
Appears in the Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture

Dataflow Predication

Aaron Smith Ramadass Nagarajan Karthikeyan Sankaralingam Robert McDonald

Doug Burger Stephen W. Keckler Kathryn S. McKinley

Department of Computer Sciences

The University of Texas at Austin

{asmith, ramdas, karu, robertmc, dburger, skeckler, mckinley}@cs.utexas.edu

Abstract

Predication facilitates high-bandwidth fetch and large

static scheduling regions, but has typically been too com-

plex to implement comprehensively in out-of-order microar-

chitectures. This paper describes dataflow predication,

which provides per-instruction predication in a dataflow

ISA, low predication computation overheads similar to

VLIW ISAs, and low complexity out-of-order issue. A two-

bit field in each instruction specifies whether an instruction

is predicated, in which case, an arriving predicate token de-

termines whether an instruction should execute. Dataflow

predication incorporates three features that reduce predica-

tion overheads. First, dataflow predicate computation per-

mits computation of compound predicates with virtually no

overhead instructions. Second, early mispredication termi-

nation squashes in-flight instructions with false predicates

at any time, eliminating the overhead of falsely predicated

paths. Finally, implicit predication mitigates the fanout

overhead of dataflow predicates by reducing the number of

explicitly predicated instructions, by predicating only the

heads of dependence chains. Dataflow predication also ex-

poses new compiler optimizations–such as disjoint instruc-

tion merging and path-sensitive predicate removal–for in-

creased performance of predicated code in an out-of-order

design.

1. Introduction

Predication linearizes instruction flows by converting

control dependences to data dependences, thus improv-

ing control flow predictability, instruction fetch bandwidth,

and the size of the instruction scheduling window for the

compiler. VLIW and vector machines have successfully

applied predication to obtain all three of these improve-

ments [12, 23, 28].

Despite its advantages, predicated execution has not

achieved widespread use in out-of-order architectures. The

complexities of merging predication with dynamic schedul-

ing [21]–particularly register renaming [27]–have out-

weighed its perceived benefits. Consequently, many ISAs

supporting dynamically scheduled implementations–such

as Alpha and SPARC–provide only limited support for

predication using conditional moves and stores.

Due to scaling limits of conventional superscalar de-

signs, researchers have recently begun investigating archi-

tectures that combine dataflow-like behavior with conven-

tional programming models [7, 8, 25]. Historical dataflow

machines typically implemented only limited partial pred-

ication, using gate and switch operators [2, 13, 26]. Sub-

sequent advances in predication, used primarily in VLIW

architectures, present an opportunity to reduce predication

overheads for these new dataflow-like machines.

This paper describes dataflow predication, which pro-

vides lightweight ISA support for predicating any instruc-

tion in a dataflow-like architecture. In dataflow predica-

tion, any instruction producing a value can instead produce

a predicate. A two-bit field in each instruction specifies

whether that instruction must receive a matching predicate

token to issue. With this ISA support, as well as appropriate

support in the microarchitecture and compiler, dataflow-like

ISAs can exploit the benefits afforded by both predication

and dynamic out-of-order issue, at much lower complexity

than superscalar architectures. Dataflow predication incor-

porates three features that enable low predication overhead:

• Dataflow predicate computation: Since any instruction

can receive a predicate, the compiler need not gate the

data operands for an instruction explicitly–unlike prior

dataflow architectures–but may instead simply pred-

icate the consumer. By eliminating gate and switch

operators, per-instruction dataflow predication reduces

the dependence path height, and permits low-overhead

predicate inversions (NOT), conjunctions (AND), and

disjunctions (OR), with bipolarized predicates, pred-



icated test instructions, and the routing of multiple

predicates to a single instruction, respectively.

• Implicit predication: Although the ISA supports pred-

ication of any instruction, the compiler need not pred-

icate all instructions within a predicated basic block

explicitly. The compiler may predicate only the head

instruction in a dependence chain, thus implicitly pred-

icating its successors.

• Early mispredication termination: Dataflow predica-

tion supports squashing of instructions on a false pred-

icate path at any time. This capability prevents the de-

pendence height of falsely predicated paths from re-

ducing performance, and is also necessary to support

implicit predication.

These three features of dataflow predication lend them-

selves to several compiler optimizations that reduce predi-

cate overheads and improve performance:

• Predicate fanout removal: The major source of over-

head for dataflow predication is fanning out predicates

to potentially many consumers. In dataflow-like archi-

tectures, this communication requires building a soft-

ware fanout tree to distribute the predicate to its con-

sumers. To reduce this overhead, the compiler may

apply either speculative hoisting or implicit predica-

tion, predicating only the tails or heads of dependence

chains, respectively. Both techniques reduce the num-

ber of instructions to which predicates must be com-

municated.

• Path-sensitive predicate removal: Using inter-block

liveness analysis, the compiler can remove the predi-

cate from an instruction whose result is unused on the

path that is complementary to the predicate.

• Disjoint instruction merging: The compiler can merge

identical instructions on disjoint control flow paths,

eliminating redundant instructions and exposing op-

portunities for further optimization.

The TRIPS architecture, which implements dataflow

predication, is one instantiation of an EDGE (Explicit Data

Graph Execution) architecture [8]. An EDGE architecture

has two distinguishing features: (1) it supports block-atomic

execution, in which statically defined blocks of instructions

must commit atomically–either all of a block’s instructions

commit, or none of them do. (2) Within each block, the

EDGE ISA implements dataflow communication between

instructions, in which dependences are explicitly encoded

by specifying target locations. The ISA instantiates all pred-

icates as dataflow arcs, and does not rely on a centralized

predicate register file.

In addition to the ISA and microarchitectural support

necessary for an implementation of dataflow predication in

the TRIPS prototype, this paper describes the compiler al-

gorithms and optimizations necessary to support efficient

predication. The TRIPS compiler generates predicated code

by performing if-conversion on basic blocks, inserting pred-

icates, and merging the multiple basic blocks into hyper-

blocks. As the compiler forms hyperblocks, it applies scalar

predicate optimizations to produce more compact and ef-

ficient hyperblocks. Simulation results show that these

dataflow predicate optimizations improve performance by

12% over an aggressively predicated baseline.

Dataflow predication makes possible a clean synergy be-

tween predication and out-of-order execution, with lower

predicate overhead than the partial predication implemented

in previous dataflow architectures, and lower hardware

complexity than proposed predicated out-of-order super-

scalar designs.

2. Prior Predicate Optimizations

Architectures have used predication since the 1970s. The

CRAY-1 implemented predication in the form of vector

masks [23] to guard individual vector operations. Predi-

cated execution became more prevalent in VLIW machines

in the 1980s and 1990s. The Multiflow Trace machines sup-

ported partial predication using the select instruction [17].

The Cydra 5 [22] and the IA-64 Intel Itanium processors’

ISAs include a predicate operand with every instruction.

Several RISC architectures also support some predicated

execution; the in-order ARM processor predicates most in-

structions, but the out-of-order Alpha and SPARC V9 archi-

tectures limit predication to conditional move instructions.

Predication research has generally fallen into two cate-

gories: ISA and microarchitecture support for efficient exe-

cution, and compiler algorithms and optimizations to use

and exploit predication. Allen et al. first described if-

conversion to convert control dependences to data depen-

dences [1]. Mahlke et al. proposed the use of hyperblocks

as an effective compiler structure for performing predica-

tion and exposing scheduling regions to the compiler [20].

Researchers have also shown that predication is effective for

enabling software pipelining on loops with control struc-

tures [12, 28].

Several solutions have been proposed to alleviate the

overheads of predication in VLIW architectures and to a

limited extent, in dynamic superscalar architectures.

Fetch and execution overhead: Previous processors

must issue a predicated instruction even if its execution is

nullified by the guarding predicate, resulting in wasted fetch

and possibly execution bandwidth that can otherwise be uti-

lized by useful instructions. In addition, an instruction that

is dependent on the predicate value cannot execute until that

2



predicate is computed. In VLIW machines, instructions that

do not execute consume and waste issue slots, potentially

elongating the schedule. August et al. propose a framework

that mitigates this problem by balancing control speculation

and predication [5]. To alleviate these problems in out-of-

order processors, researchers have proposed predicate pre-

diction, which predicts the resolution of the predicate in the

dispatch logic [9], wish branches, which enable the hard-

ware to dynamically and selectively employ predicated ex-

ecution [16], and predicate slip, which delays the use of the

guard predicate until commit [27].

Register renaming: Predication complicates the task of

dynamic register renaming in an out-of-order processor due

to multiple potential definitions along if-converted control

paths. The definition, or the lack thereof, cannot be de-

tected until its guarding predicate is resolved. Researchers

have proposed several solutions for this problem, including

predicate prediction [9] and using operators such as condi-

tional select [17], µ-op [15], and select-µop [27]. Even with

these solutions, renaming remains prohibitively complex.

Predicate registers: Conventional architectures typi-

cally save the results of predicate-defining instructions in

either the general purpose register space or in a private

predicate namespace. In addition to specifying two (or

more) data source operands, an predicated instruction must

also specify its predicate operand. In IA-64, the predicate

operand consumes six bits of each instruction. Due to this

encoding pressure, some architectures use predication only

in a small number of instructions (ARM is a notable ex-

ception). For example, Alpha and SPARC V9 architectures

offer a single conditional move operation for use in simple

control constructs. To extend predication to other instruc-

tions, Pnevmatikatos et al. propose using the GUARD in-

struction [21]. This instruction, in conjunction with a predi-

cate register file, specifies which instruction to guard among

the set of successor instructions.

Predicate computation: To generate predicates for in-

structions inside complex control structures, the compiler

must invert and merge predicates generated along each if-

converted branch. A long predicate computation chain, in

addition to increasing instruction overhead, may end up on

the program critical path. Researchers have addressed this

problem in different ways: by generating complementary

predicates [14], by using wired operators [14], and by pro-

gram decision logic minimization [4].

Of the conventional architectures, VLIW architectures

benefit from low-overhead predication, but lose perfor-

mance because falsely predicated instructions can lengthen

the critical path of execution. Superscalar processors have

not benefited from predication due to the complexity of its

implementation in an out-of-order microarchitecture. Less

conventional architectures, such as historical dataflow ma-

chines, have combined only partial predication with dy-

if (i == j) {
   b = a + 2;
} else {
   b = a - 3;
}

i == j

add sub

T-gate F-gate

2 3

i j

b

a a
i == j

add sub

2 3

i j

b

T F

a
switch

(a) (b) (c)

Figure 1. Conversion of (a) an if­then­else con­

struct using (b) a T­gate and F­gate, and (c) a switch

instruction.

namic scheduling.

2.1. Dataflow Predication

The conversion of control dependences to data depen-

dences is essential for dataflow execution. Static dataflow

machines used T-gate and F-gate operators [13]. The T-gate

(F-gate) operator copies an input to its output if and only if

its control input operand carries a true (false) value, other-

wise it does not produce any output. The MIT-tagged token

dataflow machine combined the functions of these two op-

erators using the switch operator, which conditionally steers

an input operand to either of two destinations based on a

control input [2, 26]. The destination instruction that does

not receive its input does not execute.

Figure 1 illustrates how the compiler converts an if-then-

else construct to dataflow using the gate and switch opera-

tors. If i is equal to j, the T-gate passes the value of a to the

target add instruction, as shown in Figure 1b. Conversely,

if i does not equal j, the F-gate absorbs a, produces no

output, and consequently the sub instruction does not ex-

ecute. Figure 1c shows how the compiler transforms the

same code using the switch instruction. If i equals j, the

switch instruction steers its data input a to the add instruc-

tion, instead of the sub instruction. Thus only the add

instruction executes. The join operator depicted by ⊕ in

both Figure 1b and Figure 1c is a logical placeholder in the

dataflow graph, indicating a single producer for the variable

b; it does not represent an instruction. By inhibiting the de-

livery of input operands, the compiler guards the execution

of instructions within if-then-else statements.

The switch and gate operators, when applied naively, can

limit the parallelism in dataflow machines. For example,

gating every input within a conditional statement results in

significant overhead. In addition, the gate operators serial-

ize the execution of the succeeding instructions. For exam-

ple, in Figure 1, the add and sub instructions can execute

only after the preceding gate and switch operators, limiting

3



parallelism. Prior research in dataflow has not eliminated

these overheads. While Beck et al. propose techniques to

eliminate unnecessary switch instructions [6], researchers

have not applied the full range of optimizations developed

for VLIW [5] to dataflow architectures.

Dataflow predication, as instantiated in the TRIPS archi-

tecture, differs from previous partially predicated dataflow

architectures in three major ways: First, predicates may

directly guard individual instructions, avoiding the need

for gate or switch instructions. Second, any instruction

can generate a predicate merely by targeting the predicate

operand of another instruction. Third, instructions may re-

ceive multiple predicate operands before firing. These three

features enable dense encoding, as each 32-bit instruction

requires only two bits to specify whether it is predicated.

They also enable efficient compound predicate computa-

tion, since dataflow predication supports the disjunction

of an arbitrary number of predicates, and since predicate-

producing instructions may themselves be predicated. Fi-

nally, they support implicit predication, since only the input

instructions to a dataflow graph need to be predicated to im-

plicitly predicate the entire graph.

3. TRIPS ISA Support for Predication

An EDGE architecture has two distinguishing features.

First, it supports block-atomic execution, in which statically

defined blocks of instructions must commit atomically; ei-

ther all instructions of a block complete and commit, or

none of them do. Second, within each block, it supports

dataflow execution with direct-instruction communication,

in which the ISA explicitly encodes the dependences.

In the TRIPS EDGE prototype, a block completes when

it produces a consistent set of outputs; for each execution, a

block must write to the same registers, execute the same

number of stores, and generate one branch target. The

TRIPS hardware counts these outputs and signals block

completion when all have been produced. Instructions com-

municate between blocks through registers and memory.

Within a block, instructions use direct instruction com-

munication, which includes all predicates. Each instruc-

tion contains the identifiers of instructions that depend on

its result, not the operands of the instruction itself. The

dataflow execution model dictates that an instruction exe-

cutes only when all of its operands are sent to it by its par-

ent instructions. When an instruction completes execution,

it sends its result directly to other instruction targets within

the same block. Figure 2 shows an example of a simple C-

code fragment of an if-then-else and a diagram representing

its if-converted dataflow graph. The right-most field in the

instruction is the target identifier, which specifies the con-

sumer of the instruction’s result. The TRIPS ISA allows up

to 128 instructions within each block.

Any instruction that produces a value (arithmetic oper-

ations, comparisons, etc.) must specify at least one target,

each of which uses a 9-bit target encoding. Seven bits of the

target identify one of 128 possible instruction targets within

the block, while the remaining two bits indicate either that

the result is either the left, right, or predicate operand of the

target instruction.

3.1. Predication Rules

The TRIPS ISA but must follow a number of rules to

produce well-formed, predicated blocks:

1. Any instruction (except for a few specific data move-

ment and constant generation instructions) may be

predicated. A two-bit predicate field indicates whether

an instruction is predicated and on what polarity of the

arriving predicate the instruction should be executed.

2. For a predicated instruction to fire and execute, it must

receive all of its data operands and a matching predi-

cate operand. A matching predicate is one that matches

the polarity of the waiting instruction. For example, an

instruction waiting for a “false” predicate will only fire

when a “false” predicate arrives.

3. Multiple instructions may target the predicate operand

of an instruction, but at most one may deliver a match-

ing predicate. This capability permits aggressive in-

struction merging.

4. To deliver a predicate to multiple predicated instruc-

tions, the compiler must construct the necessary fanout

tree using a series of multi-target move instructions.

5. The predicated dataflow graphs must preserve the ex-

ception behavior of an unpredicated program, meaning

that the same exceptions must be detected at the TRIPS

block boundaries.

3.2. Predicate Encoding

Dataflow predication provides the ability to compute

compound predicates efficiently, while also exploiting early

mispredication detection and implicit predication. The

overheads of dataflow predication, as instantiated in TRIPS,

require a two-bit field per instruction and fanout instruc-

tions for routing predicates to more than two predicate con-

sumers. Previous architectures also had significant over-

heads for predication. Partially predicated dataflow ISAs

added extra split and merge instructions. VLIW architec-

tures required larger per-instruction fields (e.g. six bits) to

specify predicate registers.

Figure 2 illustrates predicate generation. The test in-

struction (teq) receives i and j, computes a predicate, and

4



if (i == j) {
   b = a + 2;
} else {
   b = a + 3;
}
c = b * 2;

teq 00 x-op predicate: 58 predicate: 57

addi 10 x-op 2 left: 60

addi 11 x-op 3 left: 60

slli 00 x-op 1 target

I3

I57

I58

I60

teq

addi  #2

slli  #1

addi  #3

i j

a

I3

I57 I58

I60

c

Figure 2. Predication in the TRIPS ISA.

sends it to the two addi instructions. Note that the addi

instructions are predicated on opposite polarities; the black

circle indicates predication on true, while the white circle

indicates predication on false. When the addi instructions

receive both a and the predicate, the instruction with the

matching predicate fires and delivers the result to the sub-

sequent shift (slli) instruction. Since only one addi in-

struction fires, the shift will receive only one token repre-

senting the updated value of b. This example is similar to

the dataflow graph in Figure 1, but reduces the predicate

overhead compared to partial predication by eliminating the

gate and switch instructions.

Figure 2 also shows the encodings of the four instruc-

tions. The instruction fields include opcode (7 bits), predi-

cate (2 bits), extended opcode (5 bits), immediate or target

2 (9 bits), and target 1 (9 bits). The predicate field specifies

whether the instruction is predicated on a true predicate (PR

= 11), predicated on a false predicate (PR = 10), or unpred-

icated (PR = 00). In this example, the unpredicated teq

instruction, which has a PR field of 00, produces a “true”

predicate, in which the low-order bit of the value routed to

the consumers is equal to one. The teq has two targets, 57

and 58, which correspond to the predicate operands of the

two addi instructions respectively. Each addi instruction

has only one target as the second target field is needed to

encode the immediate value.

3.3. Dataflow Predicate Computation

Partially predicated dataflow machines incurred over-

heads for the computation of compound predicates. More

recent VLIW architectures provided special operations,

such as wired-AND and wired-OR instructions, that per-

mitted restricted but efficient compound predicate compu-

tation. Dataflow predication combines per-instruction pred-

ication, bipolar predicates, and implicit predication to im-

plement efficient combining of predicates using implicit in-

version, AND, and OR operators. This combination pro-

vides a solution to compound predicate computation which

is equally efficient but more general than VLIW solutions,

in a dataflow context.

3.4. Predicate ANDs

Figure 3a shows the C code for a simple while loop and

the corresponding dataflow graph statically unrolled three

times into a single TRIPS block. Each iteration consists of

a load, an add, and a test instruction. Each unrolled itera-

tion executes only if all previous unrolled while conditions

evaluate to true. The compiler avoids generating compound

predicates by instead predicating the test for each iteration

on the test in the previous iteration. For example, the test for

iteration three depends explicitly on iteration two producing

a “true” predicate and implicitly on iteration one producing

a “true” predicate. By predicating each tgti instruction on

true and using the predicate generated in the previous itera-

tion, the TRIPS compiler implements an implicit predicate-

AND chain. This implementation is more efficient than ex-

plicit compound predicate operators because it eliminates a

predicate-and instruction, reducing both code size and crit-

ical path length.

Other predicated architectures such as the HP Play-

Doh [14] and IA-64 provide special instruction modes for

predicate-defining instructions to reduce the height of the

predicate computation tree. In particular, the wired-AND

and wired-OR modes permit the conjunction or the disjunc-

tion of a limited set of predicates without the use of any ad-

ditional combining instructions. Dataflow predication gen-

eralizes wired-AND and wired-OR operations, enabling an

arbitrary number of predicates within a block and reducing

the compute tree height for compound predicates.

3.5. Predicate ORs

The TRIPS dataflow execution model also enables op-

timizations that eliminate instructions common to multiple

predicated paths. In Figure 3a, if the number of loop it-

erations is not a multiple of three, the block must termi-

nate, executing only a fraction of the predicates and the

dataflow graph. The bro f instruction executes when the

loop terminates, otherwise the bro t performs another iter-

ation of the loop. Whereas prior predication models needed

explicit predicate-OR instructions to implement these tests,

the TRIPS predication ISA implicitly computes the “OR”

since at most one of the tgti instructions will produce a

matching predicate. For example, if all of the tgti instruc-

tions produce true predicates, the bro f instruction does

not issue, and the loop body executes again. However, if

the third unrolled iteration evaluates to false, the bro f in-

struction receives two non-matching (true) predicates from

the first two iterations, and a matching false predicate from

the third iteration, and the instruction issues. By routing

multiple predicates to a single instruction, the compiler can

avoid generating explicit instructions to compute the com-

pound “OR” predicate. This predicate-OR feature provides

5



while (x > 0) {
   x = *ptr;
   ptr++;
}ld (ptr)

tgti

addi  #4
ld  8(ptr)tgti

tgti
addi  #8

addi  #12

bro_t  loop

ld  4(ptr)

ptr

bro_f  exit

ptr

ptr

if (p) {
   x = a * 3;
   y = x + 5;
   *z = y;
} else { 
   x = a * 4;
   y  =x + 6;
   *z = y;
}

muli

addi

st

muli

addi

st

p==0

ldtgt

write  g4

read  g4

write  g3

read  g3

H1

H2

(a) (b) (c)

Figure 3. Example of predicate (a) computation, (b) fanout reduction, and (c) handling for long dependences.

opportunities for instruction merging as well, as shown in

Section 5.

3.6. Implicit Predication

Because EDGE architectures employ direct pro-

ducer/consumer bypassing instead of automatically broad-

casting instruction results through a common register file,

delivering a single predicate to many predicated instruc-

tions may incur significant overhead. For example, if a basic

block is predicated on some predicate p, a naive implemen-

tation predicates every instruction in that basic block on p.

Due to instruction size limitations, instructions that gener-

ate predicates have only one or two targets. Consequently, a

naive compiler would build a software fanout tree that dis-

tributes the predicate to all the instructions, increasing de-

pendence height and adding overhead to the block.

A dataflow predicating compiler can eliminate most of

these predicates using two techniques: hoisting and implicit

predication. Consider the example in Figure 3b, which has

two dependence chains predicated on opposite values of a

predicate p. In the right-hand chain, the compiler performs

predication (p = false) at the bottom, effectively hosting

the chain of instructions to execute speculatively in paral-

lel with the computation of p. In the left-hand chain, the

compiler inserts predication (p = true) at the top, thus rout-

ing the predicate to only the instruction at the top of the

dependence chain and implicitly predicating the other in-

structions. If the predicate is non-matching (i.e., is false),

the predicated instruction does not fire, so the implicitly

predicated instructions in the left-hand chain will also not

fire.

For implicit predication to be correct, early mispredica-

tion termination is necessary. Since implicitly predicated

instructions will not fire when one of their ancestors re-

ceives a non-matching predicate, a block must be able to

complete and commit even though instructions within it will

never fire.

4. Microarchitectural Support

There are four areas of microarchitectural support

needed for correct implementation of dataflow predication.

First, the execution logic must handle dataflow predicates

correctly; since predicates are not a part of the inter-block

architectural state, only the execution cores and the issue

logic need augmentation for basic predication. Second, sup-

port in the register files and caches can improve the per-

formance of handling conditional register writes and stores

through nullification. Third, flushing of mispredicated state

once a block completes removes mispredicated dependence

height as a performance consideration, and makes implicit

predication possible. Fourth, the microarchitecture must

raise any exceptions that occur on non-speculative paths,

masking and discarding any mispredicated exceptions.

4.1 Predicated Issue Windows

The TRIPS microarchitecture employs a reservation sta-

tion at each of its ALUs to hold instructions that are waiting

to execute. In the reservation station, each operand requires

a valid bit indicating whether the operand has arrived and a

field to store the value for later use. To the dataflow execu-

tion core, a predicate operand is similar to a normal operand

with one difference: its status bit tracks not whether the

operand has arrived, but whether a matching predicate has

arrived. When a value targeting a predicate operand arrives

at a reservation station, the hardware logic reads the instruc-

6



tion’s predicate bits and checks for a matching predicate. If

there is a match, it updates the instruction status, but the

arrival of non-matching predicates is ignored. Predication

also complicates the bypassing logic since it must route an

operand to one additional possible field when an operand

arrives from a remote or the local execution unit.

4.2 Block Output Nullification

One possible complication with dataflow predication

arises when a block output (e.g., a register write or store)

occurs in one predicated path within a block but not another.

Because TRIPS requires a block to produce the same out-

puts regardless of the path taken through the block, the com-

piler must generate outputs on these alternate paths. One

option is to read the old value from the architectural reg-

ister file or memory and write the same value back on the

predicated paths that do not produce a modified value. The

TRIPS ISA and microarchitecture provide an alternative,

known as a null token, which indicates to the architectural

register file or the memory system that the block has gener-

ated an output but no architectural state should be modified.

The compiler inserts any necessary null instructions on

predicated paths for this purpose. The microarchitecture in-

cludes an additional tag bit on operands indicating whether

the operand is a null token. The ALU control logic prop-

agates the null values through instructions until they reach

a block output. This additional hardware thus eliminates

the need for superfluous copies of block inputs to block

outputs, at the cost of relatively little hardware complex-

ity. Also, null tokens arriving for register writes can cause

a later block to re-issue a read to that register, obtaining it

from an earlier write than the nullifying block or from the

architectural register file.

4.3 Early Mispredication Termination

One overhead common to predicated architectures is the

expense of fetching and executing mispredicated instruc-

tions. Fetching these additional instructions may reduce the

effective instruction fetch bandwidth, although this effect is

mitigated since predication can eliminate expensive branch

mispredictions. However, once mispredicated instructions

have been fetched into the pipeline, there is no convenient

way in a conventional architecture to selectively flush them.

As a result, a program with a large number of mispredicated

instructions that form a long sequential dependence chain

will waste a large number of execution slots.

While TRIPS also incurs the overhead of fetching mis-

predicated instructions, the microarchitecture eliminates

mispredicated instruction execution overheads. First, if the

compiler predicates the tops of dependence chains, the im-

plicitly predicated instructions on a non-matching path will

not be triggered for execution as their operands will never

arrive. Consequently, they will not consume any instruc-

tion execution slots or operand network bandwidth. Second,

the microarchitecture need not wait until all mispredicated

instructions have completed before terminating the block.

Since the microarchitecture detects that a block has com-

pleted execution when it produces all of its outputs (reg-

ister writes, stores, branch), it can squash long, mispredi-

cated chains of instructions still executing in the processor

core, and quickly reclaim the reservation stations for a new

block. Forward progress is thus not affected by waiting for

orphaned instructions to trickle through the pipeline.

4.4. Predicated Exceptions

While predication provides an opportunity for the com-

piler to specify speculative instruction execution, dataflow

predication must preserve the exception semantics of the

original program. More conventional predicated processors

(such as [19]) implement a form of poison bit that the archi-

tecture sets on exceptional conditions. The poison bit later

triggers an exception if the speculatively computed value

becomes non-speculative. The TRIPS implementation em-

ploys a similar solution. Since TRIPS services exceptions

only on a block boundary, even without predication the ar-

chitecture uses a form of a poison bit called an exception

bit. When an instruction raises an exception, the microar-

chitecture tags its produced operand with an exception bit,

which it propagates through the dataflow graph. If the block

produces any output with an exception bit set, the exception

is raised and handled by the system.

The microarchitectural exception bit is necessary for cor-

rect predication. If an instruction raises an exception and

its value reaches an instruction that does not receive any

matching predicate, the architecture filters out the excep-

tion. These semantics are precisely the required behavior

for such mis-speculative exceptions. A more complex prob-

lem arises when the predicate itself carries an exception bit.

To provide well-defined execution semantics, the ISA spec-

ifies that an arriving predicate with an exception flag set is

interpreted as a false predicate. If the instruction fires, it

produces an exception-tagged output. Since well-formed

TRIPS blocks have a single dataflow path to the output for

each combination of predicates, this scheme ensures that the

exception is propagated down only one predicated path of

execution.

If a speculative chain of instructions lies entirely within a

hyperblock, the compiler can safely predicate at the bottom

of the chain as any extraneous exceptions will be filtered out

prior to completion of the block. However, predicates trans-

mitted from one hyperblock to another through writes and

reads to/from the common architectural register file require

special care to preserve the correct exception behavior. Fig-

7



read  t1, g1
read  t2, g2
tgti t3, t2, #1

slli_t<t3> t4, t1, #4
addi_t<t3> t5, t4, #1
mov_t<t3> t6, t2

br_t<t3> L2 

mov_f<t3> t5, t1
movi_f<t3> t6, #1
teqi_f<t3> t7, t2, #0

movi_f<t7> t6, #1
br_f<t7> L3

mov_t<t7> t6, t2
br_t<t7> L3

write g1, t5
write g2, t6

t3, true t3, false

t7, true t7, false

Figure 4. TRIPS block and predicate flow graph.

ure 3c shows an example in which a predicate is produced

in hyperblock H1 and used in hyperblock H2. The spec-

ulative chain of instructions spans both hyperblocks. If the

compiler predicates only the bottom of the chain in H2, then

any exception-tagged operands that are produced by specu-

latively executed instructions and transmitted from H1 to H2

would illegally trigger exceptions at the block boundaries.

To ensure correct execution, any basic block split across

TRIPS blocks must have every output in each hyperblock

guarded by the predicate, as opposed to guarding only the

outputs in the last hyperblock.

5. Compiler Predicate Optimizations

A compiler that supports dataflow predication can ap-

ply three optimizations to mitigate predication overheads.

First, predicate fanout reduction removes predicates based

on intra-block dependence chains. Second, path-sensitive

predicate removal removes predicates from instructions that

define inter-block values. Finally, a general form of instruc-

tion merging combines duplicate instructions to reduce the

size of a block.

A TRIPS block is a region of the control flow graph that

executes atomically and adheres to the architecturally spec-

ified block constraints [24]. In the absence of predication,

a TRIPS block is simply a basic block. However, to max-

imize performance, the Scale compiler forms hyperblocks

by combining regions of the control flow graph using if-

conversion [18]. It performs all traditional loop and scalar

optimizations before it forms hyperblocks. After hyper-

block formation, it performs various predication optimiza-

tions, followed by global common sub-expression elimina-

tion and peephole optimization.

Scale represents hyperblocks internally as a predicate

flow graph (PFG) as shown in Figure 4. A PFG is a directed

graph where each edge represents a predicate and each node

represents a predicate block–a basic block whose instruc-

tions are predicated on the incoming edges. Previous work

shows that this structure allows for precise dataflow analysis

in the presence of predication [3]. This phase of the com-

piler represents instructions in three-address form, where all

intra-block communication is expressed through temporary

register names. Only read and write instructions access

the register file, which is used to transfer values between in-

structions in different blocks. The optimizations described

in this section all operate on the predicate flow graph, both

in and out of static single assignment form [11]. A final

compiler phase schedules and translates to target form [10].

5.1. Predicate Fanout Reduction

A dataflow predicating compiler can apply both implicit

predication and speculative hoisting to reduce predicate

fanout, thus eliminating unnecessary predication and avoid-

ing the insertion of move instructions that would otherwise

be required to forward predicates to their consumers. For

example, in Figure 4, the immediate test instruction, tgti,

defines a predicate t3 that predicates eight instructions (in

the TRIPS ISA, immediate instructions can only target a

single instruction.) In the worst case, the compiler would

insert six additional move instructions to distribute the pred-

icate to its consumers.

Scale performs predicate fanout reduction using the PFG

in static single assignment form. It is free to apply implicit

predication and/or hoisting to remove a predicate from any

instruction, including instructions that may raise exceptions

(subject to the restrictions discussed in Section 4.4). How-

ever, this strategy does not always yield the best fanout re-

duction. For example, if a dataflow graph has few roots and

many leaves, predicating the roots offers the best fanout re-

duction at the possible expense of losing performance if the

predicate computation is on the critical path.

The compiler removes a predicate if all of the follow-

ing conditions are met: (1) the instruction is not a branch

or store, (2) the instruction does not define a predicate, (3)

the instruction does not define a register that is live-out of

the TRIPS block, and (4) the instruction does not define

a register used by a SSA φ-instruction. Figure 5a shows

Figure 4 after the compiler performs predicate fanout re-

duction. It removes the predicate on the slli instruction,

which enables the compiler to promote the instruction to its

dominating predicate block and the runtime to execute the

instruction regardless of the intra-block control flow.

5.2. Path­Sensitive Predicate Removal

The TRIPS ISA requires that all paths through a block

produce the same set of register writes. If an instruction

defines a register that is live on one path but not another,

the compiler must insert additional instructions to produce

a definition for the register on all paths. The compiler can

either read in the register that is live and copy this value on

8



mov_f<t3> t5, t1
movi_f<t3> t6, #1
teqi_f<t3> t7, t2, #0

movi_f<t7> t6, #1
br_f<t7> L3

mov_t<t7> t6, t2
br_t<t7> L3

write g1, t5
write g2, t6

read  t1, g1
read  t2, g2
tgti t3, t2, #1

slli t4, t1, #4

slli_t<t3> t4, t1, #4
addi_t<t3> t5, t4, #1
mov_t<t3> t6, t2
br_t<t3> L2  

mov_f<t3> t5, t1
movi_f<t3> t6, #1
teqi_f<t3> t7, t2, #0

movi_f<t7> t6, #1
br_f<t7> L3

mov_t<t7> t6, t2
br_t<t7> L3

write g1, t5
write g2, t6

read  t1, g1
read  t2, g2
tgti t3, t2, #1
slli t4, t1, #4

addi t5, t4, #1

slli_t<t3> t4, t1, #4
addi_t<t3> t5, t4, #1
mov_t<t3> t6, t2
br_t<t3> L2  

movi_f<t7> t6, #1
br_f<t7> L3

mov_t<t7> t6, t2
br_t<t7> L3

write g1, t5
write g2, t6

read  t1, g1
read  t2, g2
tgti t3, t2, #1
slli t4, t1, #4
addi t5, t4, #1

mov_t<t3, t7> t6, t2 movi_f<t3, t7> t6, #1

slli_t<t3> t4, t1, #4
addi_t<t3> t5, t4, #1
mov_t<t3> t6, t2
br_t<t3> L2  

mov_f<t3> t5, t1
movi_f<t3> t6, #1
teqi_f<t3> t7, t2, #0

br_f<t3> L3

t3, true t3, false

t7, falset7, true

t3, true t3, false

t7, true t7, false

t3, true

t3, true

t3, false

t3, false
t7, true t7, false

(a)
(b) (c)

removed

X

X

X

X

X

X X
X X

added

M0 M1

Figure 5. After (a) predicate fanout reduction, (b) path sensitive predicate removal, and (c) instruction merging.

the paths without a definition, or insert null instructions

to nullify the write on these paths.

For example, in Figure 5a, g1 and g2 are both live.

The compiler therefore inserts three additional mov instruc-

tions to write the original values of g1 and g2 back on

the paths without the definitions. Two move instructions

in the t3-true and t7-true predicate blocks set the

temporary register t6 for g2. One move instruction in the

t7-false predicate block sets the temporary register t5

for g1. However, the compiler does not need to preserve

these registers on paths where they are not live due to mul-

tiple definitions. Path-sensitive predicate removal is an opti-

mization that promotes instructions that define live registers

to execute unconditionally. This optimization reduces the

amount of predicate fanout, and also increases speculation

through early resolution of inter-block dependences.

An instruction is a candidate for this optimization if: (1)

the instruction defines a live register but it is not live on ev-

ery path, (2) the instruction dominates the exits on which

it is live, and (3) the instruction cannot raise an exception.

Any candidate instruction found may be promoted to exe-

cute unconditionally. This implies that the instructions that

define the candidate’s operands, excluding any instructions

that define predicates, must also be promoted. This recur-

sive promotion is legal provided that no exceptions can be

raised and no additional instructions (besides those in the

upward dependence chain) will become speculative.

Figure 5b shows the example after path-sensitive predi-

cate removal assuming g1 was only live on the t3-true

path. The addi instruction can be promoted to the dom-

inating predicate block, causing it to be executed uncon-

ditionally, which enables the compiler to remove one mov

instruction in the t3-false block.

5.3. Disjoint Instruction Merging

Instruction merging combines lexically equivalent in-

structions into a single instruction. Prior approaches re-

quire the instructions to be predicated on complementary

predicates [20]. However, dataflow predication permits the

merging of any lexically equivalent instructions, providing

additional optimization opportunities for the compiler.

There are three categories of instruction merging: (1) in-

structions that have the same predicates but opposite condi-

tions (i.e., t130 true, t130 false), (2) instructions that have

different predicates but the same conditions (i.e., t130 true,

t150 true), and (3) instructions that have different predicates

and opposite conditions (i.e., t130 true, t150 false).

Mahlke et al. describe a straightforward method for cat-

egory 1 merging [20]. The compiler identifies lexically

equivalent instructions and promotes one instruction, re-

moving the other. The compiler promotes the instruction by

moving it to the block that dominates the predicate blocks

containing the original instructions. For example, the two

branches in the t7-true and t7-false predicate blocks

shown in Figure 5b are lexically equivalent. They receive

the same predicate t7 but are predicated on opposite condi-

tions. The compiler merges these two branches to a sin-

gle branch instruction and promotes it to the dominating

t3-false predicate block (Figure 5c.

To merge instructions that belong to category (2) and

(3), the compiler exploits the predicate-OR capabilities de-

scribed in Section 3. The compiler identifies instructions

to merge in the same way as category (1), however it cre-

ates new instructions predicated on multiple predicates and

removes the original instructions. For example, the two

mov instructions in the t3-true and t7-true predi-

cate blocks shown in Figure 5b are candidates for category

(2) merging. The compiler eliminates these two instruc-

tions and introduces a new mov labeled M0 in Figure 5c.

Note that this instruction is predicated on both t3 and t7,

exploiting the predicate-OR capability of the ISA. At run-

time, at most one of the predicates will be true, obeying the

predication rules. Similarly, the compiler merges the mov

instructions in the t3-false and t7-false predicate

blocks into a single instruction.

9



 

a) Loop extracted from genalg

for (x = c; 
    rx > 0.0 && x < pop-1; 
    x++, p_fitness++)
        rx -= *p_fitness;

b) Instruction sequence for loop body 

lw t4, (t3) L[0]
fstod t5, t4 
fsub t6, t0, t5     ; rx  -= *p_fitness
addi t7, t1, 1      ; x++
addi t8, t3, 4      ; p_fitness++
fgt t9, t6, t100
tlt_t<t9>       t10, t7, t2
bro_t<t10>   genalg$4      ; loop back
bro_f<t9>     genalg$5      ; loop exit
bro_f<t10>   genalg$5      ; loop exit

c) Predicate guards for live-outs

mov_f<t9> rx, t6 
mov_f<t10> rx, t6
mov_f<t9> x,  t7
mov_f<t10> x,  t7
mov_f<t9> pf, t8
mov_f<t10> pf, t8

d) After predicate combining
 
movi_f<t9, t10>  tmp, 1 
mov_f<tmp>      rx, t6
mov_f<tmp>      x,  t7
mov_f<tmp>      pf, t8

Figure 6. Instruction merging in genalg.

The compiler merges category (3) instructions by flip-

ping the condition for the test instruction that generates the

predicate, and then applying the category (2) transforma-

tion.

The principal benefit from instruction merging within a

hyperblock is that it eliminates instructions, creating space

for the inclusion of more useful instructions into the hyper-

block. Such inclusion exposes opportunities for additional

compiler optimization. The example depicted in Figure 5

reduces the size of a TRIPS block by three instructions—

six instructions eliminated and three new ones added.

Figure 6 shows an instruction merging example using a

kernel snippet extracted from genalg, a genetic algorithm

application developed by MIT Lincoln Laboratories. The

top left portion of the figure depicts the source code, while

the bottom left portion shows the equivalent instructions for

the loop body, not including the register read and write in-

structions. In this example, x, rx, and p fitness are all

live past the loop. The test instructions (fgt and tlt) rep-

resent the predicate-AND chain required for implementing

the short-circuiting loop condition checks. As described in

Section 3, such an and-chain ensures correct exception se-

mantics.

If the loop executes for several iterations, statically un-

rolling to fill the 128-instruction block with as many itera-

tions as possible maximizes the parallelism found in the in-

struction window. This potentially high degree of Unrolling

exposes many opportunities for instruction merging. An

example merges the two exiting branch instructionsof the

first iteration. The compiler applies category (2) merging

to form a single branch instruction. Likewise, the move in-

structions generating each of the live registers are also can-

didates for merging.

Instruction merging also enables predicate fanout reduc-

tion. As shown in Figure 6c, the loop exit predicates for the

first iteration (t9, t10) control each of the three live reg-

ister values. Since each instruction can encode at most two

targets and there are four consumers for the predicate (in-

cluding the branch), so a total of four fanout instructions are

required for the two predicates. It the compiler merges the

two predicates as shown in Figure 6d and sends the result-

ing predicate to the register producing instructions, then it

eliminates three fanout instructions—no fanout instructions

are required for t9 and t10 and one fanout instruction is

required for tmp.

Performing these optimizations by hand, we unrolled

several iterations of the genalg loop to maximally fill a

block. Compared to the best performing compiler, these op-

timizations improved the performance by over 2.25 times.

6. Performance Analysis

We evaluate predicate fanout reduction and path-

sensitive predicate removal using 28 EEMBC 2.0 bench-

marks, the Scale compiler with a TRIPS back end, and

a cycle-accurate simulator called tsim-proc. This simu-

lator closely models the TRIPS prototype microarchitec-

ture [8]—a recent performance evaluation estimated that

tsim-proc and an RTL-level simulator differ by less that

4% on average using a set of microbenchmarks. Tsim-proc

faithfully models most delays in the prototype implemen-

tation, including a one-cycle hop from any tile to an adja-

cent tile, a 32KB, 2-way set-associative distributed L1 data

cache with a 2-cycle latency, a 64KB, 2-way set-associative

distributed L1 instruction cache with a 1-cycle latency, an

8-cycle block fetch latency, and a 3-cycle branch prediction

latency.

Figure 7 shows the results of various compiler optimiza-

tions. We present the results in three categories, all of which

use hyperblocks—intra: predicate fanout reduction, inter:

path-sensitive predicate removal, and both: both predicate

fanout reduction and path-sensitive predicate removal. We

use hyperblocks with no predicate optimizations as a base-

line. We also show results for basic blocks only (no predi-

cation) as BB. We do not include instruction merging, as we

are still in the process of adding the optimization into the

Scale compiler.

Predicate fanout reduction obtains an average speedup of

11% over hyperblocks alone. We observe an average 14%

reduction in dynamic move instructions, a 2% reduction in

total dynamic instructions and a 5% reduction in the num-

ber of dynamic blocks. Path-sensitive predicate removal has

an average speedup of 1%, but several benchmarks stand

out as benefiting from this optimization including autcor00,

conven00 and iirflt01, with speedups of 5-9%. In these

benchmarks, instruction promotion indirectly benefits both

the branch predictor and the load-store dependence predic-

tor by enabling early resolution of branches and stores, re-

sulting in higher prediction accuracy and improved perfor-

mance. Combining the two optimizations produces an av-

erage speedup of 12%. The benchmark rotate01 shows the

10



a2tim
e01

aifftr01

aifirf01

aiifft01

autcor00

basefp01

bezier01

bitm
np01

cacheb01

canrdr01

conven00

dither01

fbital00

fft00
idctrn01

iirflt01

m
atrix01

ospf
pktflow

pntrch01

puwm
od01

rotate01

routelookup

rspeed01

tblook01

text01

ttsprk01

viterb00

average

0.0

0.5

1.0

1.5

S
p

ee
d

u
p

 (
cy

cl
es

)
BB

Intra

Inter

Both

Figure 7. Speedup on EEMBC Embedded Benchmark Suite.

most marked improvement, having a combined speedup of

59%. Basic blocks are on average 29% slower than hyper-

blocks alone and 41% slower than hyperblocks with both

predicate optimizations. The benefits of optimized predica-

tion are multifold: increased instruction window utilization,

reduction in the number of blocks (static) executed, reduced

branch mispredictions, and improved I-cache performance.

7. Conclusions

Dataflow predication exploits ISA features, microarchi-

tectural mechanisms, and compiler algorithms to reduce

predication overheads in an EDGE ISA while maintaining

low-complexity out-of-order issue. In VLIW architectures,

the execution overhead of falsely predicated instructions

limits the compiler’s ability to perform aggressive predica-

tion. In superscalar architectures, the hardware complexity

and ISA encoding difficulties inhibit the incorporation of

full predication. Dataflow predication avoids both of these

limitations, while reducing the predicate encoding space

consumed to two bits per instruction. However, dataflow

predication incurs the costs of fanning out predicates to

many consumers. The following components of dataflow

predication reduce its overhead and provide opportunities

for improved performance:

• Computation of compound dataflow predicates: By

supporting dual-polarity predicates, predicated test in-

structions, and receipt of multiple non-matching pred-

icates per instruction (predicate-ORing), the ISA re-

duces the overhead of computing compound predi-

cates.

• Implicit predication and early mispredication termi-

nation: The microarchitecture supports removal of

blocks while falsely predicated instructions are exe-

cuting speculatively. This capability is necessary to

support implicit predication, which, along with spec-

ulative hoisting, can significantly reduce the number

of consumers to which predicates must be sent using

software fanout trees.

• Disjoint instruction merging: Since the ISA supports

multiple sources for an instruction’s predicate, the

compiler can merge instructions with distinct predi-

cates, eliminating redundant instructions.

We presented a preliminary evaluation of the dataflow

predication optimizations in the TRIPS architecture. Pred-

icated hyperblocks improve performance by 29%, on aver-

age, over basic blocks. Fanout minimizations both within

and across multiple hyperblocks improve performance by

an additional 12%. Although instruction merging in the

Scale compiler is still immature, we demonstrated that, with

hand merging of instructions, significant speedups were

achievable on several benchmarks.

In the near term, there are two additional optimizations

that are likely to further reduce the overheads of dataflow

predication. First, a short-circuiting and instruction, that

follows C semantics, will permit tree-based computation

of predicate chains and reduce the predicate dependence

height. Second, predicate multicast operations that trade in-

struction placement flexibility for the ability to route a pred-

icate to more consumers using shorter, wider fanout trees

will reduce dependence heights and instruction overheads

while improving performance.

In the longer term, the biggest remaining overheads of

predication may eventually be the fraction of mispredicated

instructions in the window, which reduce the effective win-

dow size. At any given moment in a program’s execu-

tion, there are three classes of instructions in the window–

useful instructions that are correctly predicated, useless in-

structions that are falsely predicated, and instructions past a

branch misprediction, all of which are useless. Each win-

dow size has a sweet spot between no predication (pure su-

perscalar) and all predication (pure dataflow) for maximum

parallelism. If instruction window sizes continue to in-

crease, however, the relative costs of increased predication

will continue to decline, pushing the ideal balance toward

more aggressive predication. It is possible that the long-

term solution to branch mispredictions will not be more

accurate predictors, but conversion of most unpredictable

branches to predicates in extremely large instruction win-

dows. For this solution to be viable, some form of predicate

predication [9] will likely be necessary to reduce the in-

creases in dependence heights, caused by predication, down

the true paths of execution.

11



Acknowledgments

This research was supported by the Defense Advanced

Research Projects Agency under contracts F33615-01-C-

1892 and NBCH30390004, NSF instrumentation grant

EIA-0303609, NSF CAREER grants CCR-9985109 and

CCR-9984336, IBM University Partnership awards, and

grants from both the Alfred P. Sloan Foundation and the

Intel Research Council.

References

[1] J. R. Allen, K. Kennedy, C. Porterfield, and J. D. Warren. Conversion

of control dependence to data dependence. In Proceedings of the 10th

Annual Symposium on Principles of Programming Languages, pages

177–189, January 1983.

[2] Arvind and R. S. Nikhil. Executing a program on the MIT Tagged-

Token Dataflow Architecture. IEEE Transactions on Computers,

39(3):300–318, March 1990.

[3] D. I. August. Systematic compilation for predicated execution. PhD

thesis, University of Illinois at Urbana-Champaign, 2000.

[4] D. I. August, J. W. Hwu, J.-M. Puiatti, S. A. Mahlke, D. A. Con-

nors, K. M. Crozier, and W. W. Hwu. The program decision logic

approach to predicated execution. In Proceedings of the 26th Annual

International Symposium on Computer Architecture, pages 208–219,

May 1999.

[5] D. I. August, W. W. Hwu, and S. A. Mahlke. A framework for balanc-

ing control flow and predication. In Proceedings of the 30th Interna-

tional Symposium on Microarchitecture, pages 92–103, Dec. 1997.

[6] M. Beck, R. Johnson, and K. Pingali. From control flow to data

flow. Journal of Parallel and Distributed Computing, 12(2):118–129,

1991.

[7] M. Budiu, G. Venkataramani, T. Chelcea, and S. C. Goldstein. Spa-

tial computation. In Proceedings of the 11th International Confer-

ence on Architectural Support for Programming Languages and Op-

erating Systems, pages 14–26, October 2004.

[8] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John,

C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, W. Yoder, and the

TRIPS Team. Scaling to the End of Silicon with EDGE architectures.

IEEE Computer, 37(7):44–55, July 2004.

[9] W. Chuang and B. Calder. Predicate prediction for efficient out-of-

order execution. In Proceedings of the 17th Annual International

Conference on Supercomputing, pages 183–192, June 2003.

[10] K. Coons, X. Chen, S. Kushwaha, D. Burger, and K. S. McKinley.

A spatial path scheduling algorithm for EDGE architectures. In Pro-

ceedings of the 12th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, San Jose,

CA, 2006.

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.

Zadeck. Efficiently computing static single assignment form and the

control dependence graph. ACM Transactions on Programming Lan-

guages and Systems, 13(4):451–490, October 1991.

[12] J. C. Dehnert, P. Y. Hsu, and J. P. Bratt. Overlapped loop support

in the Cydra 5. In Proceedings of the third international conference

on Architectural support for programming languages and operating

systems, pages 26–38, April 1989.

[13] J. Dennis and D. Misunas. A preliminary architecture for a basic

data-flow processor. In Proceedings of the 2nd Annual Symposium

on Computer Architecture, pages 126–132, January 1975.

[14] V. Kathail, M. Schlansker, and B. Rau. HPL-PD Architecture Spec-

ification: Version 1.1. Technical Report HPL-93-80(R.1), Hewlett-

Packard Laboratories, February 2000.

[15] R. Kessler. The Alpha 21264 Microprocessor. IEEE Micro,

19(2):24–36, March/April 1999.

[16] H. Kim, O. Mutlu, J. Stark, and Y. N. Patt. Wish branches: Com-

bining conditional branching and predication for adaptive predicated

execution. In Proceedings of the 38th annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, pages 43–54, 2005.

[17] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein,

R. P. Nix, J. S. O’Donnell, and J. C. Ruttenberg. The Multiflow

Trace Scheduling compiler. The Journal of Supercomputing, 7(1-

2):51–142, May 1993.

[18] B. Maher, A. Smith, D. Burger, and K. S. McKinley. Merging head

and tail duplication for convergent hyperblock formation. In Pro-

ceedings of the 39th Annual IEEE/ACM International Symposium on

Microarchitecture, December 2006.

[19] S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R. Rau, and M. S.

Schlansker. Sentinel scheduling for VLIW and superscalar proces-

sors. In Proceedings of the 5th International Conference on Archi-

tectural Support for Programming Languages and Operating System

(ASPLOS), pages 238–247, October 1992.

[20] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-

mann. Effective compiler support for predicated execution using the

hyperblock. In Proceedings of the 25th International Symposium on

Microarchitecture, pages 45–54, Dec. 1992.

[21] D. N. Pnevmatikatos and G. S. Sohi. Guarded execution and branch

prediction in dynamic ILP processors. In Proceedings of the 21st

Annual International Symposium on Computer Architecture, pages

120–129, Apr. 1994.

[22] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towie. The Cydra 5

Departmental Supercomputer: Design Philosophies, Decisions, and

Trade-Offs. Computer, 22(1):12–26, 28–30, 32–35, January 1989.

[23] R. Russell. The CRAY-1 computer system. Communications of the

ACM, 21(1):63–72, Jan. 1978.

[24] A. Smith, J. Burrill, J. Gibson, B. Maher, N. Nethercote, B. Yoder,

D. Burger, and K. S. McKinley. Compiling for EDGE architectures.

In Fourth International IEEE/ACM Symposium on Code Generation

and Optimization (CGO), pages 185–195, March 2006.

[25] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. WaveScalar.

In Proceedings of the 36th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, pages 291–302, December 2003.

[26] K. R. Traub. A compiler for the MIT tagged-token dataflow architec-

ture. Technical Report TR-370, LCS, MIT, Cambridge, MA, August

1986.

[27] P. H. Wang, H. Wang, R. M. Kling, K. Ramakrishnan, and J. P.

Shen. Register renaming and scheduling for dynamic execution of

predicated code. In Proceedings of the 7th International Symposium

on High-Performance Computer Architecture, pages 15–25, January

2001.

[28] N. J. Warter, D. M. Lavery, and W. W. Hwu. The benefit of predicated

execution for software pipelining. In Proceedings of the 26th Annual

Hawaii International Conference on System Sciences, pages 497–

506, January 1993.

12


