
Exploring the Design Space of SPMD Divergence Management
on Data-Parallel Architectures

Yunsup Lee∗, Vinod Grover†, Ronny Krashinsky†, Mark Stephenson†, Stephen W. Keckler†‡, Krste Asanović∗
∗University of California, Berkeley, †NVIDIA, ‡The University of Texas at Austin

{yunsup, krste}@eecs.berkeley.edu, {vgrover, rkrashinsky, mstephenson, skeckler}@nvidia.com

Abstract—Data-parallel architectures must provide efficient
support for complex control-flow constructs to support sophis-
ticated applications coded in modern single-program multiple-
data languages. As these architectures have wide datapaths that
process a single instruction across parallel threads, a mecha-
nism is needed to track and sequence threads as they traverse
potentially divergent control paths through the program. The
design space for divergence management ranges from software-
only approaches where divergence is explicitly managed by the
compiler, to hardware solutions where divergence is managed
implicitly by the microarchitecture. In this paper, we explore
this space and propose a new predication-based approach for
handling control-flow structures in data-parallel architectures.
Unlike prior predication algorithms, our new compiler anal-
yses and hardware instructions consider the commonality of
predication conditions across threads to improve efficiency. We
prototype our algorithms in a production compiler and evaluate
the tradeoffs between software and hardware divergence man-
agement on current GPU silicon. We show that our compiler
algorithms make a predication-only architecture competitive
in performance to one with hardware support for tracking
divergence.

I. INTRODUCTION

Data-parallel architectures such as Cray-1-like vector ma-
chines [14, 29], Intel packed-SIMD units [17, 28], NVIDIA
and AMD graphics processing units [2,16,23,24], and Intel
MIC accelerators [30] have long been known to provide
greater performance and energy efficiency than general-
purpose architectures for applications with abundant data-
level parallelism. Programming these systems is inherently
challenging, and over decades of research and develop-
ment only a few models have attained broad success. Im-
plicitly parallel autovectorization approaches were popular
with early vector machines, while explicitly parallel Single-
Program Multiple-Data (SPMD) accelerator languages like
CUDA [21] and OpenCL [26] have proven to be accessible
and productive for newer GPUs and SIMD extensions.
By nature, SPMD programs tend to have substantial and
complex per-thread control flow, extending beyond simple
if-then-else clauses to nested loops and function calls.

To achieve an efficient mapping, threads are processed
together in SIMD vectors, but orchestrating the execution
of SPMD threads on wide SIMD datapaths is challenging.
As each thread executes control flow independently, execu-
tion may diverge at control conditions such as if-then-else
statements, loops, and function calls. The architecture must
therefore track and sequence through the various control
paths taken through the program by the different elements
in a vector. This is generally done by selectively enabling

a subset of threads in a vector while each control path is
traversed. Because divergence leads to a loss of efficiency,
reconvergence is another important component of divergence
management on data-parallel architectures.

As described in Section II, NVIDIA GPUs support the
SPMD model directly in hardware with a thread-level hard-
ware ISA that includes thread-level branch instructions [9,
16]. This approach allows the compiler to use a fairly con-
ventional thread compilation model, while pushing most of
the divergence management burden onto hardware. Threads
are grouped into 32-element vectors called warps, and when
threads in a warp branch in different directions, the hardware
chooses one path to continue executing while deferring the
other path by pushing its program counter and thread mask
onto a specialized divergence stack. Reconvergence is also
managed through tokens pushed and popped on this stack
by the compiler.

Vector-style architectures with a scalar+vector ISA em-
ploy a compiler-driven approach to divergence management
[1, 12, 13, 27, 32, 33]. In this model, the vector unit cannot
execute branch instructions. Instead, the compiler must ex-
plicitly use scalar branches to sequence through the various
control paths for the elements or threads in a vector, while
using vector predication to selectively enable or disable
vector elements.

Although a wide range of software and hardware SPMD
divergence management schemes are implemented in the
field, software divergence management in particular has
received relatively little attention from the academic research
community. At first glance the topic may seem like a recast-
ing of classic vectorization and predication issues, but the
challenges are unique in the context of modern architecture
for several reasons: (1) Unlike traditional vectorization, the
parallelization of arbitrary thread programs is a functional re-
quirement rather than an optional performance optimization.
(2) The divergence management architecture must not only
partially sequence all execution paths for correctness, but
also reconverge threads from different execution paths for ef-
ficiency. (3) Traditional compiler algorithms for predication
in serial processors are thread-agnostic, as they only need
to consider optimizing the control flow for a single thread
of execution. A data-parallel architecture on the other hand
requires different thread-aware performance considerations.
(4) GPUs and other multithreaded processors with a shared
register pool are particularly sensitive to register pressure,
as register count determines the number of threads that
can execute concurrently. This constraint results in unique

tradeoffs and optimization opportunities for the divergence
management architecture. Finally (5), in SPMD programs,
uniform control and data operations can be scalarized to
improve efficiency, a challenge that is related to but different
than vectorization [5, 12, 15].

In the remainder of this paper, we further describe
and analyze the design-space, tradeoffs, and unique chal-
lenges of SPMD divergence management architectures. In
Section III we detail our thread-aware predication-based
compiler algorithm for SPMD divergence management. We
have developed optimizations including a static branch-
uniformity optimization and a compiler-instigated runtime
branch-uniformity optimization that eliminates unnecessary
fetch and issue of predicate-false instructions. As described
in Section IV, we use these algorithms to modify an NVIDIA
production compiler to only use predication and uniform
branches, eliminating all use of the hardware divergence
stack.

In Section V, we first characterize the control flow of a
wide range of data-parallel applications. We then compare
and analyze in detail the performance characteristics of
software-based and hardware-based divergence management
architectures on production GPU silicon. We describe con-
ditions where software predication performs better, and
other conditions where the hardware divergence stack per-
forms better. Finally, we discuss the tradeoffs and suggest
promising areas of future work for further optimization
of our software divergence management implementation in
Section VI.

II. BACKGROUND

This section provides an overview of how different data-
parallel architectures support the control flow present in the
SPMD programming model, where data-parallel computa-
tion is expressed in the form of multithreaded kernels. The
programmer writes code both for a single thread and for an
explicit kernel invocation that directs a group of threads to
execute the kernel code in parallel. We explain next how
different data-parallel architectures manage divergence with
the if-then-else statement and the loop example shown in
Figure 1. Due to the SIMD execution nature of these archi-
tectures, the hardware must provide a mechanism to execute
an instruction only for selected elements within a vector.
Some architectures expose predication to the compiler, while
others hide it from the compiler and manage divergence
implicitly in hardware.

A. Vector Machines

Compilers for vector machines manage divergence explic-
itly. Figure 2 illustrates how a vector machine would typi-
cally handle the control flow shown in Figure 1. The example
shows a mixture of scalar and vector instructions, along with
scalar and vector registers. To execute both sides of the if-
then-else statement conditionally, the vector machine first

void kernel() {
a = op0;
b = op1;
if (a < b) {

c = op2;
} else {

c = op3;
}
d = op4;

}
(a) If-then-else statement

void kernel() {
bool done = false;
while (!done) {
a = op0;
b = op1;
done = a < b;

}
c = op2;

}
(b) Loop

Figure 1. Control flow examples (kernel invocations omitted).

writes the result of the vslt compare instruction into a vec-
tor predicate register vf0, then conditionally executes vop2
under vf0. Similarly, vop3 is executed under the negated
condition !vf0. Vector register vc is partially updated from
both sides of the execution paths. The diverged execution
paths merge at the immediate post-dominator, where vop4
is executed. The compiler statically encodes this information
by emitting vop4 under no predicate condition.

Several optimizations such as density-time execution and
compress-expand transformations have been proposed [33]
and evaluated [14] to save execution time of sparsely
activated vector instructions. However, these optimizations
cannot prevent vector instructions with an all-false predi-
cate mask from being fetched and decoded. The compiler
can optionally insert a check to test whether the predi-
cate condition is null, meaning that instructions under that
predicate condition are unnecessary. In Figure 2a, both
conditionally executed paths are guarded with a dynamic
check. A vpopcnt instruction, which writes a count of all
true conditions in a vector predicate register to a scalar
register, is used to count active elements. A scalar branch
(branch.eqz instruction) checks whether the count is zero
to jump around unnecessary work. These checks may not
always turn out to be profitable, as the condition could truly
be unbiased and it would be better to schedule both sides of
the execution paths simultaneously.

Figure 2b shows how loops in SPMD programs are
mapped to vector machines. Loop mask vf0, which keeps
track of active elements executing the loop, is initialized
to true. A vpopcnt instruction is combined with a
branch-if-equals-zero instruction to test whether all elements
have exited the loop. All instructions in the loop body

va = vop0
vb = vop1
vf0 = vslt va,vb
s0 = vpopcnt vf0
branch.eqz s0,else

@vf0 vc = vop2
else:

s0 = vpopcnt !vf0
branch.eqz s0,ipdom

!@vf0 vc = vop3
ipdom:

vd = vop4

(a) If-then-else statement

vf0 = true
loop:

s0 = vpopcnt vf0
branch.eqz s0,exit

@vf0 va = vop0
@vf0 vb = vop1
@vf0 vf1 = vslt va,vb

vf0 = vand vf0,!vf1
j loop

exit:
vc = vop2

(b) Loop

Figure 2. Divergence management on vector architectures.

a = op0
b = op1
p = slt a,b
push.stack reconverge
tbranch.eqz p,else
c = op2
pop.stack

else:
c = op3
pop.stack

reconverge:
d = op4

(a) If-then-else statement

done = false
push.stack reconverge

loop:
tbranch.neqz done,exit
a = op0
b = op1
done = slt a,b
j loop

exit:
pop.stack

reconverge:
c = op2

(b) Loop

Figure 3. Hardware divergence management on NVIDIA GPUs.

(vop0, vop1, vslt) are predicated under the loop mask
vf0, except the vand instruction, which updates the loop
mask. The loop backwards branch is implemented with an
unconditional jump instruction (j).

Intel MIC accelerators, Cray-1 vector processors, and
AMD GPUs execute in a similar manner as shown in
Figure 2. The Intel MIC has 8 explicit vector predicate
registers [11] while the Cray-1 has one vector predicate
register on which vector instructions are implicitly pred-
icated [29, 33]. AMD GPUs use special vcc and exec
predicate registers to hold vector comparison results and to
implicitly mask instruction execution [2]. AMD GPUs also
provide an escape hatch of sorts for complex, irreducible
control flow. Fork and join instructions are provided for
managing divergence in these cases, and a stack of deferred
paths is physically stored in the scalar register file [3].

Some vector machines lack vector predicate registers and
instead have an instruction to conditionally move a word
from a source register to a destination register. Packed-
SIMD extensions in Intel desktop processors are a common
example of this pattern. However, these approaches have
limitations, including the exclusion of instructions with
side-effects from poly-path execution [18]. Karrenberg and
Hack [12,13] propose compiler algorithms to map OpenCL
kernels down to packed-SIMD units with explicit vector
blend instructions.

B. NVIDIA Graphics Processing Units

Hardware Divergence Management. NVIDIA GPUs
provide implicit divergence management in hardware. As
shown in Figure 3, control flow is expressed with thread
branches (tbranch.eqz and tbranch.neqz instruc-
tions) in the code. When threads in a warp branch in different
directions, the warp diverges and is split into two subsets:
one for branch taken and the other for branch not taken.
Execution of one subset is deferred until the other subset
has completed execution. A divergence stack is used to
manage execution of deferred warp subsets. The compiler
pushes a reconvergence point with the current active mask
onto the divergence stack before the thread branch. The
reconvergence point indicates where diverged threads are
supposed to join.

In Figure 3a, the reconvergence point is the immediate
post-dominator of the if-then-else statement. When the warp

a = op0
b = op1
f0 = slt a,b
cbranch.ifnone f0,else

@f0 c = op2
else:

cbranch.ifnone !f0,ipdom
@!f0 c = op3
ipdom:

d = op4

(a) If-then-else statement

f0 = true
loop:

cbranch.ifnone f0,exit
@f0 a = op0
@f0 b = op1
@f0 f1 = slt a,b

f0 = and f0,!f1
j loop

exit:
c = op2

(b) Loop

Figure 4. Software divergence management on NVIDIA GPUs.

splits, the hardware picks one subset (then clause), and
pushes the other (else clause) onto the stack. Then the
hardware first executes op2 under an updated active mask,
which is now set to the active threads of the then clause.
When the hardware executes the pop.stack operation, it
discards the currently executing warp subset and picks the
next warp subset on the top of the stack (else clause).
When execution reaches the next pop.stack operation,
it pops the PC for the reconvergence point. If all threads
follow the same then or else path at the branch, the warp
hasn’t diverged, and so no thread subset is pushed on the
stack, and the only pop.stack operation pops the PC for
the reconvergence point. Divergence and reconvergence nest
hierarchically through the divergence stack.

The reconvergence point of a loop is the immediate
post-dominator of all loop exits. Since there is only one
exit in the example shown in Figure 3b, the exit block is
the reconvergence point. The compiler similarly pushes the
reconvergence point onto the stack and sequences the loop
until all threads have exited the loop. All exited threads will
pop a token off the stack, until eventually the reconverged
PC with the original mask at loop entry is recovered.

Software Divergence Management. NVIDIA GPUs also
provide support to manage divergence in software. The
hardware provides predicate registers, native instructions
with guard predicates, and consensual branches [22], where
the branch is only taken when all threads in a warp have
the same predicate value. Figure 4 shows how the compiler
could manage divergence on NVIDIA hardware. Condi-
tional execution is expressed with predicates, and consensual
branches (cbranch.ifnone instruction) can be added to
jump around unnecessary work (see Figure 4a), and also
sequence a loop until all threads have exited (see Figure 4b).

Although consensual branches are implemented in current
NVIDIA GPUs, they have not been previously publicly
described except for in an issued US patent [22]. NVIDIA’s
thread-level predication and consensual branches are iso-
morphic to vector predication and the scalar branches on
popcount values used in vector processors. This scheme is
only used in a very limited fashion by the current NVIDIA
backend compiler. The compiler selects candidate if-then-
else regions using pattern matching, and employs a simple
heuristic to determine if predication will be advantageous
compared to using the divergence stack.

1:BLOCK

2:IFTHENELSE

3:BLOCK

4:IFTHENELSE

N1

N2

N4

N3

N6 N5

N8

N7

(a) Ctrl flow graph

N1 N8 N2

P1 !P1

N4 N7 N3

P2 !P2

N6 N5

(b) Ctrl dependence graph

1:BLOCK

2:ACYCLIC

3:LOOP

N1

N2

N3

N12 N4

N10

N5

N6 N7

N8

N9

N11

(c) Ctrl flow graph

N1 N2 N3

P1 !P1

N12

N10

N4 N5

P2 !P2

N7 N6 N8

P3!P3

N9

N11

(d) Ctrl dependence graph

N1 N3

P1 !P1

N12

N10

N2 N11

N4 L1

N5

P2|E1 !P2

N7 N6 N8

P3 !P3|E2

N9

(e) Thread-aware ctrl dependence graph

Figure 5. Thread-aware predication code examples. (a) control flow graph, and (b) control dependence graph of an example with nested if-then-else
statements, (c) control flow graph, (d) control dependence graph, (e) modified control dependence graph with loop masks and exit masks of a loop example
with two exits.

III. THREAD-AWARE PREDICATION ALGORITHMS

This section describes algorithms that allow a compiler
to systematically map divergence present in SPMD pro-
gramming models down to data-parallel hardware, unlike
the heuristic algorithm used to opportunistically predicate
control flow in the backend NVIDIA compiler. The proposed
compiler algorithms remove all control flow by predicating
and linearizing different execution paths. These algorithms
are applicable to data-parallel architectures that can partially
execute instructions and support thread-aware conditional
branches. For the discussion, without any loss of generality,
we assume predication and consensual branches as the
underlying mechanisms. Our general approach to predication
is similar to if-conversion described by Mahlke et al. [19],
which is a variant of the RK algorithm described in Park and
Schlansker [27]. Because predicating compilers are well-
studied and have been used effectively on a variety of plat-
forms, this section focuses only on aspects of compilation
most relevant to thread-aware predication. We also discuss
optimizations to make predication more efficient.

A. Thread-Aware Control Dependence Graphs

The control dependence graph (CDG) is the foundation
upon which our predication algorithms rely [8, 20, 37].
A CDG relates nodes in a control flow graph (CFG) by
their control dependencies. For example, Figure 5b shows a
labeled CDG for the CFG in Figure 5a [37]. In our labeled
CDG, we insert predicate nodes (sometimes called region
nodes) between dependent basic blocks. The predicate nodes
provide an explicit relationship between basic blocks and the
predicates that guard their execution. For example, consider

the if-then-else region N4, N5, and N6. The corresponding
CDG has a predicate node P2 (and its negation !P2)
controlling N6 and N5. As a practical matter, the compiler
sets a predicate’s value using the same test a branch would
use. Using the CDG, the compiler can simply trace a path
from the entry node of a region to determine how to guard
the execution of a basic block with predication. For instance,
in 5b we see that N5’s instructions should only execute
when P1 is true and P2 is false.

Figure 5d shows that a CDG’s utility extends well beyond
simple if-then-else regions, and can handle a variety of
complex control flow such as the loop and unstructured
control flow shown in the CFG in Figure 5c.

While the CDG as presented thus far applies to scalar
processors, we can extend it to match the semantics of data-
parallel architectures. With predication, when a group of
threads execute the same loop simultaneously, the group
must be sequenced until all the threads have exited the loop.
We augment the CDG’s basic structure with loop masks to
track which threads are still actively executing the loop,
continue masks to track which threads are in the current
iteration of the loop, and exit masks to track which threads
exited via specific loop exit blocks.

Figure 5e, which extends Figure 5d with these masks,
serves as an example in the following description. In the
example, N4 is the loop’s landing pad, N5 is the loop
header, and the exit paths are through predicates P2 and
!P3. A loop mask represents the threads that are active in
the loop body. The compiler initializes a loop mask in the
loop’s landing pad (N4) with a runtime value that represents
the active threads at the loop’s entrance. For our example,

the compiler introduces a loop mask, L1, which guards the
execution of the loop body. Exit masks, on the other hand,
represent threads exiting the loop (through predicate nodes
P2 and !P3 in our example). Exit masks are initialized to
false in the loop’s landing pad.

The compiler inserts instructions at the loop exits to keep
the loop masks and exit masks up-to-date. For loop masks,
the compiler inserts predicate and instructions to mask off
threads that exit the loop. A consensual branch is added to
all loop exits to check whether the loop mask is null (i.e., all
threads are done executing the loop body). For exit masks,
the compiler inserts predicate or instructions to aggregate
the threads that have exited (e.g., P2|E1 and !P3|E2).

While a continue mask is unnecessary for our example,
we use them to optimize for the case where all threads in
the current iteration execute a continue statement to move to
the next iteration. The continue mask is added to the loop
header block (N5), is initialized to the loop mask of the
current iteration, and is iteratively and-ed at every continue
and exit block with the negated mask of threads that leave
the current loop iteration. A consensual branch is added to
every continue block to jump to the loop header when the
continue mask turns out to be null.

Because the resultant CDG is still valid, downstream
predication algorithms can obliviously handle cyclic regions.
Karrenberg and Hack [12] use similar loop masks and exit
masks to vectorize loops. However, they do not use a CDG
formulation to systematically generate predicates, and do not
optimize for loop continues.

B. Static Branch-Uniformity Optimization

If the compiler can prove that a branch condition is thread
invariant, meaning that all active threads simultaneously
have the same value, the compiler can replace the branch
with a consensual branch and forgo predicating the region.
Consensual branches do not affect the hardware’s divergence
management as all active threads are guaranteed to branch
in the same direction. This compile-time static branch-
uniformity optimization can avoid unnecessary work and also
reduce register pressure. For example, in Figure 4a, if the
compiler proves that f0 is thread invariant, the compiler can
safely remove the f0 and !f0 predicate guards for op2
and op3. In more complex regions, removing the predicate
guards can shorten the live range of the associated predicate,
thereby reducing register pressure.

We use a modified version of variance analysis described
in [15,35] to select thread-invariant predicates. A basic block
is convergent if it is only control dependent on thread-
invariant predicates. For convergent basic blocks, all threads
that execute simultaneously will either enter with a full
mask or not enter at all. Therefore, rather than predicating
and linearizing convergent basic blocks, we omit the guard
predicate and preserve the original control flow. We ignore
the thread-invariant predicates in the CDG when generating

guard predicates for other basic blocks. If the loop header
is convergent, all threads will enter, execute, and exit the
loop convergently; hence the CDG does not need to be
transformed with loop, continue, and exit masks. Certain
control edges must be preserved, otherwise the linearized
basic block might execute incorrectly, as convergent basic
blocks omit their guard predicates. The rule is to preserve
outgoing edges of a convergent basic block if there is only
one outgoing edge or when the branch condition of the
convergent basic block is proven to be thread invariant.

We modified the variance analysis algorithm to work with
the labeled CDG so that we could add an additional rule: if
a basic block is controlled by a thread-variant predicate (i.e.,
proven to be non-convergent), mark all predicates controlling
that basic block as thread variant. This constraint is added
so that non-convergent basic blocks will have no preserved
control edges coming in. For example, in Figure 5d, if
predicate P3 is thread variant, then mark P1 as thread
variant, as N10 is control dependent on both P1 and !P3.
Otherwise, the compiler will insert a consensual branch
at N3 since predicate P1 is invariant, and assuming the
execution went down N12 and N10, there will be an
uninitialized guard predicate representing threads from the
N9–N10 control edge.

To see how this analysis works in practice, assume in
Figures 5a/5b that the compiler can prove that P1 is thread
invariant but cannot do the same for P2. As basic block N2
is convergent, the predicate generation algorithm can ignore
predicate nodes P1 and !P1, and only consider predicate
nodes P2 and !P2. As a result, basic blocks N4, N7, and
N3 do not have guard predicates, while N6 and N5 are
guarded by P2 and !P2 respectively. Control flow edges
N2–N4 and N2–N3 are preserved as N2 is convergent
and P1 is thread invariant. N7–N8 are also preserved as
N7 is convergent and only has one outgoing edge. Similarly
N3–N8 is preserved as N3 is convergent and only has one
outgoing edge. As a result of this static branch-uniformity
optimization, only N4–N6–N5–N7 are predicated. If all
the predicates turn out to be thread invariant, all control
flow will be preserved. On the other hand, if they are all
thread variant, then all control flow will be predicated.

C. Runtime Branch-Uniformity Optimization

For branch conditions that the compiler cannot prove as
thread invariant, the compiler can still optimize the control
flow by inserting dynamic predicate uniformity tests that
consensually branch around whole regions when the active
threads all agree. We refer to this as compiler-instigated
runtime branch-uniformity optimization.

This optimization is guided by structural analysis to
uncover control-flow structures of interest [31]. Structural
analysis allows us to reconstruct control flow structure from
a standard CFG. For example, Figure 5a overlays a structural
analysis of a CFG with nested if-then-else structures. The

structural analysis recursively discovers that blocks N4, N5,
and N6 form an if-then-else region. This region is then
compressed into an IFTHENELSE block and the algorithm
repeats. Likewise, in Figure 5c structural analysis identifies
a LOOP (N5, N6, and N8) and an ACYCLIC structure
(N3, N4, N7, N9, N10, N12, and the loop).

We consider adding runtime checks to single-entry single-
exit (SESE) substructures of IFTHENELSE and IFTHEN
flow structures. A simple heuristic algorithm decides to put
a runtime uniformity check around the SESE region of the
substructure when there are more than three instructions
or more than two basic blocks in the SESE region. If the
optimization is selected, the compiler adds a header block
and a tail block around the SESE region. A consensual
branch is added to the header block that branches to the tail
block when the predicate guarding the region is uniform.
One interesting ramification of this approach is that the
inserted branches form scheduling barriers that constrain
instruction scheduling.

As an example, assume in Figures 5a/5b that a run-
time branch-uniformity check is added to substructures of
4:IFTHENELSE. A header block and a tail block are added
around both N6 and N5. Consensual branches are added
to both header blocks checking whether P2 and !P2 are
false, respectively. If the respective predicates are false,
instructions in N6 and N5 are neither fetched nor executed.
As Figure 5c has no IFTHENELSE structures, no runtime
uniformity checks are inserted.

Shin [32] describes a similar dynamic branch-uniformity
optimization called BOSCC (branches-on-superword-
condition-codes), but relies on predicate hierarchy graphs
to nest regions that are covered by BOSCC to reduce
runtime overhead of checking the uniformity of branch
conditions. In contrast, we utilize the structural analysis to
pick candidate SESE regions for runtime checks.

D. Linearizing the Control Flow

For predicated execution, basic block ordering is clearly
important. Consider an if-then-else region for which the
compiler has inserted runtime branch-uniformity checks. For
cases in which the branches are not uniform, execution will
fall through in a predicated fashion from the header, through
both paths of control flow, and finally exit.

A simple approach to basic block ordering that topo-
logically sorts the loop tree of the CFG as in [12] only
works when all control flow will be predicated. As we have
seen, this assumption is not valid for our solution, because
our optimizations intentionally preserve some parts of the
original control flow graph. To avoid inserting extraneous
branches, which would defeat the purpose of our work, the
basic blocks from a predicated region have to be placed con-
tiguously. We refer to this placement problem as linearizing
the control flow.

We again turn to structural analysis to achieve a linearized
schedule. In addition to the IFTHEN and IFTHENELSE
structures, our analysis also discovers BLOCK, LOOP,
ACYCLIC, and OTHER structures [31]. The OTHER struc-
ture is a catch-all category that represents regions we do not
attempt to predicate and schedule. For these, we fall back to
a low-performance escape hatch where we put sequencing
code at the entry block and the exit block to sequence
active threads through the structure one-by-one. Note that
irreducible loops will be part of a single-entry single-exit
OTHER structure. For the purposes of this paper, the detailed
form of the structures is not important. What is important is
that the structures discovered in the analysis hierarchically
group together basic blocks that need to be contiguous in a
predicated execution model.

Once structural analysis reports the control-flow struc-
tures, we reverse the direction of all edges in the CFG,
and then perform a depth-first post-order traversal from the
exit node to generate a valid schedule. We reference the
result of the structural analysis to pick which children to
visit first to obtain a contiguous schedule of basic blocks
from the same control-flow structure. The rule is to first
pick children that are from the same innermost structure.
To correctly schedule all structures in a loop, we remove
backedges that connect loop tails to loop headers and make
all edges from the outside point to the loop tail.

Karrenberg and Hack [13] describe a similar static branch-
uniformity optimization to reduce register pressure while
vectorizing OpenCL kernels for packed-SIMD units in x86
processors. Reducing register pressure is especially impor-
tant on an x86 processor, as it only has a limited number of
scalar and vector registers. While their motivation is similar
to ours, they use a different formulation. Uniform branches
are identified with a dataflow lattice approach, while we use
variance analysis that uses control dependence information
to do so. To linearize basic blocks, they utilize a region
analysis based on a depth-first search with post-dominator
information to identify region exits, while we use structural
analysis, which can identify irreducible regions more easily.

IV. THREAD-AWARE PREDICATION IN CUDA COMPILER

As NVIDIA GPUs support both hardware-managed
and software-managed divergence, we can compare these
schemes by implementing our compiler algorithms in the
production NVIDIA CUDA toolchain and running real
workloads on existing hardware.

A. Implementation

The CUDA compiler takes a CUDA program and trans-
lates it to native SASS instructions [25] through a two-
step process. The CUDA LLVM compiler first takes a
CUDA program and generates PTX instructions with vir-
tual registers and simple branches to represent data and
control dependencies. The ptxas backend compiler then

generates native SASS instructions from the PTX code
by allocating hardware registers, inserting instructions that
sequence the divergence stack, and performing a very limited
version of if-conversion with simple heuristics discussed
in Section II-B. When using our predication algorithms,
our modified compiler disables passes that insert divergence
stack instructions and perform if-conversion.

We implement our compiler algorithms described in Sec-
tion III in the CUDA LLVM compiler. The LLVM com-
piler uses a static single assignment (SSA) based internal
representation. SSA form is inherently incompatible with
the conditional update semantics of predication. The pro-
duction compiler toolchain in which we prototype these
techniques is sufficiently rigid to preclude implementation
of the predicate-aware techniques such as [6, 34]. Instead,
to interoperate with LLVM’s internal representation and
built-in passes, during our predication pass we embed a
throw-away instruction in each basic block to hold its
guard predicate, ordering, and linearization information. The
metadata held by the throw-away instruction survives various
LLVM passes including the instruction DAG selection pass.
We modify ptxas to accept the intermediate form with the
throw-away instruction mapped to a pseudo-PTX instruction
to deliver metadata needed for predication. The throw-away
instruction withstands another set of optimization passes in
ptxas, and is discarded in a late phase once the compiler
predicates all instructions with the respective guard predicate
and rewires the basic blocks with consensual branches to
adhere to the ordering generated by our LLVM predication
pass. The resulting binary can be executed on both Kepler
and Fermi GPUs without modifications to the CUDA driver.

B. Limitations

While most SASS instructions accept a guard predicate,
the shared memory atomic operations, which are imple-
mented with a load-lock and store-unlock instruction se-
quence, do not. To support programs with conditional ex-
ecution of shared atomic instructions, we modify ptxas to
guard the lock/unlock sequence with a divergent branch and
handle reconvergence through the divergence stack. Only 4
out of 28 benchmarks are programmed with shared memory
atomic operations (SA column of Table I).

Integer division and remainder instructions are expanded
into a loop with conditional branches by ptxas, invali-
dating the ordering information generated by our LLVM
predication pass. To avoid this problem, we call the “Ex-
pand Integer Division” pass to legalize integer division and
remainder operations in the LLVM compiler before we call
our predication pass. We also add this pass to the baseline
compiler, which only uses the divergence stack to handle
control flow, for a clearer comparison against thread-aware
predication. Only 4 out of 28 benchmarks use an integer
division or a remainder operation (DR column of Table I).

V. EVALUATION

Our study uses 11 benchmarks from Parboil [36] and
11 benchmarks from Rodinia [4], which cover compute-
intensive domains including linear algebra, image process-
ing, medical imaging, biomolecular simulation, physics sim-
ulation, fluid dynamics, data mining, and astronomy. We also
added 6 benchmarks we wrote to characterize our thread-
aware predication CUDA compiler, including a control-flow
heavy N-queens benchmark and several FFT benchmarks
with different radices. We characterize our thread-aware
predication approach on an NVIDIA Tesla K20c GPU (Ke-
pler GK110) and compare performance results with baseline
runs that only use the divergence stack to handle control
flow. To draw a clearer comparison between hardware and
software divergence management schemes, we disable the
limited if-conversion heuristic in the baseline compiler so
that the baseline solely uses the divergence stack to handle
the control flow, and therefore clearly delineate contributions
of predication.

A. Benchmark Characterization

Table I reports compile-time and runtime statistics of
the different kernels of the 28 benchmarks. The BB, R,
and L columns of the table, which count the number of
basic blocks, regions, and loops of each kernel, show that
the benchmarks are composed of a non-trivial number of
control-flow structures. The Br column of the table counts
the total number of conditional branches in each kernel. The
push and pop of stack instructions columns count the number
of baseline compiler generated instructions that sequence the
divergence stack. The CBranch instruction columns count
the number of consensual branches inserted by the thread-
aware predication compiler. The SBU column counts the
number of branches that are proved to be non-divergent by
the static branch-uniformity optimization. The RBU column
reports the number of consensual branches that were added
by the runtime branch-uniformity optimization. Unlike the
if-then-else statements, consensual branches are required to
implement loop constructs correctly. The LC column counts
these branches.

We have developed a SASS instrumentation tool, which
injects instrumentation code before all conditional branches
at the final pass of ptxas; we use this tool to collect
the runtime uniformity statistics and record them in the
Br Uniformity columns. Figure 6a visualizes the classifi-
cation of compile-time and runtime branches statistics. On
average, the compiler proved 11% of branches to be non-
divergent (SBU), added dynamic checks for 53% of the
branches (RBU), turned 22% of the branches into consensual
branches for loops (Loop), and removed the remaining with
predication (Predicated). At runtime, 50% of the branches
turned out to be uniform, and 48% to be divergent. The
remaining 2% of the branches were not executed. In general,
the predication compiler is doing a good job optimizing for

TABLE I. BENCHMARK STATISTICS COMPILED FOR KEPLER AND RUN ON TESLA K20C (GK110)

Compile-time Statistics Runtime Statistics

Application Kernel Structures Inst. Stack Inst. CBranch Inst. Registers Pred Regs. Br Uni. Occup. Runtime (ms) Speedup

BB R L Br SA DR Push Pop SBU RBU LC S P PS PSR S P PS PSR U D S PSR S PSR

p-bfs BFS 17 12 2 10 1 0 5 10 0 5 2 20 20 20 20 2 4 4 4 0.18 0.82 0.75 0.75 0.44 0.46 0.96×
BFS in GPU 28 18 4 16 1 0 7 13 0 4 5 31 43 42 42 2 7 5 5 0.38 0.62 0.75 0.50 2.71 3.10 0.90×

BFS multi blk 46 32 7 28 1 0 13 24 0 11 7 39 62 62 62 4 7 6 6 0.16 0.66 0.75 0.50 5.31 5.54 0.93×
p-cutcp lattice6overlap 30 24 4 17 0 0 9 17 2 8 6 28 43 33 30 1 7 4 3 0.47 0.53 0.69 0.69 4.94 4.48 1.10×
p-histo main 31 30 4 21 2 0 11 23 1 11 4 23 34 34 30 7 7 7 7 1.00 0.00 0.75 0.75 0.34 0.40 0.86×

final 10 6 3 6 0 0 2 2 0 0 3 38 42 42 42 1 2 2 2 1.00 0.00 0.75 0.50 0.06 0.06 1.00×
prescan 46 25 6 25 0 1 11 20 4 11 6 14 16 14 14 2 5 5 5 0.52 0.09 1.00 1.00 0.03 0.03 0.95×

intermediates 353 208 64 208 0 0 143 174 0 80 64 22 24 24 24 3 5 5 5 0.46 0.54 1.00 1.00 0.21 0.23 0.94×
p-lbm StreamCollide 3 1 0 1 0 0 1 2 0 1 0 34 41 41 42 1 1 1 1 0.00 1.00 0.75 0.63 2.13 2.12 1.01×
p-mri-gridding uniformAdd 7 3 0 3 0 0 2 4 0 3 0 6 8 8 6 1 2 2 1 0.64 0.36 1.00 1.00 0.12 0.12 1.00×

gridding 38 33 7 23 0 3 13 20 11 5 7 62 70 61 58 3 7 4 3 0.00 1.00 0.50 0.50 149.58 155.79 0.96×
binning 6 3 0 3 0 0 1 3 0 2 0 8 11 11 8 1 4 4 3 0.00 1.00 1.00 1.00 1.94 1.94 1.00×
reorder 3 1 0 1 0 0 0 0 0 1 0 14 14 14 14 1 1 1 1 0.33 0.67 1.00 1.00 2.55 2.55 1.00×

scan L1 20 11 2 11 0 0 6 12 2 3 2 17 16 16 16 2 6 4 4 0.55 0.45 1.00 1.00 0.81 0.81 0.99×
splitRearrange 10 4 1 5 0 0 3 6 0 3 2 22 25 25 21 2 3 3 3 0.67 0.33 1.00 1.00 1.49 1.65 0.91×

scan inter1 5 3 1 3 0 0 1 2 1 1 1 16 15 15 15 1 3 1 1 0.67 0.33 0.61 0.61 0.01 0.01 1.05×
scan inter2 5 3 1 3 0 0 1 2 1 1 1 15 16 15 15 1 3 1 1 0.00 1.00 0.61 0.61 0.01 0.01 1.01×

splitSort 21 12 3 12 4 0 10 16 2 5 3 43 48 41 41 3 7 4 4 0.31 0.69 0.63 0.63 4.35 4.28 1.02×
p-mri-q ComputeQ 5 3 1 3 0 0 0 0 2 0 1 21 22 22 22 1 3 1 1 1.00 0.00 1.00 1.00 1.60 1.56 1.03×

ComputePhiMag 3 1 0 1 0 0 0 0 0 1 0 10 10 10 10 1 1 1 1 1.00 0.00 1.00 1.00 0.00 0.00 1.04×
p-sad mb calc 27 18 5 17 0 0 9 12 0 8 5 49 62 62 62 3 6 6 6 0.67 0.33 0.50 0.50 8.90 8.31 1.05×

larger calc 8 6 3 1 3 0 0 2 3 0 1 1 26 24 24 24 1 2 2 2 0.50 0.50 1.00 1.00 2.92 2.85 1.03×
larger calc 16 4 2 1 2 0 0 1 1 0 0 1 26 24 24 24 1 2 2 2 0.63 0.38 0.25 0.25 0.57 0.61 0.96×

p-sgemm mysgemmNT 6 3 2 3 0 0 0 0 1 0 2 45 38 49 49 1 4 1 1 1.00 0.00 0.63 0.56 2.01 1.87 1.04×
p-spmv spmv jds 7 4 1 4 0 0 3 4 0 2 1 19 22 22 20 1 5 5 6 0.75 0.25 0.48 0.48 0.11 0.11 0.98×
p-stencil block2D hybrid 34 14 1 14 0 0 12 24 1 12 1 31 42 40 37 7 7 7 7 0.71 0.29 1.00 0.75 0.66 0.68 0.98×
p-tpacf gen hists 56 37 5 30 1 0 22 40 4 21 5 29 36 31 31 4 7 4 4 0.59 0.41 0.38 0.38 2040.31 2143.03 0.95×
r-b+tree findK 12 8 1 7 0 0 2 6 1 3 1 20 24 23 23 1 4 2 2 0.18 0.64 1.00 1.00 1.50 1.52 0.99×

findRangeK 18 13 1 11 0 0 4 12 1 7 1 27 38 32 32 1 4 2 2 0.29 0.57 1.00 0.75 1.35 1.74 0.77×
r-backprop layerforward 20 14 3 11 0 1 4 7 1 5 3 21 33 31 31 2 7 6 6 0.40 0.60 1.00 1.00 0.38 0.39 0.96×

adjust weights 3 1 0 1 0 0 0 0 0 1 0 19 19 19 19 1 2 2 2 0.00 1.00 1.00 1.00 0.34 0.34 1.00×
r-bfs Kernel 8 6 1 5 0 0 1 2 0 3 1 16 18 18 18 1 2 2 2 0.40 0.60 1.00 1.00 0.43 0.44 0.95×

Kernel2 4 2 0 2 0 0 0 0 0 2 0 11 11 11 11 1 2 2 2 0.50 0.50 1.00 1.00 0.05 0.05 0.94×
r-gaussian Fan1 3 1 0 1 0 0 0 0 0 1 0 11 11 11 11 1 1 1 1 0.00 1.00 1.00 1.00 0.01 0.01 1.01×

Fan2 5 3 0 3 0 0 0 0 0 3 0 12 15 15 12 1 2 2 2 0.00 1.00 0.25 0.25 0.25 0.26 0.90×
r-hotspot calculate temp 14 7 1 8 0 0 3 7 1 4 2 33 35 35 34 3 6 4 3 0.38 0.63 0.75 0.75 0.11 0.11 0.97×
r-lud lud diagonal 28 21 7 18 0 0 2 3 0 0 7 44 74 73 73 2 7 7 7 0.83 0.17 0.25 0.25 0.06 0.07 0.90×

lud internal 1 0 0 0 0 0 0 0 0 0 0 17 17 17 17 0 0 0 0 – – 1.00 1.00 0.01 0.01 1.01×
lud perimeter 35 27 8 21 0 0 2 3 0 4 8 42 49 49 42 3 7 7 7 0.80 0.20 0.25 0.25 0.08 0.10 0.85×

r-nn euclid 3 1 0 1 0 0 0 0 0 1 0 8 8 8 8 1 1 1 1 0.00 1.00 1.00 1.00 0.01 0.01 1.01×
r-pathfinder dynproc 13 6 1 7 0 0 3 6 1 3 2 17 18 17 18 3 4 3 3 0.43 0.57 1.00 1.00 0.15 0.13 1.16×
r-srad-v1 srad 15 8 2 8 0 2 6 13 0 3 2 22 20 20 26 2 5 5 5 0.62 0.15 1.00 1.00 0.09 0.10 0.87×

srad2 13 7 2 7 0 2 4 4 0 3 2 20 20 20 32 2 5 5 5 0.67 0.33 1.00 1.00 0.07 0.09 0.86×
reduce 66 43 4 35 0 1 25 46 3 25 4 26 38 36 36 2 7 5 5 0.17 0.43 1.00 0.75 0.08 0.09 0.88×
extract 3 1 0 1 0 0 0 0 0 1 0 4 4 4 4 1 1 1 1 0.00 1.00 1.00 1.00 0.01 0.01 1.00×

prepare 3 1 0 1 0 0 0 0 0 1 0 10 10 10 10 1 1 1 1 0.00 1.00 1.00 1.00 0.02 0.02 1.01×
compress 3 1 0 1 0 0 0 0 0 1 0 4 4 4 4 1 1 1 1 0.50 0.50 1.00 1.00 0.01 0.01 1.01×

r-srad-v2 srad cuda 1 28 18 0 14 0 0 5 24 4 13 0 23 26 26 26 5 7 7 7 0.36 0.64 1.00 1.00 0.98 1.04 0.95×
srad cuda 2 11 5 0 5 0 0 3 8 2 4 0 20 22 22 20 3 5 5 4 0.40 0.60 1.00 1.00 1.01 1.02 1.00×

r-streamcluster compute cost 7 4 1 4 0 0 0 0 0 3 1 18 15 15 15 1 4 4 4 0.75 0.25 1.00 1.00 0.52 0.59 0.86×
nqueens nqueens 47 44 13 32 0 0 11 16 4 7 14 27 54 54 57 2 7 7 7 0.58 0.42 1.00 0.50 55.06 56.05 0.98×
radix2fft mp radix2 6 3 1 3 0 0 0 0 2 0 1 35 37 35 35 1 3 1 1 1.00 0.00 0.50 0.50 0.01 0.01 1.01×

sp radix2 3 2 1 2 0 0 0 0 1 0 1 22 26 22 22 1 2 1 1 1.00 0.00 0.50 0.50 0.01 0.01 1.04×
radix3fft radix3fftd 4 2 1 2 0 0 0 0 1 0 1 34 43 33 33 1 2 1 1 1.00 0.00 0.75 0.75 0.01 0.01 0.99×
radix4fft radix4fftd 3 2 1 2 0 0 0 0 1 0 1 36 40 36 36 1 2 1 1 1.00 0.00 0.25 0.25 0.01 0.01 0.98×
radix5fft radix5fftd 4 2 1 2 0 0 0 0 1 0 1 44 48 44 44 1 2 1 1 1.00 0.00 0.25 0.25 0.01 0.01 0.99×
radix6fft radix6fftd 4 2 1 2 0 0 0 0 1 0 1 44 53 45 45 1 2 1 1 1.00 0.00 0.25 0.25 0.01 0.01 1.00×

Note: p=Parboil, r=Rodinia for application names. Kernel names are abbreviated. BB=Basic Blocks, R=Regions, L=Loops, Br=Branches, SA=Shared
Atomics, DR=Integer Division/Remainder, SBU=Static Branch-Uniformity optimization, RBU=Runtime Branch-Uniformity optimization, LC=Consensual
Branches for Loops, S=Compiled with divergence stack, P=Compiled with thread-aware predication, PS=P+SBU, PSR=P+SBU+RBU, Br Uni.=Branch
Uniformity, U=Uniform, D=Divergent, Occup=Occupancy. FFT benchmarks are grouped as one benchmark in future sections.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

p-b
fs

p-c
utc

p

p-h
ist

o

p-l
bm

p-g
rid

din
g

p-m
ri-

q
p-s

ad

p-s
ge

mm

p-s
pm

v

p-s
ten

cil

p-t
pa

cf

r-b
+tre

e

r-b
ack

pro
p

r-b
fs

r-g
au

ssi
an

r-h
ots

po
t

r-lu
d

r-n
n

r-p
ath

fin
de

r

r-s
rad

-v1

r-s
rad

-v2

r-s
clu

ste
r

nq
ue

en
s fft

av
era

ge
 (a

) B
ra

nc
h

C
la

ss
ifi

ca
tio

n
SBU RBU Loop Predicated Runtime-Uniform Runtime-Divergent Runtime-Not Executed

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

p-b
fs

p-c
utc

p

p-h
ist

o

p-l
bm

p-g
rid

din
g

p-m
ri-

q
p-s

ad

p-s
ge

mm

p-s
pm

v

p-s
ten

cil

p-t
pa

cf

r-b
+tre

e

r-b
ack

pro
p

r-b
fs

r-g
au

ssi
an

r-h
ots

po
t

r-lu
d

r-n
n

r-p
ath

fin
de

r

r-s
rad

-v1

r-s
rad

-v2

r-s
clu

ste
r

nq
ue

en
s fft

ge
om

ean
 (b

) R
eg

is
te

r
Pr

es
su

re

Baseline using Divergence Stack Thread-Aware Predication Thread-Aware Predication+SBU Thread-Aware Predication+SBU+RBU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

p-b
fs

p-c
utc

p

p-h
ist

o

p-l
bm

p-g
rid

din
g

p-m
ri-

q
p-s

ad

p-s
ge

mm

p-s
pm

v

p-s
ten

cil

p-t
pa

cf

r-b
+tre

e

r-b
ack

pro
p

r-b
fs

r-g
au

ssi
an

r-h
ots

po
t

r-lu
d

r-n
n

r-p
ath

fin
de

r

r-s
rad

-v1

r-s
rad

-v2

r-s
clu

ste
r

nq
ue

en
s fft

av
era

ge

(c
) O

cc
up

an
cy

Baseline using Divergence Stack Thread-Aware Predication Thread-Aware Predication+SBU Thread-Aware Predication+SBU+RBU

Figure 6. Benchmark characterization with thread-aware (TA) predication: (a) branch classification, (b) register pressure, (c) occupancy. SBU=Static Branch-
Uniformity optimization. RBU=Runtime Branch-Uniformity optimization. In (b), register usage for nqueens (outside figure) is 2× for TA-predication and
+SBU data points and 2.1× for the TA+SBU+RBU.

branch uniformity. However, there are certain benchmarks
such as r-lud where the compiler can improve, as the
runtime-uniform bar is 17× taller the SBU+RBU bar.

The S column of both register sections counts the number
of data registers and predicate registers used by the baseline
compiler, which only uses the divergence stack to handle
control flow. The P column captures the number of registers
used by the thread-aware predication compiler. The PS and
PSR columns count the number of registers used by the
compiler when the static and runtime branch-uniformity
optimizations are enabled respectively. Figure 6b shows the
register usage normalized to the baseline register count. The
general trend is that predication increases register pressure,
since a conservative register allocator cannot reuse registers
for both sides of a branch. Normally with branches, a register
allocator can easily reuse the same register on different
sides of the branch. With predication, the allocator would
have to prove that certain predicate conditions are disjoint
to do so. For some branches, the static branch-uniformity
optimization can prove that a branch is non-divergent so that
the compiler can safely remove the predicates from both
sides of the branches, make register allocation easier, and
alleviate register pressure. Runtime branch-uniformity tends
to further reduce register pressure by preventing the compiler
from blending instructions from both sides of the branches,
hence reducing the live ranges of values.

Register pressure affects occupancy (the number of
threads that can execute simultaneously) as the threads
share a common pool of physical registers. Figure 6c
shows the average occupancy of kernels reported in the
occupancy column of the benchmark statistics table, nor-
malized to the maximum occupancy of the processor. Oc-
cupancy decreases for those applications that experience
increased register pressure: p-bfs, p-histo, p-lbm,
p-sgemm, p-stencil, r-b+tree, r-srad-v1, and
nqueens. The static branch-uniformity optimization re-
coups occupancy lost by the baseline predication algorithm
for p-cutcp, p-stencil, r-backprop, and fft. As
discussed in the next section, occupancy has a strong influ-
ence on performance and is a critical metric for compiler
optimizations in throughput processors.

B. Performance Analysis

Figure 7 shows the performance of all benchmarks nor-
malized to the performance using the divergence stack.
Table I has runtime and speedup numbers of all kernels
that comprise these benchmarks for the baseline compiler
and the thread-aware predication compiler with both branch-
uniformity optimizations enabled.

The performance of the thread-aware predication compiler
targeting the Kepler GPU only with predication and con-
sensual branches is competitive with the baseline compiler
using the divergence stack. The thread-aware predication

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

p-b
fs

p-c
utc

p

p-h
ist

o

p-l
bm

p-g
rid

din
g

p-m
ri-

q
p-s

ad

p-s
ge

mm

p-s
pm

v

p-s
ten

cil

p-t
pa

cf

r-b
+tre

e

r-b
ack

pro
p

r-b
fs

r-g
au

ssi
an

r-h
ots

po
t

r-lu
d

r-n
n

r-p
ath

fin
de

r

r-s
rad

-v1

r-s
rad

-v2

r-s
clu

ste
r

nq
ue

en
s fft

ge
om

ean

Sp
ee

du
p

Baseline with divergence stack Thread-Aware Predication Thread-Aware Predication+SBU Thread-Aware Predication+SBU+RBU

Figure 7. Speedup of thread-aware predication against divergence stack on NVIDIA Tesla K20c. SBU=Static Branch-Uniformity optimization. RBU=Runtime
Branch-Uniformity optimization.

compiler with both branch-uniformity optimizations gener-
ates code that is only 2.7% slower on average than the base-
line compiler. Without any optimizations, the thread-aware
predication compiler is 11.3% slower than the baseline.
Static branch-uniformity optimization boosts performance
by 4.7%, and the runtime branch-uniformity optimization
adds an additional 3.9%. Runtime branch-uniformity opti-
mizations harm performance in some cases, especially when
the branch conditions are truly unbiased. In such cases,
consensual branches added for runtime uniformity checks
are pure overhead. Adaptive optimization could use online
profiles and recompilation to elide unnecessary uniformity
checks. By manually picking the best-performing cases, the
thread-aware predication compiler is only 0.6% slower.

The static branch-uniformity optimization tends to in-
crease performance, as this optimization reduces register
pressure. The only exception is p-tpacf, where perfor-
mance decreases monotonically with each additional branch-
uniformity optimization. Upon inspection the compiler gen-
erates a better instruction schedule when both optimizations
are disabled by intermixing more parallel execution paths.
When both optimizations are disabled, the compiler uses 3
more predicate registers (Table I), and has more freedom
with instruction scheduling because more than 80% of the
branches are predicated (Figure 6a).

The runtime branch-uniformity optimization increases
performance for 11 out of 24 benchmarks by skip-
ping regions with a null guard predicate. Among those
11 benchmarks, p-histo, p-gridding, p-spmv, and
p-stencil benefit from these runtime checks by 26%,
21%, 14%, and 25% respectively. However, runtime checks
can also reduce performance. The worst of the nine bench-
marks that performed worse with this runtime optimization is
p-cutcp, which dropped by 39%. For this benchmark, we
found that the compiler is able to schedule multiple fused-
multiply-add instructions from multiple execution paths si-
multaneously when the dynamic checks are not included.

Nine benchmarks performed better with the thread-aware
predication compiler than the baseline compiler and 17(19)
benchmarks performed within 0.95×(0.90×) of the perfor-
mance of the baseline compiler respectively. Of the five
benchmarks that see a performance loss of more than

10%, p-bfs, r-b+tree, and r-srad-v1 exhibit re-
duced occupancy (Figure 6c). Table I shows that the two
kernels with reduced occupancy in p-bfs use 11 and 23
additional registers respectively. Likewise, offending kernels
r-b+tree and r-srad-v1 use 5 and 10 more registers,
respectively. For each of these cases, the additional registers
per thread are enough to limit the parallelism that the
processor can exploit. As mitigating register pressure is
critical to obtaining performance in throughput processors,
Section VI-C discusses options for improving register allo-
cation for predicted code. For the remaining two benchmarks
r-lud and r-scluster, the compiler is not able to
optimize for all branch uniformity exhibited during runtime
(the runtime-uniform bar is much larger than the SBU+RBU
bar in Figure 6a). We discuss options for improving branch-
uniformity checks in Section VI-C.

Although not shown in the graph, the limited if-conversion
heuristic implemented in the NVIDIA production compiler
only makes 6 out of 24 benchmarks run faster when
compared to the baseline compiler. Eleven benchmarks run
slower with the if-conversion heuristic, while the remaining
7 benchmarks run at them same speed. The average per-
formance does not change with the if-conversion heuristic.
Out of those 6 benchmarks that run faster with the limited if-
conversion heuristic, only 3 benchmarks are 1%, 2%, and 3%
faster than code generated from our thread-aware predication
compiler respectively.

C. Discussion on Area, Power, and Energy

Quantifying the impact of software divergence manage-
ment on area, power, and energy is challenging, since we
ran CUDA workloads on GPU silicon to obtain performance
numbers and benchmark statistics. The primary motivation
to remove the divergence stack is to reduce hardware design
complexity and associated verification costs. We estimate
that area and power savings from eliminating the divergence
stack are not significant, so performance would serve as
a good proxy for power and energy consumption. The
performance of code generated by the thread-aware pred-
ication compiler is competitive to the one generated by
the baseline compiler using the divergence stack. For that
reason, we believe that the power and energy consumption

of the software divergence management scheme is on par
with the hardware scheme. With improvements proposed in
Section VI-C, software divergence management has potential
to outperform hardware divergence management schemes
in terms of performance, and therefore power and energy
efficiency as well.

VI. DISCUSSION

The risks and benefits of predication on latency-oriented
architectures such as traditional CPUs are well understood.
In that context, branch predictability and instruction path
length play a major role [18, 19]. The tradeoffs associated
with predication on throughput-oriented architectures with
a divergence stack are less studied and less intuitive. This
section discusses some of the reasons that extremely aggres-
sive predication is effective on such architectures. We also
discuss ways in which we can potentially co-design future
throughput-oriented architectures to make predication even
more effective.

A. Advantages of Software Divergence Management

In theory, the predicated code should perform as well as
code that uses the divergence stack, since the underlying
mechanism to handle divergent execution is fundamen-
tally the same. With predication, the compiler is explicitly
scheduling the operations in the same way a divergence
stack would do implicitly. The reconvergence point when
using a divergence stack is known to be the immediate
post-dominator in a CFG for if-then-else statements [9].
For loops, the reconvergence point is the immediate post-
dominator of all exit blocks, which is the post-tail block
of a loop. The algorithms in Section III will find the same
reconvergence points and put a predicate with reconverged
threads rather than setting up a reconvergence point with
a push.stack instruction. Whereas the hardware stack
has to spill to DRAM if there is too much divergence,
the predicating compiler correspondingly manages exces-
sive divergence through explicit predicate register spills.
Hence, the main benefit of software divergence management
is reducing hardware complexity by eliminating hardware
structures used for divergence management without altering
the programmer’s view of the machine.

There are additional advantages of managing divergence
explicitly in software. Figure 8a shows a CFG for a simple
short-circuit code segment. Following the reconvergence rule
discussed above, when threads diverge at basic blocks N2
and N3, they will reconverge at N5 where parallel execution
will resume. Basic block N4 can be a partial reconvergence
point; however, with a divergence stack, threads will execute
N4 serially. Using predication with the CDG shown in
Figure 8b, diverged threads from N2 and N3 will join at
N4 to execute in parallel.

Managing divergence explicitly by the compiler provides
more control over irregularly structured code than the diver-

N1

N2

N6 N3

N4 N7

N5

(a) CFG

N1 N2

P1 !P1

N5

N6

N4

N3

P2!P2

N7

(b) Control dependence graph
Figure 8. Short-circuit example showing limitations of divergence stack.

function pointer PC stored in r3
predicate register p2 holds the active threads
@p2 jalr r3

(a) With a divergence stack
loop:

p0, r4 = find_unique p2, r3
@p0 jalr r4 # known to be unique

p2 = p2 and !p0
cbranch.ifany p2, loop

(b) With predication

Figure 9. Supporting virtual function calls with predication.

gence stack mechanism can. The order of execution, under
divergence stack control, is nondeterministic; the hardware
can choose to execute either side of the branch first. This
nondeterminism puts a limit on what the compiler can
guarantee when analyzing the control flow. For example,
the variance analysis used for the static branch-uniformity
optimization can make stronger guarantees when divergence
is managed by the compiler as it can analyze hazards
between different execution paths with a known execution
order. Better variance analysis not only results in faster
performance with fewer registers, but also opens up more
opportunities for scalarizing SPMD code on data-parallel
architectures [15].

B. Function Calls

Predicated function calls can be supported by a straight-
forward calling convention. The convention designates one
predicate register (e.g., p0 register) as the entrance mask to
hold a mask of threads that are active at function entrance.
The compiler then guards via predication all instructions in
the function with the entrance mask. If the entrance mask is
live across a function call, the compiler should move it to
a callee-saved register or spill it to the stack before calling
the function.

Predicated virtual function calls can be supported with
a simple instruction added to the hardware. Figure 9b
shows the predicated version of Figure 9a. The new
find_unique instruction will return a unique value of
a vector register (namely an address for the function) and a
predicate mask of active threads that holds the unique value.

Following the calling convention, we save the resulting
predicate mask in p0 and then jump to the unique program
counter. When control from the function returns, we mask
off the threads that executed the function, and check whether
any active threads still remain. If so, we loop back and
repeat with a new program counter until all active threads
are sequenced.

C. Improving Software Divergence Management

Although our experimental thread-aware predication com-
piler is competitive in performance to a well-tuned pro-
duction compiler that uses the divergence stack, we expect
that we can make software divergence management even
more effective with the following software and hardware
improvements.

Tuning our compiler. Our heuristics for deciding when
to enable the runtime branch-uniformity optimization have
not been extensively tuned. More importantly, many of the
downstream compiler passes have not been tuned with our
optimizations in mind. In fact, some downstream compiler
optimizations are not predicate-aware, rendering them in-
effective. Some effort globally tuning the compiler and
implementing common predicate-aware analyses and trans-
formations could provide performance boosts.

Predication-aware register allocation. Register count
affects occupancy, which has a strong influence on per-
formance. Several studies [7, 10] look into techniques to
reduce register pressure under predication for superscalar
and VLIW architectures. We can apply similar techniques
to reduce register count, and hence increase occupancy.

Better branch-uniformity optimizations. As shown in
Figure 7, the compiler is only able to capture a small fraction
of the runtime branch uniformity. The current variance
analysis used in static branch-uniformity optimization only
considers convergent basic blocks, where all threads will
enter with a full mask or not. The compiler does not analyze
the case where a subset of the warp has the same branch
condition. With the execution order of divergent regions
understood by the compiler, we can extend the analysis
to report scalar branch conditions across a subset of the
warp. We spotted some cases where the structural analysis
was not reporting all regions of interest to add runtime
branch-uniformity checks. Other algorithms should also be
considered to determine where and when to add these
runtime checks.

Branch if any instruction. The current hardware only
supports cbranch.ifnone or cbranch.ifall in-
structions. To emulate a cbranch.ifany instruction, we
need two branches in a row, a cbranch.ifnone followed
by an unconditional jump. A new instruction would improve
performance as it would decrease instruction count and make
unrolling easier by eliminating a branch instruction from the
middle of an unrolled region.

Adaptive optimization. As shown in our performance
results, static branch-uniformity optimization and runtime
branch-uniformity optimization can sometimes reduce per-
formance. Adaptive optimization in a just-in-time compila-
tion scheme (such as implemented in the NVIDIA CUDA
driver) could profile branch behaviors and generate code
that selects the best optimizations on a per-branch basis.
Feedback-directed optimization could similarly improve our
results.

VII. CONCLUSION

Trading complexity back and forth between software
and hardware is a classic debate in computer architecture.
Divergence management is a prime target for these tradeoffs,
with a wide range of software, hardware, and hybrid schemes
implemented in the field. However, while hardware diver-
gence management schemes have received a lot of attention
from the academic research community, the benefits and
drawbacks of software divergence management on data-
parallel architectures have been less explored.

Hardware divergence management has its advantages. It
enables a fairly conventional thread compilation model,
makes register allocation easier, and simplifies the task of
supporting complex irreducible control flow. However, in
doing so the hardware takes on the burden of implement-
ing fairly complex divergence management structures. By
trading the complexity with the compiler to manage some
or all divergence explicitly in software, we can potentially
simplify the hardware without sacrificing programmability.

In this paper, we have presented novel compiler algo-
rithms to systematically map arbitrarily nested control flow
present in SPMD programs down to data-parallel architec-
tures with predicates and consensual branches. We have
implemented these compiler algorithms in a production
CUDA compiler, and used it to run real workloads and
gather runtime statistics on existing hardware. Our detailed
performance analysis on an NVIDIA Tesla K20c show that
software divergence management architectures can be com-
petitive to hardware divergence management architectures.
We anticipate that with our suggested software and hardware
improvements, software divergence management schemes
can be even more effective.

ACKNOWLEDGMENTS

This work was funded by DARPA award HR0011-12-2-
0016, the Center for Future Architecture Research, a mem-
ber of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA, an NVIDIA
graduate fellowship, and ASPIRE Lab industrial sponsors
and affiliates Intel, Google, Nokia, NVIDIA, Oracle, and
Samsung. It was also funded by DOE contract B599861.
Any opinions, findings, conclusions, or recommendations
in this paper are solely those of the authors and do not
necessarily reflect the position or the policy of the sponsors.

REFERENCES

[1] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of
Control Dependence to Data Dependence,” ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL), pp.
177–189, January 1983.

[2] “AMD Graphic Core Next Architecture,” AMD Fusion Developer
Summit 11, 2011.

[3] “Southern Islands Series Instruction Set Architecture,” AMD White
Paper, 2012.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous
Computing,” International Symposium on Workload Characterization
(IISWC), pp. 44 –54, October 2009.

[5] B. Coutinho, D. Sampaio, F. Pereira, and W. Meira, “Divergence
Analysis and Optimizations,” International Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 320–329,
October 2011.

[6] B. D. de Dinechin, “Using the SSA-Form in a Code Generator,”
Compiler Construction, pp. 1–17, 2014.

[7] A. E. Eichenberger and E. S. Davidson, “Register Allocation for
Predicated Code,” International Symposium on Microarchitecture
(MICRO), pp. 180–191, November 1995.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The Program
Dependence Graph and its Use in Optimization,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 9, pp. 319–
349, July 1987.

[9] W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic
Warp Formation: Efficient MIMD Control Flow on SIMD Graphics
Hardware,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 6, no. 2, pp. 1–35, June 2009.

[10] D. M. Gillies, D.-c. R. Ju, R. Johnson, and M. Schlansker, “Global
Predicate Analysis and Its Application to Register Allocation,” In-
ternational Symposium on Microarchitecture (MICRO), pp. 114–125,
December 1996.

[11] “Intel Xeon Phi Coprocessor Instruction Set Architecture Reference
Manual,” Intel White Paper, 2012.

[12] R. Karrenberg and S. Hack, “Whole-function Vectorization,” Interna-
tional Symposium on Code Generation and Optimization (CGO), pp.
141–150, April 2011.

[13] R. Karrenberg and S. Hack, “Improving Performance of OpenCL on
CPUs,” International Conference on Compiler Construction (CC), pp.
1–20, March 2012.

[14] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten,
and K. Asanović, “Exploring the Tradeoffs Between Programmability
and Efficiency in Data-Parallel Accelerators,” ACM Transactions on
Computer Systems (TOCS), vol. 31, no. 3, pp. 6:1–6:38, August 2013.

[15] Y. Lee, R. Krashinsky, V. Grover, S. W. Keckler, and K. Asanović,
“Convergence and Scalarization for Data-Parallel Architectures,” In-
ternational Symposium on Code Generation and Optimization (CGO),
February 2013.

[16] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA
Tesla: A Unified Graphics and Computer Architecture,” IEEE Micro,
vol. 28, no. 2, pp. 39–55, Mar/Apr 2008.

[17] C. Lomont, “Introduction to Intel Advanced Vector Extensions,” Intel
White Paper, 2011.

[18] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W.-
M. W. Hwu, “A Comparison of Full and Partial Predicated Execution

Support for ILP Processors,” International Symposium on Computer
Architecture (ISCA), pp. 138–149, June 1995.

[19] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann, “Effective Compiler Support for Predicated Execution
Using the Hyperblock,” International Symposium on Microarchitec-
ture (MICRO), pp. 45–54, December 1992.

[20] S. S. Muchnick, Advanced Compiler Design and Implementation.
Morgan Kaufman, 1997.

[21] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel
Programming with CUDA,” ACM Queue, vol. 6, no. 2, pp. 40–53,
March/April 2008.

[22] J. R. Nickolls, R. C. Johnson, R. S. Glanville, and G. J. Rozas,
“Unanimous branch instructions in a parallel thread processor,” US
Patent 8,677,106, March 2014.

[23] “NVIDIA’s Next Generation CUDA Compute Architecture: Fermi,”
NVIDIA White Paper, 2009.

[24] “NVIDIA’s Next Gen CUDA Compute Architecture: Kepler GK110,”
NVIDIA White Paper, 2012.

[25] “CUDA Binary Utilities,” NVIDIA Application Note, 2014.
[26] “The OpenCL Specification Version 1.2,” Khronos OpenCL Working

Group, 2011.
[27] J. C. H. Park and M. Schlansker, “On Predicated Execution,” Hewlett

Packard Laboratories, Tech. Rep. HPL-91-58, May 1991.
[28] S. Raman, V. Pentkovski, and J. Keshava, “Implementing Streaming

SIMD Extensions on the Pentium-III Processor,” IEEE Micro, vol. 20,
no. 4, pp. 47 –57, Jul/Aug 2000.

[29] R. M. Russell, “The Cray-1 Computer System,” Communications of
the ACM, vol. 21, no. 1, pp. 63–72, January 1978.

[30] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, P. Dubey, S. Junkins,
A. Lake, R. Cavin, R. Espasa, E. Grochowski, T. Juan, M. Abrash,
J. Sugerman, and P. Hanrahan, “Larrabee: A Many-Core x86 Archi-
tecture for Visual Computing,” IEEE Micro, vol. 29, no. 1, pp. 10–21,
Jan/Feb 2009.

[31] M. Sharir, “Structural Analysis: A New Approach to Flow Analysis
in Optimizing Compilers,” Computer Languages., vol. 5, no. 3-4, pp.
141–153, January 1980.

[32] J. Shin, “Introducing Control Flow into Vectorized Code,” Interna-
tional Conference on Parallel Architectures and Compilation Tech-
niques (PACT), pp. 280–291, September 2007.

[33] J. E. Smith, G. Faanes, and R. Sugumar, “Vector Instruction Set
Support for Conditional Operations,” International Symposium on
Computer Architecture (ISCA), pp. 260–269, June 2000.

[34] A. Stoutchinin and F. De Ferriere, “Efficient Static Single Assignment
Form for Predication,” International Symposium on Microarchitecture
(MICRO), pp. 172–181, December 2001.

[35] J. A. Stratton, V. Grover, J. Marathe, B. Aarts, M. Murphy, Z. Hu,
and W. mei W. Hwu, “Efficient Compilation of Fine-grained SPMD-
threaded Programs for Multicore CPUs,” International Symposium on
Code Generation and Optimization (CGO), pp. 111–119, April 2010.

[36] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W. mei W. Hwu, “Parboil: A Revised
Benchmark Suite for Scientific and Commercial Throughput Comput-
ing,” University of Illinois, Urbana-Champaign, Tech. Rep. IMPACT-
12-01, March 2012.

[37] M. Weiss, “The Transitive Closure of Control Dependence: the
Iterated Join,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 1, pp. 178–190, June 1992.

