
Appears in the 2006 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS 2006)

Critical Path Analysis of the TRIPS Architecture

Ramadass Nagarajan Xia Chen Robert G. McDonald Doug Burger
Stephen W. Keckler

Computer Architecture and Technology Laboratory
Department of Computer Sciences
The University of Texas at Austin

cart@cs.utexas.edu - www.cs.utexas.edu/users/cart

Abstract

Fast, accurate, and effective performance analysis is es-
sential for the design of modern processor architectures and
improving application performance. Recent trends toward
highly concurrent processors make this goal increasingly
difficult. Conventional techniques, based on simulators and
performance monitors, are ill-equipped to analyze how a
plethora of concurrent events interact and how they affect
performance. Prior research has shown the utility of criti-
cal path analysis in solving this problem [5, 18]. This anal-
ysis abstracts the execution of a program with a dependence
graph. With simple manipulations on the graph, designers
can gain insights into the bottlenecks of a design.

This paper extends critical path analysis to understand
the performance of a next-generation, high-ILP architec-
ture. The TRIPS architecture introduces new features not
present in conventional superscalar architectures. We show
how dependence constraints introduced by these features,
specifically the execution model and operand communica-
tion links, can be modeled with a dependence graph. We de-
scribe a new algorithm that tracks critical path information
at a fine-grained level and yet can deliver an order of mag-
nitude (30x) improvement in performance over previously
proposed techniques [5, 18]. Finally, we provide a break-
down of the critical path for a select set of benchmarks and
show an example where we use this information to improve
the performance of a heavily-hand-optimized program by as
much as 11%.

1 Introduction

Modern processors exploit fine-grained concurrency
from potentially hundreds of instructions in flight. Each
instruction passes through a myriad of hardware resources
resulting in numerous microarchitectural events during the
course of its lifetime—cache misses, branch mispredictions,
re-order buffer stalls, port contentions, and data dependence

hazards. The active instruction window in a processor could
thus feature thousands of events, some of which occur on
concurrent paths, while others are dependent on each other.
Naturally, some of them affect the overall execution time
more than others. Understanding the interactions among
these events and identifying the bottlenecks is important not
only for designing balanced machines with the right hard-
ware mix and capabilities, but also for providing accurate
bottleneck-causing program profiles to an optimizing com-
piler.

Conventional simulation-based techniques and hardware
performance-monitoring techniques are ill-equipped for a
detailed performance analysis. While the coarse-grained
view that they provide—the number of cache misses,
branch predictions, or even execution profiles—can point
designers in the right direction, they are insufficiently pow-
erful to identify the finer-grained interactions and bottle-
necks among a large set of concurrent and inter-dependent
events [6]. Simulation-based techniques also quickly im-
plode under the wake of numerous design parameters and
the resulting combinatorial expansion of the design space.

Prior research has shown the utility of critical path anal-
ysis in solving the above problem [5, 18]. This analysis
abstracts the execution of a program with a directed acyclic
graph constructed using a simulator or a run-time profiler.
Nodes in the graph represent microarchitectural events that
occur during the lifetime of the program, while edges rep-
resent the dependence constraints among the events. These
constraints include both data dependences among the in-
structions and machine constraints specific to the architec-
ture. Different insights can be gained by analyzing the
dependence graph. For example, one can identify if long
execution times are a result of poor instruction-level par-
allelism (ILP) in a program. If the critical path—defined
as the longest path in the graph—consists of a large frac-
tion of data dependence edges in the program, then it is
because of low available ILP. A different composition of
the critical path may indicate other constraints. One can
obtain the relative critical path contribution of each type

of dependence constraint and identify the potential bottle-
necks among them. Researchers have shown a variety of
such dependence-graph based analyses and their applica-
tions to understand and improve the performance of a pro-
cessor [4, 5, 6, 13, 17, 18].

This paper extends the simulation-based critical path
framework developed for conventional out-of-order proces-
sors and uses it to analyze the performance of a high-ILP
processor architecture. The TRIPS architecture can support
wider-issue microarchitectures than has historically been
feasible [2]. It uses an execution model that treats large
blocks of instructions as atomic units for fetch, execution,
and commit. The ISA facilitates a distributed microarchi-
tecture in which numerous computation tiles communicate
using a routed network. We identify the new microarchitec-
tural events and dependence constraints introduced by these
features and show how they can be represented in the depen-
dence graph.

The complexity of critical path analysis depends on the
instruction window size of the processor. The TRIPS proto-
type processor with its 16-wide issue, 1024-entry instruc-
tion window, and distributed microarchitecture increases
the complexity considerably. The complexity of the anal-
ysis also depends on the number of different types of de-
pendence constraints and the granularities at which they are
tracked by the graph. In the simplest form, only aggregate
critical path contributions of a constraint may need to be
tracked, for example the number of data cache miss cycles
that appear on the critical path. However, for a better bot-
tleneck analysis one may need to track these constraints at
a finer-grained level, for example which data cache bank,
which program block, or which load instruction contributed
the most cache miss cycles on the critical path. These dif-
ferent levels of granularity have a multiplicative effect on
the amount of in-flight state required for analysis and may
increase the complexity accordingly.

We describe an algorithm to manage the large in-flight
state required for critical path analysis efficiently. The al-
gorithm trades-off the simulator memory required for main-
taining the graph with the cost of traversing the graph. We
show how a careful tradeoff can significantly reduce the
complexity of the analysis. We present details of the al-
gorithm in Section 4. We apply the analysis on a select
set of programs and provide breakdown of the dependence
constraints that contribute to the execution critical path. Fi-
nally, we show an example where we use this information to
improve the performance of a heavily-hand-optimized pro-
gram by as much as 11%. We present these results in Sec-
tion 5.

2 TRIPS Architecture

The TRIPS architecture is designed to address key chal-
lenges posed by next-generation technologies—power ef-
ficiency, high concurrency on a latency-dominated physi-
cal substrate, and adaptability to the demands of diverse
applications [10, 12]. It uses an EDGE ISA [2], which
has two defining characteristics:block atomic execution
anddirect instruction communication. The ISA aggregates
large groups of instructions into blocks which are logically
fetched, executed, and committed as an atomic unit by the
hardware. This model amortizes the cost of per-instruction
overheads such branch predictions over a large number of
instructions. With direct instruction communication, in-
structions within a block send their results directly to the
consumers without writing the value to the register file, en-
abling lightweight intra-block dataflow execution.

The compiler forms TRIPS blocks, each of which is
a predicated hyperblock containing up to 128 instruc-
tions [14]. In addition, each block may contain up to 32
read and 32write instructions that specify the register in-
puts and outputs for the block. Further, in all possible exe-
cutions, a block may execute at most 32 load/store instruc-
tions, and produce a constant number of outputs (stores,
register writes, and one branch). The compiler also stati-
cally determines the placement for all instructions such that
they map efficiently onto the microarchitecture [9]. The
microarchitecture supports concurrent execution of up to
eight blocks, seven of them speculatively. The eight 128-
instruction blocks together provide an in-flight window of
1,024 instructions to exploit parallelism.

Figure 1 pictures the prototype TRIPS microarchitecture.
It consists of a 4x4 array of execution tiles connected by a
routed point-to-point operand transport network. Each exe-
cution tile (ET) consists of an integer and floating point unit,
a 64-entry reservation station, and is capable of executing
one instruction each cycle. The microarchitecture with 16
execution tiles, is thus capable of issuing 16-wide from up
to 1,024 instructions in flight. At the periphery of the ar-
ray are the register file banks (RT) along the top edge and
the instruction (IT) and data cache (DT) banks along the left
edge. The global control tile (GT) consists of a control-flow
predictor, I-cache tag array, and block management state es-
sential for fetch, flush, and commit operations. The RTs,
DTs, and the GT are also nodes on the operand network.

Execution of a block proceeds as follows. The GT per-
forms a prediction and obtains the address of the block. It
then accesses the I-cache tag array, detects a hit, and sends
the cache index in a pipelined fashion to the slave ITs. Each
IT independently fetches the instructions and dispatches
one instruction per cycle to each ET on the same row (4 total
instructions per cycle). An instruction may begin execution
in a dataflow fashion as soon as all of its operands are avail-

G

E

R

Global Control:

Protocols: fill, flush, commit

Contains I-cache tags, block header state,

r/w instructions, branch predictor, ITLB

Register Banks:

32 registers per bank x 4 threads

64 static rename registers per bank

Dynamically forwards inter-block values

Execution Nodes:

Single-issue ALU unit, single-issue

Full integer and floating point units (no FDIV)

Buffers 64 instructions (8 insts x 8 blocks) per tile

D-cache Banks

8KB 2-way, 1-port, cache-line interleaved banks

DTLB, 8 MSHRs, LSQ, dependence pred. per bank

Supports load speculation and distributed commit

D

I-cache Banks

16KB 2-way, 1-port L1 instruction cache banks

Each bank delivers four insts/cycle

Banks are slaves to global control unit tag store

I

G RR R R

Router

Input ports

Output ports

Operand

buffers

Integer
FP

64 Instruction

buffers

A61
A62
A63

A0
A1

 TRIPS Execution Node TRIPS Processor Core

I

I

I

I

I

D

D

D

D

S

e
c
o
n
d
a
ry

C
a
c
h
e

In

te
rf

a
c
e

I

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

Figure 1. TRIPS prototype microarchitecture

able. Read instructions “execute” by reading their respec-
tive block input values and injecting them into the operand
network. After an instruction executes, it sends the result
to one or more consumer instructions in the same block us-
ing the operand network. If the result is a block output, the
ET sends it to the appropriate tile—register output to a RT,
store to a DT, branch target to the GT. A block completes its
execution when all of its outputs have been produced. Once
it becomes the oldest in-flight block, the GT sends a com-
mit command to the RTs and the DTs. The commit logic in
these tiles first saves the architectural state and then the GT
deallocates the block.

All operations during a block’s lifetime—fetch, exe-
cution, and commit—happen in a fully distributed fash-
ion. Coupled with speculation, this distribution presents
challenges for a detailed performance analysis. For ex-
ample, a typical snapshot of the microarchitectural execu-
tion in any given cycle could be as follows: Block 7, the
youngest block, is in the middle of its fetch/dispatch pro-
cess, while some of its instructions have already begun ex-
ecution. Some instructions in blocks 1–6 are currently exe-
cuting. An instruction in Block 5 at one of the ETs cannot
execute because its issue slot is occupied, while in another
ET an instruction cannot send its result out because of con-
tention at the operand network ports. Another instruction is
stalled because it is waiting for an operand that is currently
in the middle of a long commute from the source instruc-
tion. At the same time Block 0, the oldest block, is cur-
rently in the process of committing its architectural state,
but is stalled due to an unavailable cache port at one of the
DTs, even though all of its register outputs have already
been committed.

Finding answers to some traditional performance ques-
tions becomes a difficult proposition for the TRIPS pro-
cessor microarchitecture due to its considerable in-flight
state—eight blocks and 1,024 instructions, each in one of
many states as described above. In addition, the distributed
microarchitecture and execution model of TRIPS present
some unique questions: a) Do the operand communication

latencies limit ILP? b) Are there too many cross-block in-
teractions? c) Should the network bandwidth be doubled?
and d) Which network link presents bottlenecks more often?
The goal of this paper is not to answer these important ques-
tions, but instead provide a powerful framework for analysis
that can lead to key insights and answers.

3 Critical Path Model

The critical path model for the TRIPS architecture is
heavily based on the dependence-graph model previously
developed for superscalar architectures [5]. The model rep-
resents various microarchitectural events as nodes in a di-
rected acyclic graph. Edges between the nodes represent
dependence constraints among the events. Figure 2 shows
a typical dependence graph constructed for a slice of four
blocks seen during the program execution. In addition to
representing the usual constraints such as data dependences,
branch mispredictions, and finite instruction window sizes,
the TRIPS model represents constraints imposed by block-
atomic execution and operand routing.

Each node in the graph maintains the following informa-
tion.

• Type of the event: block fetch, operand communica-
tion, register read, etc.

• Static delay: statically determinable cycles consumed
by an event, e.g., latency of a integer multiply.

• Dynamic delay: latencies introduced by dynamic
events, e.g., execution stall cycles due to contention
for the issue slot.

• Information about the block and/or instruction associ-
ated with the event.

• Information about the tile or network link where the
event occurs.

The block-atomic execution model relies on a few global
tasks that are performed on behalf of an entire block. These

BC

BD

BC

BD

BC

BD

I0: read t0, R0
I1: read t1, R1
I2: sw t0, (t1)
I3: movi t2, 0
I4: bro block1
I5: write R2, t2

I0: read t1, R1
I1: read t2, R2

I4: bro block2
I5: write R5, t5
I6: write R3, t3

I2: load t5, (t1)
I3: load t3, (t2)

I0: bro block3 I0: bro block4

dynamic: 2 cycles

block: Block0
type: OP
source: et0
dest: dt2
static: 3 cycles

BC

BD

IF2

IE

OP

BF

IF0 IF1IF0 IF1 IF3 IF4 IF3 IF4IF2

RR RR IE IE IE IE IE

LD

OP OP OP OP OP OP

RF

OP

SF

OP OP

BF

OP

IF2

IE

OP

BF

IF2

IE

OP

BF

RR

Active window

Block 0 Block 1 Block 2 Block 3

OP

at a node
Typical information maintained

Block Instructions

Figure 2. Critical path model for the TRIPS architecture. The exam ple shows the dependence graph for four
blocks and a machine window size of two blocks. Inter-block dependen ces are shown with bold arrows.

tasks introduce dependence constraints for operations not
only within the block and but also in other blocks. We sum-
marize these constraints in the following paragraphs and in
Table 1.

Intra-Block Fetch Dependences:The control logic at the
GT determines the address of the next block to fetch. This
event is represented by the graph nodeBF and denotes the
availability of the block’s instructions in the cache and the
start of the fetch process. The GT takes at least eight cy-
cles to initiate the fetch for the entire block. These eight
cycles are recorded as the static latency of theBF event.
Any additional latency, for example due to cache misses, is
recorded as the dynamic latency of the event.

The delivery of instructions from the I-cache banks to
the respective ETs is represented by theIF nodes. The
distributed nature of the fetch is represented by the inde-
pendentIF nodes that are all only dependent on the global
block fetch event (BF → IF). EachIF event has a stati-
cally determinable latency based on the location of the tile
to which the instruction is dispatched.

Intra-Block Execution Dependences:An instruction ex-
ecutes when all of its operands are ready. Some of these
operands may be block inputs that are read from the regis-
ter banks and delivered on the operand network to the ex-

ecution tiles. The register read event (RR) represents the
read of a block input value from the register bank. It is de-
pendent on the fetch of the corresponding read instruction
(IF → RR). The operand transfer event (OP) represents
routing of the value to the tile containing the consumer in-
struction. The latency for operand routing includes both the
statically determinable cycles computed from the number
of routing hops and additional cycles resulting from con-
tention for the intermediate network links. The eventIE

represents the execution of an instruction. After execution,
the instruction may route the result to a dependent instruc-
tion in the same block. Such data dependences manifest as
edges from the execution events of producers to the execu-
tion events of consumers via operand communication events
(IE → OP → IE).

Intra-Block Commit Dependences:A block completes its
execution when all of its outputs — registers, stores and
branch target — have been computed. Edges from instruc-
tion execution events to the block completion event (BC)
via operand communication events represent this depen-
dence (IE → OP → BC). Once a block is known to have
completed, the outputs can be committed. This constraint is
denoted by the dependenceBC → BD.

Inter-Block Dependences:The fetch of a block can pro-

Name Events Dependences Dependence Edge
BF Fetch of a block In-order block fetches BFi−1 → BFi

Recovery from control misprediction OP → BF

Finite window BDi−w → BFi

IF Fetch of an instruction Must follow block fetch BF → IF

RR Read of a register Must follow read instruction fetch IF → RR

IE Instruction execute Must follow instruction fetch IF → IE

Can execute only after operands have been received OP → IE

OP Operand communication Can communicate result only after execution has completedIE → OP

Can communicate register values after register read RR → OP

BC Block execution completion Block completes after all outputs have been produced OP → BC

BD Block commit Block commits after it completes BC → BD

Blocks must begin their commit operations in-order BDi−1 → BDi

RF Register forward Register forwarded after value produced OP → RF

Register forwarded after read instruction is fetched IF → RF

LD Load reply Load reply happens after address is received OP → LD

LD → OP

SF Store forward Forward happens after store value is received OP → SF

SF → OP

Table 1. Dependences for the TRIPS critical path model

ceed only after the fetch for the previous block has started.
This in-order block fetch dependence is represented by the
(BFi−1 → BFi) edges. Similarly, blocks can complete
their commit operations only in order. This constraint is
represented byBDi−1 → BDi edges. Instructions across
different blocks could have data dependences through reg-
isters. The hardware has the capability to dynamically for-
ward register values from producer instructions in a block
to consumers in another block, without waiting for the pre-
vious block to commit. This forwarding event is repre-
sented by the graph nodeRF , and associated intra-block
fetch dependenceIF → RF and inter-block dependence
OP → RF .

The hardware supports the execution of up to eight
blocks in flight. The fetch of a block can thus proceed
only after the deallocation of the eighth block preceding
the current one. This dependence is represented by the
BDi−w → BFi edges, wherew denotes the window size
in blocks. Figure 2 depicts a window size of 2 blocks. Fi-
nally, branch misprediction in a block constrains the fetch
of the successor block. Once the branch instruction is exe-
cuted and the target communicated to the GT, the fetch pro-
cess can be initiated. The sequence of dependence edges
IE → OP → BF represents this constraint.

Store-Load Dependences:Load instructions compute the
effective addresses at an execution tile and sends them on
the network to data cache banks. Data cache banks read the
value for loads and route them back to consumer instruc-
tions. The cache access is represented by the eventLD. Hit
latencies appear as static delays and miss latencies appear
as dynamic delays. The associated dependences for this se-
quence of events are represented by the edgesIE → OP ,
OP → LD, andLD → OP . Occasionally, a prior store
in the same block or preceding block may have the same
address as the load. The load can obtain the correct value

only after the store has been received at the data cache bank.
Once the store arrives, the load-store queues at the data
cache can dynamically forward the value from the store to
the matching load. This forwarding event is represented by
the nodeSF .

Critical Path: The longest path in the dependence graph—
measured by summing the weights of the nodes in the
path—- from theBF event in the first block to theBD

event in the last block provides the critical path of execu-
tion through the program. By examining the composition
of the nodes along the path, one can summarize the contri-
butions of each type of event, each tile or network link in
the processor, each program block, or even each instruction
in the program to the overall execution of the program. For
example, one can determine the critical path cycles result-
ing from issue slot contention stalls at the tile ET0 while
trying to execute the instruction at address0xdeadf000.
Such information can be fed back to the compiler so that
it can find a better placement for the instruction, perhaps
by moving it to a different execution tile, and eliminate the
contention stall cycles.

4 Computing the Critical Path for TRIPS

The critical path framework for the TRIPS prototype
processor consists of two major components: a) a detailed
cycle-level simulator, and b) a dependence graph construc-
tor and critical path analyzer. We simulate programs com-
piled for the TRIPS architecture using a detailed cycle-level
simulator. We use traces generated by the simulator to con-
struct the dependence graph of execution. The critical path
analyzer then traverses the dependence graph and outputs
the critical path information at the desired level of granular-
ity.

The critical path can be computed at different granular-
ites.

• An event-level summary provides the number of cycles
spent for each event on the critical path.

• A block-level summary provides the number of cycles
for each event in each program block executed on the
critical path.

• A tile-level summary provides the contributions of
each hardware tile and an instruction-level summary
provides the contributions of each program instruction
executed on the critical path.

The TRIPS cycle-level simulator faithfully models all the
components of the prototype processor shown in Figure 1.
It simulates all the tiles, network links, and the pipelines
within each tile in great detail. We validated the simula-
tor against a verilog implementation of the prototype and
found it to be accurate within 4% on a wide array of mi-
crobenchmarks and randomly generated tests. The simula-
tor outputs a trace of the various microarchitectural events
that happened during the execution of a program. The trace
contains details of each event such as the cycle when it oc-
curred and information about the block or instruction(s) as-
sociated with it. We construct the dependence graph using
the trace and compute critical paths using the algorithms
described in the following sections.

Critical path analysis requires an effective management
of the large dependence graph state. Three factors deter-
mine the complexity of the algorithm that computes the
critical path: a) the size of the graph saved for analysis,
b) the number of graph nodes visited during the analysis,
and c) the granularity at which the critical path composi-
tion is computed. The first factor determines the memory
requirements, while the other two determine the computa-
tional requirements of the algorithm. In this section, we
review two traditional approaches that have opposing re-
quirements on memory and computation. We then present a
new algorithm that exploits certain properties of the depen-
dence graph, lowers the requirements on both computation
and memory, and delivers the best performance.

4.1 Backward-Pass Algorithm

This algorithm starts at theBD node for the last block.
At each step of the algorithm, it visits another node by pro-
ceeding to the latest parent node that satisfied the current
node’s constraints. It terminates at theBF node for the
first block. The sequence of the nodes visited is the critical
path of execution and by aggregating various information
at each of these nodes one can obtain the critical path sum-
maries at different levels of granularity. The advantage of
the algorithm is that it does not visit any node that is not

on the critical path. However, it requires the entire graph
to be constructed and saved before the critical path can be
computed. This requirement is clearly intractable for large
programs.

4.2 Forward-Pass Algorithm

Prior work on critical path analysis used a simple
forward-pass algorithm and saved only a portion of the
graph at any given time [5, 18]. The key property of the
graph exploited by this algorithm is the fact that no de-
pendence constraint can span more blocks beyond that al-
lowed by the maximum window size of the machine. Con-
sequently, it maintains only the sub-graph of events for a
window of w + 1 blocks at any given time, wherew is the
maximum window size. However, each node has to main-
tain summaries of the critical path in reaching that node.

The critical path summary at each node contains the
number of cycles spent for every type of microarchitectural
event on the critical path leading to that node. Consequently
the cost of copying the summary from one node to another
is proportional to the number of different types of events
tracked by the tool. The granularity of the critical path com-
position determines the cost of computing the summaries. If
a block-level granularity is desired, the summaries should
include the number of critical path cycles for every event in
every block. Consequently, the copying costs are propor-
tional to the product of both the number of different blocks
executed in the program and the number of different types
of events. A tile-level or a instruction-level breakdown has
a similar multiplicative effect on the cost of computing the
critical path summaries.

The algorithm starts by constructing the graph for the
first w + 1 blocks. For every node in the first block, it visits
all of its successors. During each visit, it propagates all
critical path information tracked thus far at a node to the
successor. The successor updates its information only if the
parent satisfied its constraints the latest. It then adds a new
block (w + 2, in sequence) to the graph, removes the sub-
graph corresponding to the first, and repeats the process for
the second block.

This algorithm reduces the memory requirements dra-
matically. However it visits every node in the program’s
overall graph. In addition, during each visit, a node has to
copy the complete critical path breakdowns to its successor.
Depending on the required granularity of the breakdowns,
these copying costs grow proportionately and for large pro-
grams can be prohibitively expensive.

4.3 Mixed Algorithm

The backward-pass algorithm requires copies only along
the critical path, but its memory requirements are in-
tractable. By contrast, the forward-pass algorithm keeps

Name Description Block Instruction Execution Time
counts counts (cycles)

a2time01 Misc control code and integer math (EEMBC) 16880 112402 477212
bezier Bezier curve calculations, fixed-point math (EEMBC)461694 3807281 2984977
dct8x8 2D discrete cosine transform 40194 3614106 196342
matrix Matrix multiplication, integer 25624 1355074 230833
sha NIST secure hash algorithm (MiBench) 15576 1252784 582178

Table 2. Benchmark set used for evaluation

only a small sub-graph in memory, but since it visits every
node, its copy requirements can be intractable. A desirable
algorithm is one that does not require the entire graph and
at the same time does not visit every node to compute the
critical path.

A key property of the dependence graph is that for the
sub-graph corresponding to an arbitrary window of contigu-
ous blocks, the number of edges from nodes within the win-
dow to those outside can always be bounded. This property
applies to the dependence graphs for both conventional su-
perscalar and TRIPS architectures. For the TRIPS architec-
ture, these out-going edges can source only a few “output”
nodes: a) oneBF node, enforcing in-order block fetch start
events, b) oneBD node, enforcing in-order block commit
events, c) one branch communication node for any branch
mispredictions, d) one or more register output communica-
tion nodes, and e) one or more store communication nodes.
The latter two set of nodes can be bounded as they can only
belong to the most recently seen eight blocks, each of which
can have only up to 32 register writes and 32 stores as per-
mitted by the ISA. We exploit this property in composing
an algorithm that uses a combination of both backward and
forward passes. One can extend the algorithm fairly easily
for a conventional superscalar architecture.

The algorithm maintains the sub-graph of events for a
sliding window ofr + 8 blocks, wherer is a large num-
ber such that the graph can be feasibly accommodated in
memory. The algorithm starts by constructing the graph for
the firstr + 8 blocks. It then does a backward pass starting
from each “output” node (in blocksr − 7 to r) and collects
the critical path information at these nodes. For each out-
put node, it then propagates the critical path information to
all its successors similar to the forward pass algorithm. It
then removes the topr blocks and adds the nextr blocks
to the graph. The whole process continues until the critical
path information is collected at the commit node for the last
block.

Depending on the value forr, the algorithm reduces the
number of graph nodes visited and consequently, the num-
ber of times the critical path information is copied from one
node to another. A large value forr imposes a greater mem-
ory requirement for maintaining the in-flight graph state
compared to the forward-pass algorithm. But it amortizes
that cost by visiting only those nodes that are on the criti-
cal path leading to an output node. In our experiments, we

found that best setting forr was one that consumed most
of the available memory. It must be noted that ifr is set
to 1, the algorithm is similar to the forward-pass algorithm
described above and if set to∞, it defaults to the backward-
pass algorithm.

5 Results

This section shows the results of the critical path analysis
on a select set of benchmarks. Our primary goal is to illus-
trate the type of information that the analysis can provide,
and not to demonstrate the raw performance of the architec-
ture. Consequently we limit ourselves to relatively simple
programs, based upon real and common algorithms. We
used a set of five benchmarks from the following sources—
EEMBC [1], MiBench [8], basic math kernels, and basic
DSP kernels. Many of these are iterative, repetitive, and
have a small enough working set that fit in the level one
caches. Table 2 provides a listing of these benchmarks
along with the number of blocks and instructions encoun-
tered during dynamic execution and the execution time of
these programs.

5.1 Algorithm Performance

We first demonstrate the performance of the mixed
forward-backward pass algorithm. Figure 3 shows the
speed of the critical path framework for different region
sizes—the parameterr that determines the number of
blocks for which the tool maintains the graph in memory.
The x-axis varies the region size and the y-axis shows the
analysis time measured in seconds. For these results, the
tool computes the critical path at a block-level granularity.
For each sample point in the graph, we perform a number
of experiments on a dedicated desktop machine and report
the average analysis time.

Across all benchmarks, the analysis times improve dra-
matically as we increase the region sizes from 8 blocks to
64 blocks, at which point the benefits of further increases
begin to taper off. At smaller region sizes, the cost of main-
taining the graph in memory is insignificant compared to the
cost of copying the critical path summaries across different
nodes. Higher region sizes increase the memory require-
ments, but decrease the copying costs. We observe minor

102451225612864321682 4

Region size (r) (measured in number of blocks)

0

1000

2000

3000

A
na

ly
si

s
tim

e
(s

ec
on

ds
)

matrix
dct8x8

dct8x8 - 12442, matrix - 26016

102451225612864321682 4

Region size (r) (measured in number of blocks)

0

10000

20000

30000

A
na

ly
si

s
tim

e
(s

ec
on

ds
)

a2time01
sha

Figure 3. Sensitivity of analysis time to region
sizes

improvements for region sizes up to 512 blocks (256 for the
benchmarksha). Beyond this size, the memory require-
ments of the algorithm exceed the capacity of the host ma-
chine (1 GB) and the resultant disk swap activity causes a
precipitous slowdown in the speed of analysis.

Different benchmarks exhibit different speedups in anal-
ysis time. This is because the cost of block-level break-
downs in the critical path summaries is proportional to
the number of different program blocks encountered dur-
ing the execution. Benchmarksmatrix anddct8x8 contain
fewer blocks than benchmarksa2time01 andsha. Conse-
quently they exhibit relatively modest improvements of (2x-
3x) when varying the region sizes from 8 to 512. On the
other hand, the benchmarka2time01 exhibits nearly 30x
improvement over the same range.

These results show that when computing rich critical
path information, the mixed algorithm can deliver orders
of magnitude improvements in performance with favorable
region sizes. The best performing algorithm is one that just
saturates the memory capacity of the host machine.

5.2 Speed of the Critical Path Framework

The speed of the overall critical path framework depends
on three components: a) the cycle-level simulator, b) the
granularity of the computed critical summaries, and c) the
algorithm computing the critical path. Table 3 compares the
overhead of computing the critical path at different granu-
larities with the baseline cycle-level simulator. For every
benchmark, it shows the simulation speed measured in sim-
ulated cycles per seconds for the baseline cycle-level simu-

Granularity a2time01 bezier01 dct8x8 matrix sha
base 2.27 1.87 3.30 3.73 3.80
block 4.02 3.67 4.63 5.11 10.93
tile 2.75 2.51 4.22 4.71 7.33
inst 2.90 2.01 8.65 9.56 8.77
cycle-level 1359 1494 1258 1149 1420
speed (cycles/s)

Table 3. Relative slowdown of analysis at varying
levels of granularity

lator and the relative slowdown of the critical path analysis
at four levels of granularity. For this study, we used the
mixed forward-backward pass algorithm with a region size
of 256.

Computing event-level breakdowns causes the baseline
cycle-level simulation to slow down by a factor 1.8x–3.8x
across different benchmarks. Adding block-level break-
downs to the analysis causes additional slowdowns of 1.4x–
3.8x. The differences in the benchmarks arise from the
number of different blocks simulated during the execution.
On the other hand, computing the tile-level breakdowns
causes a fairly uniform slowdown of about 20%–30% com-
pared to event-level breakdowns. This is because during
the backward pass, the constant number of tiles cause a uni-
form amount of state to be copied from one node to another.
The last row shows the cost of computing the contributions
of each individual instruction in the most critical program
block. The analysis is faster compared to the the block-level
analysis for benchmarksa2time01 andbezier01. This is
because these benchmarks have more program blocks than
they have instructions in the most critical block, whereas
the opposite is true for benchmarksdct8x8 andmatrix.

As shown in Table 3, the speed of critical path analysis
can be reduced dramatically depending on the desired gran-
ularity of the computation. To keep the analysis tractable,
a designer ought to perform critical path analysis, starting
with an event-level view and progressively add finer gran-
ularities for select portions of the program or hardware re-
sources. For example, if a designer can identify the most
critical blocks, s/he can obtain additional information just
for that set of blocks with a different simulation.

5.3 Critical Path Breakdown

This section shows the breakdown of the critical path cy-
cles for the benchmark set. Table 4 shows the contribution
of each microarchitectural event described in Section 3 for
different programs. Naturally, different programs exhibit
different behavior. For example, in benchmarkssha and
bezier01, nearly half of the cycles result from raw instruc-
tion execution. This shows that even if rest of the bottle-
necks were eliminated, the performance of these programs
can be improved by 2x at best. Further improvements must
come from reductions in the instruction counts through code

Event a2time01 bezier01 dct8x8 matrix 1 sha
BC 1.3% 0.9% 1.5% 1.6% 0.4%
BD 5.0% 2.7% 3.3% 4.6% 1.2%
BF 21.8% 6.3% 31.8% 7.0% 8.2%
IE 24.7% 45.4% 18.7% 24.6% 60.3%
IF 4.2% 2.3% 5.2% 8.1% 0.5%
LD 16.9% 13.7% 0.6% 2.6% 0.2%
OP 21.8% 25.1% 34.4% 38.0% 25.9%
RR 3.6% 0.2% 0.3% 6.4% 0.1%
RF 0.8% 3.4% 4.1% 7.2% 3.0%
SF 0.0% 0.0% 0.0% 0.0% 0.0%

Total 477212 2984977 196342 230833 582178
(cycles)

Block Name (Static, Dynamic) Total Delay

 (cycles)

matrix_mult$2 (74352, 56216) 130568

matrix_check$1 (26047, 31440) 57487

matrix_mult$1 (23969, 13785) 37754

main$4 (1812, 236) 2048

matrix_check (1802, 239) 2041

Instruction (Static, Dynamic) Total Delay

addi (3496, 4428) 7924

mul (3285, 1965) 5250

mul (2380, 1777) 4157

add (1985, 777) 2762

tlti_f (1552, 886) 2438

a) Block-level breakdown for the program matrix

b) Instruction-level breakdown for block matrix_mult$2 in matrix

Table 4. Composition of the critical path for different programs

optimizations and reductions in the hardware latency of the
arithmetic units.

A significant portion of the critical path cycles across all
benchmarks can be attributed to the operand communica-
tion latencies. Static components of the latency correspond
to the number of routing hops. Dynamic components of
the latency result from network link contention. Both of
these components can be reduced with better placements
for the critical instructions. By obtaining a block-level or
instruction-level breakdown for the critical path, one can
identify the program blocks and instructions contributingto
the critical latencies and focus the scheduling policies to-
wards them. Table 4 shows an example of these breakdowns
for the benchmarkmatrix. It shows the critical path con-
tributions for the top five program blocks and the top five
instructions in the blockmatrix mult$2.

5.4 Improving Performance Using Critical Path
Analysis

In this section, we show the utility of critical path anal-
ysis in improving the performance of an application. We
use the programmemset for this exercise. This program
is a C library routine that sets a range of bytes in mem-
ory to a given value. Table 5 shows the breakdown of the
critical path cycles for two versions of the program. The
baseline program is a hand-tuned version ofmemset. The
optimizations performed by hand include aggressive hyper-
block formation using loop unrolling and predication, and
hand placement of instructions. These optimizations im-
prove the performance ofmemset by over 8x relative to
automatically compiled code.

From Table 5 we observe that nearly 70% of the criti-
cal path cycles in the baseline program were consumed by
operand communication and instruction execute events. We
further observe that a large fraction of these cycles are dy-
namic delays, which indicate contention stall cycles at the

Event Baseline Optimized
SD DD TD SD DD TD

BF 2728 12533 15261 4896 13144 18040
BC 0 181 181 0 1967 1967
BD 408 507 915 3968 5262 9230
OP 18730 17777 36507 9249 5839 15088
IE 9712 15554 25266 3871 1826 5697
RR 92 23 115 528 14314 14842
SF 0 0 0 0 0 0
RF 7678 79 7757 2 0 2
IF 2521 0 2521 5351 0 5351
LD 246 542 788 244 542 786
Total 42115 47196 89311 28109 42894 71003

Table 5. Overall critical path breakdown for two
versions of memset. The label SD denotes the
static delay, DD denotes the dynamic delay, and
TD denotes the total delay for an event.

operand network links and at the execution tile issue slots.
To identify the specific program block causing these con-
tention cycles, we re-performed the analysis to track the
critical path composition on a per-block basis. We ob-
served that nearly 70% of the critical path cycles resulted
from events in one program blockmemset test$6. Table 6
shows these results. Nearly 90% of all operand commu-
nication and instruction execute latencies in the program’s
overall critical path result from this block.

Instructions in the blockmemset test$6 are in one of
four categories:store instructions,move instructions to
distribute the base address for the stores,move instructions
to distribute the data for the stores, and loop induction in-
structions. To identify specific instructions that cause bot-
tlenecks, we re-ran the analysis to obtain critical path break-
downs for each instruction in the blockmemset test$6.
Table 7 shows the contribution of the top five instructions
in that block to the critical operand communication and in-
struction execution latencies. We observe that nearly 50%
of these cycles resulted from just one single instruction. Ex-
amining the tile placements in the schedule, we observed

Event Baseline Optimized
SD DD TD SD DD TD

OP 15650 17276 32926 5755 4310 10065
IE 7733 15209 22942 2120 1181 3301
RF 7548 0 7548 0 0 0
RR 0 0 0 400 12355 12755
SF 0 0 0 0 0 0
IF 114 0 114 2312 0 2312
LD 0 0 0 0 0 0
BF 264 61 325 2432 580 3012
BC 0 129 129 0 1485 1485
BD 312 429 741 3200 4400 7600
Total 31621 33104 64725 16219 24311 40530

(cycles)

Table 6. Critical path composition for the block
memset test$6 in the program memset

that this instruction, a store, was obtaining its base address
from a move instruction placed at a different execution tile.
In fact, all the consuming stores of this move instruction
were placed at a different tile. This introduced one cycle
of operand communication latency between the issue of the
move and the target store instructions. To remove this la-
tency, we re-adjusted the schedules by placing the move in-
struction and all of its target stores at the same tile.

The results for the optimized version ofmemset test$6

are shown in Tables 5, 6, and 7 under the label
Optimized. We observe that the overall performance im-
proved by nearly 11%. As expected, we observe a sig-
nificant reduction in operand communication and instruc-
tion execute latencies on the program’s overall critical path.
The critical path contribution of the top-most block, still
memset test$6, decreased by a greater fraction than the
overall execution time. This behavior occurs because por-
tions of the execution paths through this block are no longer
critical compared to concurrent paths through other blocks.
Table 5 also shows significant increases in the contributions
of the block fetch, block completion, and block commit op-
erations. The blockmemset test$6 also exhibits similar
sharp increases in contributions of other events. Reducing
the effect of operand communication and instruction exe-
cution bottlenecks, expose these new bottlenecks which are
candidates for future optimizations.

Finally, we note that we embarked on this hand-

Baseline Optimized
SD DD TD SD DD TD

7506 25288 32794 1172 631 1803
7484 819 8303 879 101 980
95 304 399 424 473 897
93 156 249 289 578 867
128 85 213 586 71 657

Table 7. Operand communication and instruction
execution cycles on the critical path for the top
five instructions in the block memset test$6 in the
program memset

optimization exercise to improve the performance of library
routines over and beyond what is delivered by the current
TRIPS compiler. The compiler’s scheduler can exploit this
technique to automatically improve the placement of the in-
structions. Simulated annealing is one technique to arriveat
near-optimal placements. Critical path analysis can be used
by the annealer to prioritize for the critical instructionsand
help it converge to a solution faster. We are exploring this
technique in current work.

6 Related Work

The notion of critical path models for processor archi-
tectures is not new. Prior research has focused on one of
the following: identifying criticality of specific classesof
instruction, critical path modeling, critical path prediction
and optimizations to improve performance.

Early research on critical path has generally focussed on
understanding the performance of load instructions. Srini-
vasan et al. quantify a measure of load criticality called
latency tolerance [16]. In subsequent work, Srinivasan et
al. propose a heuristics-based hardware predictor of critical
loads and quantitatively compare criticality-based prefetch-
ing techniques with locality-based techniques [15]. Other
researchers have also proposed hardware estimators of crit-
ical loads and provided techniques to improve cache per-
formance of critical loads at the expense of non-critical
ones [7, 11]. All of these approaches are specific to load
instructions and cannot be easily extended to other instruc-
tions or microarchitectural resources.

Our work is closest to the dependence graph-based mod-
els of the critical path developed by Fields et al. [5] and
Tune et al. [18]. As explained before, these models abstract
the execution of a program with a dependence graph. By
manipulating the graph in different ways, they show how
different measures of criticality — slack [4], tautness [18]
and interaction costs [6] — can be computed efficiently with
a simulator. Tune et al. [17, 18] and Fields et al. [5] use
these models to develop run-time critical path predictors.
In a later work, Fields et al. show how the model can be
used to gain insights about secondary critical paths [6]. Our
research extends these models for the TRIPS architecture.

In later work, researchers have developed techniques to
predict the criticality of all types of instructions [3, 5, 13,
17]. These techniques provide critical path measures to
varying degrees of accuracy and have been applied to im-
prove value prediction performance, clustered architecture
scheduling, and power consumption.

7 Conclusions

Critical path models provide a powerful framework for
drawing key insights into the performance of a processor.

Researchers have developed a plethora of techniques to ex-
ploit these models for improving application performance.
All of these techniques presuppose a conventional super-
scalar processor as the underlying hardware substrate. In
this paper, we develop a functional critical path model for
the TRIPS architecture.

We show how the unique constraints in the architecture,
specifically the block-atomic execution model and operand
network links, can be modeled with the dependence graph.
The wider issue and larger instruction window in the TRIPS
processor increase the complexity of the critical path anal-
ysis considerably. Computing the critical path information
at different levels of granularity also imposes different de-
mands on the computational and memory requirements for
the analysis. We develop an algorithm that, without any loss
in precision, can significantly reduce the complexity of the
critical path analysis by up to 30x compared to techniques
used in prior work. We demonstrate the functionality of
this framework and show critical path summaries for a sam-
ple set of programs. Guided by the analysis, we improve
the performance of a previously hand-optimized program
by 11%.

Our current framework provides the composition of the
critical path which is not always an accurate indicator of
the true bottlenecks in an architecture. By extending the
framework, one can obtain several other metrics of critical-
ity such as tautness and interaction costs to provide better
indicators of bottlenecks. Our experience with the critical
path framework has been that it has taken the tedium out of
hand-optimizing certain programs. It is conceivable that the
compiler’s scheduler can be augmented to use this frame-
work, automatically identify the potential bottlenecks, and
produce schedules to minimize their impact. With the ex-
tensions described above, we expect the framework to offer
additional insights into the bottlenecks in this class of archi-
tectures.

Acknowledgments

We thank the anonymous reviewers for their sugges-
tions that helped improve the quality of this paper. This
research is supported by the Defense Advanced Research
Projects Agency under contracts F33615-01-C-4106 and
NBCH30390004 and an NSF instrumentation grant EIA-
0303609.

References

[1] EEMBC: The embedded microprocessor benchmark consortium.
http://www.eembc.org.

[2] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John,
C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, W. Yoder, and the
TRIPS Team. Scaling to the End of Silicon with EDGE architectures.
IEEE Computer, 37(7):44–55, July 2004.

[3] B. Calder, G. Reinman, and D. M. Tullsen. Selective value predic-
tion. In Proceedings of the 26th Annual International Symposium on
Computer architecture, pages 64–74, May 1999.

[4] B. Fields, R. Bodik, and M. D. Hill. Slack: Maximizing performance
under technological constraints. InProceedings of the 29th Annual
International Symposium on Computer Architecture, pages 47–58,
June 2002.

[5] B. Fields, S. Rubin, and R. Bodik. Focusing processor policies via
critical-path prediction. InProceedings of the 28th Annual Inter-
national Symposium on Computer Architecture, pages 74–85, July
2001.

[6] B. A. Fields, R. Bodik, M. D. Hill, and C. J. Newburn. Usinginterac-
tion costs for microarchitectural bottleneck analysis. InProceedings
of the 36th Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 228–239, December 2003.

[7] B. R. Fisk and R. I. Bahar. The non-critical buffer: Usingload la-
tency tolerance to improve data cache efficiency. InProceedings of
the 1999 IEEE International Conference on Computer Design, pages
538–545, October 1999.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.Mudge,
and R. B. Brown. Mibench: A free, commercially representativeem-
bedded benchmark suite. InIEEE 4th Annual Workshop on Workload
Characterization, pages 3–14, December 2001.

[9] R. Nagarajan, S. K. Kushwaha, D. Burger, K. S. McKinley, C. Lin,
and S. W. Keckler. Static Placement, Dynamic Issue (SPDI) Schedul-
ing for EDGE Architectures. InProceedings of the 13th International
Conference on Parallel Architecture and Compilation Techniques,
pages 74–84, October 2004.

[10] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler. A de-
sign space evaluation of grid processor architectures. InProceedings
of the 34th Annual ACM/IEEE International Symposium on Microar-
chitecture, pages 40–51, December 2001.

[11] R. Rakvic, B. Black, D. Limaye, and J. P. Shen. Non-vital loads. In
Proceedings of the Eighth International Symposium on High Perfor-
mance Computer Architecture, pages 165–174, February 2002.

[12] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore. Exploiting ILP, TLP, and DLP with
the polymorphous TRIPS architecture. InProceedings of the 30th
Annual International Symposium on Computer Architecture, pages
422–433, June 2003.

[13] J. S. Seng, E. S. Tune, and D. M. Tullsen. Reducing power with dy-
namic critical path information. InProceedings of the 34th Annual
ACM/IEEE International Symposium on Microarchitecture, pages
114–123, December 2001.

[14] A. Smith, J. Burrill, J. Gibson, B. Maher, N. Nethercote,B. Yoder,
D. Burger, and K. S. McKinley. Compiling for EDGE architectures.
In Fourth International ACM/IEEE Symposium on Code Generation
and Optimization (CGO), March 2006.

[15] S. T. Srinivasan, R. D. ching Ju, A. R. Lebeck, and C. Wilkerson. Lo-
cality vs. Criticality. InProceedings of the 28th Annual International
Symposium on Computer Architecture, pages 132–143, July 2001.

[16] S. T. Srinivasan and A. R. Lebeck. Load latency tolerance in dy-
namically scheduled processors. InProceedings of the 31st Annual
ACM/IEEE International Symposium on Microarchitecture, pages
148–159, November 1998.

[17] E. Tune, D. Liang, D. M. Tullsen, and B. Calder. Dynamic predic-
tion of critical path instructions. InProceedings of the Seventh Inter-
national Symposium on High Performance Computer Architecture,
pages 185–195, January 2001.

[18] E. Tune, D. M. Tullsen, and B. Calder. Quantifying instruction
criticality. In Proceedings of the 11th International Conference on
Parallel Architectures and Compilation Techniques, pages 104–113,
September 2002.

