 104 4.3t 27.1k 9.4t 69.9k 32.3t 255.5k 32.3t 258.6k
sad 3.1 498.9 7 1.1t 1.1k 1.1t 1.6k 3.8t 17.8k 3.5t 16.2k
lbm 7.2 5611.4 3003 2.0t 2.2k 18.3t 23.1k 103.0t 129.6k 98.2t 125.0k

tpacf 5.4 4280.6 4 18.9t 23.0k 10.9t 13.6k 160.6t 205.0k 148.9t 187.0k

R
od

in
ia

nn 0.3 0.1 3 1.0t 2.0k 1.0t 2.2k 0.9t 8.7k 1.0t 8.2k
hotspot 0.7 0.4 4 1.1t 8.6k 1.0t 16.3k 1.0t 121.6k 1.1t 120.2k

lud 0.4 1.7 48 1.0t 7.1k 1.0t 22.4k 1.3t 80.8k 1.3t 67.1k
b+tree 1.8 12.5 20 1.0t 3.5k 1.0t 10.0k 1.3t 39.3k 1.2t 38.4k

bfs 2.0 16.4 55 1.0t 4.7k 1.1t 14.0k 1.3t 34.4k 1.4t 34.7k
pathfinder 1.3 12.1 8 1.1t 2.6k 1.1t 7.1k 1.2t 20.3k 1.2t 20.7k

srad_v2 2.3 23.0 8 1.0t 5.1k 1.1t 12.3k 1.7t 69.1k 1.7t 69.9k
mummergpu 7.7 90.1 13 1.1t 1.3k 1.1t 1.1k 1.2t 4.0k 1.1t 3.5k
backprop 0.3 4.8 10 1.0t 1.5k 1.1t 5.4k 1.3t 17.8k 1.3t 18.5k
kmeans 1.6 32.3 10 1.0t 2.1k 0.9t 2.4k 1.5t 26.7k 1.5t 25.5k
lavaMD 0.6 21.5 6 1.4t 13.8k 2.1t 30.8k 17.7t 452.5k 16.2t 422.4k
srad_v1 0.4 21.2 708 1.4t 8.5k 4.6t 62.0k 14.5t 227.8k 14.5t 232.5k

nw 0.3 25.5 258 1.0t 1.0k 1.3t 5.3k 2.0t 13.9k 1.9t 13.5k
gaussian 1.5 254.9 2052 4.4t 18.7k 2.3t 8.4k 12.7t 69.4k 6.3t 32.9k

streamcluster 7.1 2431.5 11278 2.0t 3.8k 8.7t 22.8k 34.7t 99.9k 33.0t 95.6k
heartwall 0.5 227.4 40 9.9t 22.1k 30.0t 70.6k 103.3t 229.6k 93.7t 220.7k

Minimum 0.3 0.1 3 1.0t 1.0k 0.9t 1.1k 0.9t 4.0k 1.0t 3.5k
Maximum 40.4 5611.4 71042 18.9t 81.3k 30.0t 111.8k 160.6t 722.1k 148.9t 678.3k

Harmonic mean 0.9 1.3 12.2 1.4t 3.4k 1.6t 5.7k 2.4t 31.8k 2.4t 29.0k

9.3. Concurrency Issues and Limitations

Because SASSI instrumentation code is written in CUDA, it is
parallel by construction. Designing instrumentation handlers
for SASSI requires the user to carefully consider synchroniza-
tion and data sharing. SASSI handlers can exploit most of
the explicit parallel features of CUDA, including operations
for voting, atomics, shuffle, and broadcast. However, not all
CUDA is legal within SASSI instrumentation handlers. For
example, thread barriers (syncthreads) cannot be used be-
cause the instrumentation function may be called when the
threads in a warp are diverged; syncthreads executed by
diverged warps precludes all threads from reaching the com-
mon barrier. Finally, SASSI instrumentation libraries that use
shared resources, such as shared and constant memory, not
only risk affecting occupancy, but they could also cause instru-
mented programs to fail. For instance, it is not uncommon for
programs to use all of shared memory, leaving nothing for the
instrumentation library. In practice, we have not been limited
by these restrictions.

9.4. SASSI Extensions

Exploiting compile-time information: As part of the back-
end compiler, SASSI has structural and type information that
cannot be easily reconstructed dynamically. For instance, un-
like SASSI, binary instrumentation frameworks generally can-
not identify static basic block headers [12]. Operand datatype

information can also be passed to SASSI handlers, information
that is not explicitly encoded in a program’s binary code.
Instrumenting heterogeneous applications: SASSI can be
used in conjunction with host-side instrumentation tools like
Pin to enable whole-program analysis of applications. This
approach requires some degree of coordination between the
host- and device-side instrumentation code, particularly when
used to form a unified stream of events for analysis. We have
already built a prototype to examine the sharing and CPU-
GPU page migration behavior in a Unified Virtual Memory
system [29] by tracing the addresses touched by the CPU and
GPU. A CPU-side handler processes and correlates the traces.
Driving other simulators: SASSI can collect low-level traces
of device-side events, which can then be processed by separate
tools. For instance, a memory trace collected by SASSI can
be used to drive a memory hierarchy simulator.

9.5. Graphics Shaders

Instrumentation of OpenGL and DirectX shaders is feasible
with SASSI. Graphics shaders require SASSI to be part of
the driver because they are always JIT compiled. Graphics
shaders do not adhere to the CUDA ABI nor do they maintain
a stack, and therefore SASSI must allocate and manage a
stack from which the handler code can operate. Aside from
stack management, the mechanics of setting up a CUDA ABI-
compliant call from a graphics shader remain unchanged.

10. Related Work

To our knowledge, this paper is the first to introduce an ac-
curate and flexible selective instrumentation framework for
GPU applications. The major contribution of this work is
demonstrating a middle ground for measuring, characterizing,
and analyzing GPU application performance that provides ac-
curate hardware-rate analysis while being flexible enough to
measure many interesting aspects of execution.

Many profilers rely on specialized hardware support, such as
NSight [34], Visual Profiler [35], and ProfileMe [11]. SASSI
on the other hand, like the remainder of the related work
in this section, is purely software-based. We qualitatively
compare SASSI to alternative approaches, including binary
instrumentation and compiler-based frameworks.

10.1. Binary Instrumentation

Tools such as Pin [21], DynamoRIO [12], Valgrind [28], and
Atom [38] allow for flexible binary instrumentation of pro-
grams. Binary instrumentation offers a major advantage over
compiler-based instrumentation approaches such as SASSI
employs: users do not need to recompile their applications to
apply instrumentation. Not only is recompilation onerous, but
there are cases where vendors may not be willing to relinquish
their source code, making recompilation impossible.

On the other hand, compiler-based instrumentation ap-
proaches have some tangible benefits. First, the compiler has
information that is difficult, if not impossible, to reconstruct
at runtime, including control-flow graph information, register
liveness, and operand data-types. Second, in the context of
just-in-time compiled systems (as is the case with graphics
shaders and appropriately compiled compute shaders), pro-
grams are always recompiled before executing anyway. Fi-
nally, compiler-based instrumentation is more efficient than
binary instrumentation because the compiler has the needed
information to spill and refill the minimal number of registers.

10.2. Direct-execution Simulation

Another approach related to compiler-based instrumentation
is direct execution to accelerate functional simulators. Tools
such as RPPT [9], Tango [10], Proteus [4], Shade [8], and
Mambo [3] all translate some of the simulated program’s
instructions into the native ISA of the host machine where
they execute at hardware speeds. The advantage of these ap-
proaches for architecture studies is that they are built into sim-
ulators designed to explore the design space and they naturally
co-exist with simulator performance models. The disadvan-
tage is that one has to implement the simulator and enough of
the software stack to run any code at all. By running directly
on native hardware, SASSI inherits the software stack and
allows a user to explore only those parts of the program they
care about. While we have not yet done so, one can use SASSI
as a basis for an architecture performance simulator.

10.3. Compiler-based Instrumentation

Ocelot is a compiler framework that operates on PTX code,
ingesting PTX emitted by a front-end compiler, modifying it in
its own compilation passes, and then emitting PTX for GPUs
or assembly code for CPUs. Ocelot was originally designed to
allow architectures other than NVIDIA GPUs to leverage the
parallelism in PTX programs [13], but has also been used to
perform instrumentation of GPU programs [15]. While Ocelot
is a useful tool, it suffers from several significant problems
when used as a GPU instrumentation framework. First, be-
cause Ocelot operates at the virtual ISA (PTX) level, it is far
divorced from the actual binary code emitted by the backend
compiler. Consequently, Ocelot interferes with the backend
compiler optimizations and is far more invasive and less pre-
cise in its ability to instrument a program. SASSI’s approach
to instrumentation, which allows users to write handlers in
CUDA, is also more user-friendly than the C++ “builder” class
approach employed in [15].

11. Conclusion
This paper introduced SASSI, a new assembly-language instru-
mentation tool for GPUs. Built into the NVIDIA production-
level backend compiler, SASSI enables a user to specify spe-
cific instructions or instruction types at which to inject a call
to a user-provided instrumentation function. SASSI instru-
mentation code is written in CUDA and is inherently parallel,
enabling users to explore the parallel behavior of applications
and architectures. We have demonstrated that SASSI can be
used for a range of architecture studies, including instruction
control flow, memory systems, value similarity, and resilience.
Similar to CPU binary instrumentation tools, SASSI can be
used to perform a wide range of studies on GPU applications
and architectures. The runtime overhead of SASSI depends
in part on the frequency of instrumented instructions and the
complexity of the instrumentation code. Our studies show a
range of runtime slowdowns from 1–160⇥, depending on the
experiment. While we have chosen to implement SASSI in
the compiler, nothing precludes the technology from being
integrated into a binary rewriting tool for GPUs. Further, we
expect that the SASSI technology can be extended in the future
to include graphics shaders.

12. Acknowledgments
We would like to thank the numerous people at NVIDIA who
provided valuable feedback and training during SASSI’s de-
velopment, particularly Vyas Venkataraman. We thank Jason
Clemons who helped us generate figures, and Neha Agarwal
who provided an interesting early use case.

References
[1] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,

“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in
Proceedings of the International Symposium on Performance Analysis
of Systems and Software (ISPASS), April 2009, pp. 163–174.

[2] N. Bell and M. Garland, “Efficient Sparse Matrix-Vector Multiplication
on CUDA,” NVIDIA, Tech. Rep. NVR-2008-004, December 2008.

[3] P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony, A. Gheith, R. Rock-
hold, C. Lefurgy, H. Shafi, T. Nakra, R. Simpson, E. Speight,
K. Sudeep, E. V. Hensbergen, and L. Zhang, “Mambo: A Full Sys-
tem Simulator for the PowerPC Architecture,” ACM SIGMETRICS
Performance Evaluation Review, vol. 31, no. 4, pp. 8–12, 2004.

[4] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl, “PRO-
TEUS: A High-performance Parallel-architecture Simulator,” in Pro-
ceedings of the International Conference on Measurement and Model-
ing of Computer Systems (SIGMETRICS), June 1992, pp. 247–248.

[5] D. Brooks and M. Martonosi, “Dynamically Exploiting Narrow Width
Operands to Improve Processor Power and Performance,” in Proceed-
ings of the International Symposium on High-Performance Computer
Architecture (HPCA), January 1999, pp. 13–22.

[6] M. Burtscher, R. Nasre, and K. Pingali, “A Quantitative Study of
Irregular Programs on GPUs,” in Proceedings of the International
Symposium on Workload Characterization (IISWC), November 2012,
pp. 141–151.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Com-
puting,” in Proceedings of the International Symposium on Workload
Characterization (IISWC), October 2009, pp. 44–54.

[8] B. Cmelik and D. Keppel, “Shade: A Fast Instruction-set Simulator for
Execution Profiling,” in Proceedings of the International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS),
May 1994, pp. 128–137.

[9] R. C. Covington, S. Madala, V. Mehta, J. R. Jump, and J. B. Sinclair,
“The Rice Parallel Processing Testbed,” in Proceedings of the Interna-
tional Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS), May 1988, pp. 4–11.

[10] H. Davis, S. R. Goldschmidt, and J. Hennessy, “Multiprocessor Tracing
and Simulation Using Tango,” in Proceedings of the International
Conference on Parallel Processing (ICPP), August 1991.

[11] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Chrysos,
“ProfileMe: Hardware Support for Instruction-Level Profiling on Out-
of-Order Processors,” in Proceedings of the International Symposium
on Microarchitecture (MICRO), December 1997, pp. 292–302.

[12] Derek Bruening, “Efficient, Transparent, and Comprehensive Runtime
Code Manipulation,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2004.

[13] G. Diamos, A. Kerr, and M. Kesavan, “Translating GPU Binaries to
Tiered Many-Core Architectures with Ocelot,” Georgia Institute of
Technology Center for Experimental Research in Computer Systems
(CERCS), Tech. Rep. 0901, January 2009.

[14] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “GPU-Qin:
A Methodology for Evaluating the Error Resilience of GPGPU Applica-
tions,” in Proceedings of the International Symposium on Performance
Analysis of Systems and Software (ISPASS), March 2014, pp. 221–230.

[15] N. Farooqui, A. Kerr, G. Diamos, S. Yalamanchili, and K. Schwan,
“A Framework for Dynamically Instrumenting GPU Compute Appli-
cations within GPU Ocelot,” in Proceedings of the Fourth Workshop
on General Purpose Processing on Graphics Processing Units, March
2011.

[16] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
“SASSIFI: Evaluating Resilience of GPU Applications,” in Proceedings
of the Workshop on Silicon Errors in Logic - System Effects (SELSE),
April 2015.

[17] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist,
and R. W. Numrich, “Improving Performance via Mini-applications,”
Sandia National Labs, Tech. Rep. SAND2009-5574, September 2009.

[18] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High Per-
formance Cache Replacement Using Re-reference Interval Prediction
(RRIP),” in Proceedings of the International Symposium on Computer
Architecture (ISCA), June 2010, pp. 60–71.

[19] Y. Lee, V. Grover, R. Krashinsky, M. Stephenson, S. W. Keckler,
and K. Asanović, “Exploring the Design Space of SPMD Divergence
Management on Data-Parallel Architectures,” in Proceedings of the
International Symposium on Microarchitecture (MICRO), December
2014, pp. 101–113.

[20] Y. Lee, R. Krashinsky, V. Grover, S. W. Keckler, and K. Asanovic,
“Convergence and Scalarization for Data-parallel Architectures,” in In-
ternational Symposium on Code Generation and Optimization (CGO),
February 2013, pp. 1–11.

[21] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation,” in Proceedings of
the Conference on Programming Language Design and Implementation
(PLDI), June 2005, pp. 190–200.

[22] J. Meng, D. Tarjan, and K. Skadron, “Dynamic Warp Subdivision for
Integrated Branch and Memory Divergence Tolerance,” in Proceedings
of the International Symposium on Computer Architecture (ISCA), June
2010, pp. 235–246.

[23] J. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal, “Graphite: A Distributed Parallel Simulator
for Multicores,” in Proceedings of the International Symposium on
High-Performance Computer Architecture (HPCA), January 2010, pp.
1–12.

[24] T. Moscibroda and O. Mutlu, “A Case for Bufferless Routing in On-
chip Networks,” in Proceedings of the International Symposium on
Computer Architecture (ISCA), June 2009, pp. 196–207.

[25] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors,” in Proceedings of the Inter-
national Symposium on Microarchitecture (MICRO), December 2007,
pp. 146–160.

[26] S. Narayanasamy, G. Pokam, and B. Calder, “BugNet: Continuously
Recording Program Execution for Deterministic Replay Debugging,” in
Proceedings of the International Symposium on Computer Architecture
(ISCA), May 2005, pp. 284–295.

[27] National Energy Research Scientific Computing Center,
“MiniFE,” https://www.nersc.gov/users/computational-systems/cori/
nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
minife, 2014.

[28] N. Nethercote and J. Seward, “Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation,” in Proceedings of the Confer-
ence on Programming Language Design and Implementation (PLDI),
June 2007, pp. 89–100.

[29] NVIDIA. (2013, November) Unified Memory in CUDA 6. Available:
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

[30] NVIDIA. (2014, August) CUDA C Best Practices Guides. Available:
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

[31] NVIDIA. (2014, August) CUDA-GDB :: CUDA Toolkit Documenta-
tion. Available: http://docs.nvidia.com/cuda/cuda-gdb/index.html

[32] NVIDIA. (2014, November) CUDA Programming Guide :: CUDA
Toolkit Documentation. Available: http://docs.nvidia.com/cuda/
cuda-c-programming-guide/

[33] NVIDIA. (2014, November) CUPTI :: CUDA Toolkit Documentation.
Available: http://docs.nvidia.com/cuda/cupti/index.html

[34] NVIDIA. (2014) NVIDIA NSIGHT User Guide. Avail-
able: http://docs.nvidia.com/gameworks/index.html#developertools/
desktop/nsight_visual_studio_edition_user_guide.htm

[35] NVIDIA. (2014, August) Visual Profiler Users’s Guide. Available:
http://docs.nvidia.com/cuda/profiler-users-guide

[36] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Divergence-aware
Warp Scheduling,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), December 2013, pp. 99–110.

[37] J. Sartori and R. Kumar, “Branch and Data Herding: Reducing Control
and Memory Divergence for Error-Tolerant GPU Applications,” IEEE
Transactions on Multimedia, vol. 15, no. 2, pp. 279–290, February
2013.

[38] A. Srivastava and A. Eustace, “ATOM: A System for Building Cus-
tomized Program Analysis Tools,” in Proceedings of the Conference
on Programming Language Design and Implementation (PLDI), June
1994, pp. 196–205.

[39] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Program-
ming Standard for Heterogeneous Computing Systems,” Computing in
Science and Engineering, vol. 12, no. 3, pp. 66–73, May/June 2010.

[40] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A Revised Bench-
mark Suite for Scientific and Commercial Throughput Computing,”
University of Illinois at Urbana-Champaign, Center for Reliable and
High-Performance Computing, Tech. Rep. IMPACT-12-01, March
2012.

[41] S. Tallam and R. Gupta, “Bitwidth Aware Global Register Alloca-
tion,” in Proceedings of the Symposium on Principles of Programming
Languages (POPL), January 2003, pp. 85–96.

[42] P. Xiang, Y. Yang, and H. Zhou, “Warp-level Divergence in GPUs:
Characterization, Impact, and Mitigation,” in Proceedings of the In-
ternational Symposium on High-Performance Computer Architecture
(HPCA), February 2014, pp. 284–295.

