
Appears in the Proceedings of the4th Annual Workshop on Optimizations for DSP and Embedded Systems

Evaluation and Optimization of Signal Processing Kernels
on the TRIPS Architecture

Kevin Bush Mark Gebhart Eric Wei Natalie Yudin Bertrand Maher
Nicholas Nethercote Doug Burger Stephen W. Keckler

Computer Architecture and Technology Laboratory

Department of Computer Sciences

The University of Texas at Austin

cart@cs.utexas.edu - www.cs.utexas.edu/users/cart

Abstract

Diminishing performance gains in conventional architectures
are driving modern architectures to exploit parallelism more
effectively. Next-generation architectures hold promisein the
Digital Signal Processing (DSP) arena where high perfor-
mance and power efficiency are equally important. To better
identify optimization techniques on these emerging new archi-
tectures, we optimized and evaluated a suite of benchmarks
representative of high performance DSP applications. Using
these benchmarks, this paper analyzes the performance ef-
fects of several code optimizations on a next-generation gen-
eral purpose processor.

1 Introduction

Technology trends signal a paradigm shift towards ar-
chitectures that better extract parallelism. It remains to
be seen whether conventional optimizations will be ef-
fective on these next generation architectures. Repre-
sentative of these next generation systems, the TRIPS
processor is designed to extract high levels of concur-
rency with an innovative ISA and a grid of processing
elements.

We have evaluated eight benchmarks from the Poly-
morphous Computer Architecture (PCA) C Kernel
benchmark suite which was developed by MIT Lin-
coln Laboratories in conjunction with the DARPA PCA
program. The goal of the PCA program is to develop
next generation architectures for high performance sig-
nal processing of which this suite of kernels is repre-
sentative [2]. The kernels are designed to test various

aspects of a system with a mix of memory and computa-
tionally bound algorithms. The TRIPS architecture has
the ability to perform well on both memory and CPU
bound operations. It uses a banked memory configura-
tion that provides high memory bandwidth and a grid
of ALUs that provide opportunity for high IPC on arith-
metic operations.

The kernels consist of common signal processing
tasks such as matrix transpose, constant false alarm rate
detection, singular value decomposition, QR factoriza-
tion, convolution, and finite impulse response filtering.
They were compiled with the Scale compiler which gen-
erates code to match the block atomic execution model
of the TRIPS architecture [7]. The compiler performs
classic scalar optimizations as well as inlining, loop un-
rolling, and TRIPS-specific hyperblock formation. We
then hand optimized the resulting TRIPS Intermediate
Language (TIL) - a high level assembly language.

The experiments were run on a cycle-accurate simu-
lator which has been verified against a hardware proto-
type design. The operand routing delay is a component
of the total dynamic execution time and was calculated
using the tsimcritical tool which determines the critical
path of an execution block [8]. The prototype hardware
is currently expected to be manufactured in the Spring
of 2006. The hand optimizations show areas where the
compiler could be extended to produce better optimized
code. To provide a metric for comparison with the gen-
eral purpose TRIPS processor, we compare the results
to the Alpha 21264 microprocessor. While the Alpha
chip is not an embedded DSP core, it provides a com-
mon baseline as an aggressive high performance general

1

G

E

R

Global Control:

Protocols: fill, flush, commit

Contains I-cache tags, block header state,

r/w instructions, branch predictor, ITLB

Register Banks:

32 registers per bank x 4 threads

64 static rename registers per bank

Dynamically forwards inter-block values

Execution Nodes:

Single-issue ALU unit, single-issue

Full integer and floating point units (no FDIV)

Buffers 64 instructions (8 insts x 8 blocks) per tile

D-cache Banks

8KB 2-way, 1-port, cache-line interleaved banks

DTLB, 8 MSHRs, LSQ, dependence pred. per bank

Supports load speculation and distributed commit

D

I-cache Banks

16KB 2-way, 1-port L1 instruction cache banks

Each bank delivers four insts/cycle

Banks are slaves to global control unit tag store

I

G RR R R

Router

Input ports

Output ports

Operand

buffers

Integer
FP

64 Instruction

buffers

A61
A62
A63

A0
A1

 TRIPS Execution Node TRIPS Processor Core

I

I

I

I

I

D

D

D

D

S

e
c
o
n
d
a
ry

C
a
c
h
e

In

te
rf

a
c
e

I

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

Figure 1: Overview of the TRIPS Design

purpose processor known for its ability to exploit ILP
[3, 4].

In this paper, we identified several optimization tech-
niques and evaluated their performance on the PCA Ker-
nel benchmark suite. We found both conventional opti-
mizations such as loop unrolling and architecture spe-
cific optimizations such as block merging to be espe-
cially effective and complement the unique characteris-
tics of the TRIPS architecture.

The rest of this paper is organized as follows. Section
2 gives an overview of the TRIPS architecture. Section
3 is an evaluation of optimizations applied to each ker-
nel. Section 4 compares the performance of each ker-
nel on TRIPS with the Alpha microprocessor. Section
5 compares the binary size of the kernels before and
after optimizations were applied. Section 6 concludes
with a discussion of the general optimization techniques
along with an analysis of how some optimizations com-
plement others.

2 Architecture Overview

The TRIPS architecture is the first implementation of
an Explicit Data Graph Execution (EDGE) ISA, which
offers a non-conventional solution to the emerging dif-
ficulties of achieving high performance while maintain-
ing power efficiency [1]. The EDGE ISA uses a lim-
ited data-flow execution model in which instructions are
statically assigned by the compiler to execution tiles and
are dynamically executed as soon as their operands are
available. By relying on instruction level communica-
tion, the architecture removes the need to communicate
intermediate results through a global register file and

supports distributed out of order execution. Rather than
a monolithic processing core, computations are carried
out on a grid of replicated ALUs. This allows increased
potential to exploit instruction level parallelism. These
characteristics give TRIPS the potential to perform well
on signal processing algorithms which typically contain
a high degree of parallelism.

The TRIPS architecture is designed to exploit ILP
while maintaining power efficiency by duplicating gen-
eral computing resources and removing power hungry
structures such as centralized register files. Figure 1
shows a block diagram of the TRIPS architecture. The
prototype design contains 16 execution tiles arranged
in a 2-D mesh topology. Each execution tile consists
of 1 ALU, input ports, operand buffers, 64 instruction
buffers, and routing hardware to control operand flow.
Execution tiles process instructions concurrently, with
a window size of 1024 instructions. The window size
is significant because it is an order of magnitude larger
than the instruction windows used by conventional ar-
chitectures. When an operand must be forwarded to
multiple consumers on the grid, fanout instructions are
used to construct trees that route data. Ideally, instruc-
tions are scheduled on neighboring execution tiles to
mitigate this routing delay.

Instructions are aggregated into instruction blocks,
forming an atomic unit of execution. Blocks are gener-
ated and scheduled by the compiler onto the microarchi-
tecture with a limitation of 128 instructions per block.
At first glance, these statically scheduled blocks re-
semble the basic execution unit of VLIW architectures;
however the key difference is that instructions are not
required to be independent and are dynamically issued
[9]. Additional block constraints include a maximum of

2

32 register reads and writes to the global register banks
and a maximum of 32 memory accesses to memory tiles.
The TRIPS prototype supports concurrent execution of
up to 8 blocks, with 7 blocks executing speculatively.

2.1 Comparison with DSP Cores

At first glance, the TRIPS processor has some resem-
blance to a DSP core rather than a general purpose pro-
cessor. However several key differences exist in the
ISA, execution model, and specialized memory struc-
tures. Two key differences in the current TRIPS ISA
from many DSP cores are a lack of special support for
SIMD operations and a fused multiply-add instruction.
While the current ISA does not support SIMD instruc-
tions, support could be added in an ISA extension sim-
ilar to Altivec. Similar to many DSP cores, the TRIPS
processor has many redundant ALUs and a robust means
of parallel execution. However, it also provides sup-
port for multi-tasking and speculative execution which
allows for more general purpose processing.

Many DSP cores have completely separate data and
instruction memories often without caches. In the
TRIPS design, data and instructions are stored in sep-
arate L1 caches; however they are unified in the L2
cache and main memory. Furthermore, the TRIPS L2
cache can be converted dynamically to behave as a local
scratchpad memory [10]. This local scratchpad mem-
ory is similar to a DSP’s notion of a cacheless memory.
None of the benchmarks used this feature of the TRIPS
architecture but it will be explored in future work. The
TRIPS processor is best characterized as a general pur-
pose processor with several features that offer potential
in the DSP arena.

2.2 Prototype Simplifications

Several simplifying assumptions were made in order to
produce the TRIPS hardware prototype, some of which
had a substantial impact on the overall performance of
this benchmark suite. Most importantly the hardware
lacks support for floating point division, floating point
square root, and 32 bit floating point operations. The
solution used in the prototype is to emulate division and
square root in software and to convert all floating point
values to double precision before performing any float-
ing point operations. The cost to emulate the division
and square root was between five to ten times higher

Kernel High Level
Characterization

QR Factorization CPU Bound
Convolution CPU Bound
Finite Impulse CPU Bound
Response Filter (FIR)
Corner Turn (CT) Memory Bound
Database (DB) Memory Bound
Constant False Alarm CPU and
Rate Detection (CFAR) Memory Bound
Pattern Matching CPU and
(PM) Memory Bound
Singular Value CPU and
Decomposition (SVD) Memory Bound

Table 1: Overview of the Suite

than a hardware implementation. To guarantee that all
bits of the floating point value are correct, the double
value must be converted back and forth to a single after
each operation.

3 Benchmarks

The PCA suite of benchmarks contains many operations
that are representative of signal processing. The rep-
resented algorithms are found in the libraries of many
DSP applications such as radar, software defined radio,
image analysis, and noise filtering. Table 1 shows the
eight kernels and their characterizations that comprise
the PCA suite. These kernels were chosen to be repre-
sentative of a wide spectrum of DSP applications with
some focusing on memory operations while others stress
the system’s computational throughput.

Each kernel contains verification code to ensure that
the various optimizations applied still preserved the cor-
rectness of the algorithm. The base data type for all
of the kernels is either integers or doubles. Therefore,
the addition of SIMD instructions to the ISA would not
benefit the performance unless the implementation was
changed to use vectors. In the original implementation,
the kernels accept input from data files. In order to
avoid clouding the results with file handling, the ker-
nels were modified to accept their inputs from statically
linked data sets. The core algorithms that the kernels
tested were unchanged.

3

3.1 CPU-Bound Kernels

In CPU-bound programs, execution time is dominated
by computation rather than memory accesses. Several of
the signal processing kernels relied heavily on repeated
element-wise computations to perform operations such
as vector add, multiply, and divide. When computations
are independent, the TRIPS grid of processing elements
can perform several operations concurrently. When per-
forming vector operations, loop unrolling is crucial to
exposing independent loop bodies. In the following sec-
tions, we evaluate the QR, convolution, and FIR kernels.

3.1.1 QR

QR factorization is a linear algebra operation that fac-
tors a matrix into an orthogonal component Q and a tri-
angular component R. This operation is widely used in
adaptive systems and signal processing in conjunction
with a triangular solver to approximate over-determined
systems, with applications in communication systems,
radar, and biomedical engineering. The Fast-Givens al-
gorithm is used, which is characterized by iterations
through several loops on disjoint paths composed of
fine-grained computations on floating point numbers
representing complex data.

The overall goals when hand optimizing were to un-
roll loop bodies and limit critical paths while satisfying
block constraints. We focused our optimizations on in-
struction reduction followed by loop unrolling. Reduc-
ing the number of instructions in each block increased
flexibility to unroll loops. To reduce instruction counts,
we removed redundant loads, stores, and floating point
conversions. The net effect on performance was minor
and resulted in slightly shortened execution paths. We
attempted to prevent splitting loop bodies across blocks
to prevent block overheads. When loop bodies were
split across block boundaries the branch from the first
block to the second was unconditional, allowing perfect
branch prediction. Furthermore, the TRIPS processor
was able to begin executing the second block specu-
latively before the first completed. However, it is still
preferable to have single block loop bodies where pos-
sible. Loop bodies in QR consisted of 24 floating point
instructions and 8 memory accesses, excluding fanout
instructions. We were able to unroll by at most a fac-
tor of 4 across two blocks. Our analysis also includes
unrolling factors of 2 and 3. Table 3.1.1 shows these
results.

Version Cycles %Speedup

Scale -O4 146,404 -
Unroll by 2 102,865 29.7
Unroll by 3 104,680 28.5
Unroll by 4 (final) 94,528 35.4
FP Conversions Removed 75,519 48.4

Table 2: Results of Optimizations on QR

Due to the limit of 128 instructions per block, the ver-
sion with an unrolling factor of 3 contains one block
with two loop bodies branching to a smaller block con-
taining only one loop body. This undersized block con-
tributed a smaller speedup compared to unrolling fac-
tors of 2 and 4. The lack of loop-carried dependences
allowed us to duplicate loop bodies without signifi-
cantly affecting critical paths. Ideally, each loop body
can execute independently on the ALU grid, suffer-
ing only from operand routing and memory contention.
To reduce routing delay, we experimented with various
fanout tree configurations, which caused minor perfor-
mance variations of 1-3%. The construction of fannout
trees allows for efficient routing of data along the simple
1-hop network. For our final stage of optimizations, we
assumed execution with single precision floating point
units and removed all intermediate floating point con-
versions. Despite producing results with precision er-
rors, this resulted in a shorter critical path and an addi-
tional speedup of 13%. This shows that the potential of
minor hardware enhancements.

The limitations of the TRIPS grid design on QR are
primarily routing delays, which stem from finite com-
puting resources and scheduling. The simplest case of
a routing delay is when the consumer for an instruction
is located on a separate execution tile. In this situation,
the operand must be routed to the execution tile con-
taining the consumer. Each hop between execution tiles
suffers a delay penalty of 1 cycle; when instructions are
scheduled far apart, the penalty is severe. Routing de-
lays account for 24% of execution time in QR. Despite
this limitation, we were able to utilize ALU redundancy
and acheived an overall IPC of 3.16.

3.1.2 Convolution

The convolution kernel performs element-wise complex
multiplications using a series of filters on an input vec-

4

Version Cycles %Speedup

Scale -O4 313,484 -
Unroll by 3 165,845 47.1
Unroll by 4 126,193 59.7

Table 3: Results of Optimizations on Convolution

tor defined in the frequency domain. The convolution
operation is used extensively in DSP, biomedical engi-
neering, and graphics for smoothing, filtering, and im-
age analysis. This kernel uses a loop to select a particu-
lar filter and a nested loop to apply the filter to an input
vector.

Overall, the basic operations of convolution are simi-
lar to QR. The major contrast to QR is that the convolu-
tion kernel contained 14 floating point operations and 6
memory accesses per loop body. The smaller loop bod-
ies allowed scheduling flexibility and more aggressive
loop unrolling. With smaller loop bodies, we were able
to attain a loop unrolling factor of 4 within a block. By
confining iterations to a single block, we were able to
avoid the overhead of fetching a second block and fan-
ning out its operands to consuming instructions. Our
final results appear in Table 3.1.2.

Convolution benefits and suffers from the same ar-
chitectural characteristics as QR. The computations are
aided by ALU redundancy, but also suffer from routing
delays. The routing delays in convolution account for
32% of the overall execution time. After all optimiza-
tions where applied, we achieved an overall IPC of 5.92.

3.1.3 FIR

The Finite Impulse Response (FIR) kernel is a software
implementation of a discrete time filter system. It is
commonly used in digital signal processing systems to
filter out input frequency components while preserving
the phase of the input signal. These characteristics make
it extremely useful in applications such as digital com-
munication systems, signal conditioning, audio process-
ing, and radar. The kernel’s main operation consists of
a base-4 Fast Fourier Transform (FFT), a fast convolu-
tion, and a base-4 Inverse Fast Fourier Transform. The
FFT and IFFT operations are O(n log n) and dominated
execution time. The optimizations performed on con-
volution are previously described in Section 3.1.2. The
following discusses optimizations on FFT and IFFT.

Version Cycles %Speedup

Scale -O4 168,639 -
Instruction reduction 163,269 3.2
Block merging 138,896 17.6
Final 117,437 30.4

Table 4: Results of Optimizations on FIR

Unlike the other kernels which had simple loop bod-
ies, the compiler generated loop bodies for FFT and
IFFT that spanned multiple blocks. Subsequently, the
potential performance gains from loop unrolling were
marginalized. Therefore, we focused on instruction
reduction and block merging to reduce the associated
block overhead. Our initial optimizations were a com-
bination of general instruction reduction techniques and
arithmetic simplification. This included elimination of
unnecessary sign extensions, strength reduction, and
constant folding. The next series of optimizations fo-
cused on minimizing the number of blocks that the inner
loop bodies spanned. The number of instructions in the
FFT and IFFT inner loops were further minimized by
hoisting loop invariant code. Subsequent block merging
combined the inner loop bodies of FFT and IFFT into
single blocks. Our results are in Table 3.1.3.

FIR suffers from the same performance bottlenecks as
the QR and convolution kernels, namely operand rout-
ing. Within the inner loops of FFT and IFFT, the per-
centage of time spent routing operands amounted to
51.3% and 37.5%, respectively. While these routing
delays are severe, they are exposed as a high percent-
age due to the reduced time spent performing paral-
lel arithmetic operations on the replicated ALUs. This
is comparable to a conventional architecture in which
time is spent performing arithmetic operations instead
of operand routing. The final IPCs in the FFT and IFFT
inner loops are 5.51 and 4.99, respectively. The overall
IPC for the FIR kernel is 2.3.

3.2 Memory-Bound Kernels

Many scientific applications operate on large data sets
and therefore the memory capabilities of a system must
be considered. Several kernels made extensive access to
large structures such as databases and matrices, which
placed a heavy demand on the memory system. The
TRIPS architecture employs a banked memory system

5

Version Cycles %Speedup

Scale -O4 193,305 -
All Optimizations 58,366 69.8

Table 5: Results of Optimizations on CT

to provide high memory bandwidth. This design allows
memory accesses to different banks to be performed
concurrently. The following section evaluates the per-
formance of TRIPS on the CT and DB kernels.

3.2.1 CT

The CT kernel performs a matrix transpose on a con-
tiguous block of memory. Matrix transposition is funda-
mental to linear algebra and is used widely in multime-
dia, radar, and image analysis applications. By using the
corner turn operation, lower dimensional problems can
be transformed into higher dimensional problems. Since
higher dimensional problems are commonly more par-
allelizable, this algorithm is commonly used to gather
performance gains.

CT contains a nested loop that iterates through an en-
tire matrix swapping the rows and columns. Each inner-
loop body contains an address calculation, a load and a
store, and no loop-carried dependences. Consequently,
when unrolled, each loop body could execute indepen-
dently. The small size of the inner loop permitted a large
unroll factor of 16. Our results are shown in Table 3.2.1.

The TRIPS architecture can achieve a high memory
throughput through its banked memory configuration.
This kernel was most constrained by the block limita-
tion of 32 memory operations. By exploiting the loop
level parallelism and the banked memory system, this
kernel achieved an overall IPC of 5.24.

Version Cycles %Speedup

Scale -O4 203,273 -
Inlined RBTree 192,690 5.2
Inlined, Unrolled, Merged 184,812 9.1
All Optimizations 164,067 19.3

Table 6: Results of Optimizations on DB

Figure 2: Inlining and Block Merging

3.2.2 DB

The DB kernel operates on a large database of signals.
The kernel repeatedly inserts, searches, and deletes vari-
ous entries in the database. An application of this kernel
would be the tracking of a collection of radar signals.
The database operations are implemented with a series
of red-black tree permutations. Because of the large
size of the database, the kernel places a large stress on
the memory system. In contrast to CT, after profiling,
we discovered that the overall number of loop iterations
executed routinely was small. This low loop-iteration
characteristic made loop unrolling an ineffective method
of optimization.

Nested function calls within the red-black trees com-
monly used routines made it a prime candidate for in-
lining. In particular, the cleanup subroutines necessary
to re-balance a tree during insert and remove could be
deeply inlined. This opened up opportunities to perform
block merging and reduced the total number of executed
blocks. Block merging is especially beneficial to the
TRIPS processor since there is an overhead associated
with fetching and executing each block. Since TRIPS
blocks are atomic, function calls need to have a separate
return block creating artificial block boundaries. These
boundaries can be removed in some cases by inlining
the function call and merging the return block with the
caller block. This subsequent block merging - as shown
in Figure 2 - can improve performance significantly by
reducing associated overhead instructions and instruc-
tion cache pressure.

6

Figure 3: Tail Duplication

While traversing a red-black tree, dynamic control
choices often need to be made. These choices were often
coded as separate functions. On the TRIPS architecture,
both possible execution paths can be included in a single
block by using instruction predication. Predicates be-
have like additional input signals that determine whether
or not the instruction will be executed. In this way, we
can map significant portions of a control flow graph to a
single block, minimizing branches and their associated
overhead. The reverse case, tail duplication, also proved
beneficial. If the tail block is sufficiently small, it can be
predicated and included in its caller blocks as shown in
Figure 3. This provides further opportunity to reduce
executed block counts and increase block size. Larger
blocks offer more opportunity for instruction level par-
allelism on the TRIPS ALU grid.

We also applied tree height reduction to DB, which
was useful in DB’s inner function loops. This opti-
mization shortens an expression’s overall path length.
The TRIPS scheduler is responsible for mapping the
reduced-height tree to the ALU grid. By scheduling
the newly independent producers adjacent to their con-
sumers, the scheduler can allow the hardware to exploit
the concurrency increased by this optimization.

3.3 CPU and Memory-Bound Kernels

Some DSP operations analyze large structures and per-
form complex operations on data. This places both
a computational and memory demand on the system.

These algorithms are particularly important to analyze
for identifying potential bottlenecks in a systems overall
performance on more robust applications. The follow-
ing sections discuss the CFAR, SVD and PM kernels.

3.3.1 CFAR

The CFAR kernel searches for randomly placed targets
in an environment filled with background noise. This
algorithm is used in radar, sonar, image processing, and
medical engineering. In radar applications this opera-
tion is crucial to removing environment noise. The algo-
rithm loops though a data cube and looks for cells with a
power exceeding a threshold relative to their neighbors.
Instruction merging, block merging and loop unrolling
were all found to benefit this algorithm.

The first optimization applied was loop unrolling. Af-
ter analysis, we found an unroll factor of 4 to be opti-
mal. Similarly to DB, predication was employed to ex-
ploit the inherent inner loop parallelism resulting from
the absence of any loop carried dependences.

Instructions that produce block outputs such as stores
and writes cannot be predicated [6] without nullifying
the opposite path. This technique of nullification pro-
vides a means of signaling that no output will be gen-
erated from the given path. Because CFAR has few
block outputs, it is an excellent candidate for nullifica-
tion when using predication on the parent instruction.

As in DB, function calls created artificial block
boundaries that presented opportunities for block merg-
ing along disjoint paths. As these blocks were merged,
some intermediate values no longer needed to be passed
through the register file, removing associated register
pressure. Profiling data was used to identify frequently
taken paths which could then be given preference to be
merged.

The TRIPS architecture was able to achieve an IPC
of 2.02 on this benchmark. Choosing the right unrolling
factor became one of the critical decisions and required
profiling information. Block merging contributed sig-
nificantly to performance and allowed other optimiza-

Version Cycles %Speedup

Scale -O4 190,717 -
All Optimizations 158,342 17.0

Table 7: Results of Optimizations on CFAR

7

Version Cycles %Speedup

Scale -O4 108,317 -
Loop Unrolling 96,535 10.9
Struct Unpacking 88,326 18.5
Block Merging 81,111 25.1
All Optimizations 76,127 30.0

Table 8: Results of Optimizations on SVD

tions such as instruction merging to be applied.

3.3.2 SVD

Singular value decomposition (SVD) is a linear algebra
transformation that is commonly used to eliminate noise
from data. There are applications for SVD in image pro-
cessing, seismology, and tomography. In image sharp-
ening the SVD algorithm can be used to discover small
singular values which mainly represent noise. There are
several different operations with order of magnituden3
that make up the SVD operation. These include QR fac-
torization, bi-diagonalization, diagonalization and ma-
trix multiplication. Like the convolution and QR ker-
nels, these operations benefit greatly from the grid of
replicated ALUs that allow several different arithmetic
expressions to be evaluated concurrently.

Previously discussed optimizations such as block
merging and loop unrolling were applied to the SVD
kernel. The results are shown in Table 3.3.2. An in-
teresting optimization not discussed previously is struct
unpacking. This optimization emerged because SVD
uses complex data which is stored as two 32 bit values
packed into one 64 bit value. When either of the fields is
referenced, both fields must be loaded from memory and
unpacked. By storing these values separately, packing
and unpacking operations are unnecessary. We found
this optimization to have a 7.45% speedup on the SVD
kernel.

3.3.3 PM

The Pattern Matching (PM) kernel randomly adds noise
to a test signal and compares this signal to a library of
test patterns to determine what pattern the signal was
originally. This metric for comparison is the weighted
mean square error. The combination of the large li-
brary and this mathematically intensive algorithm pro-

Kernel Name Speedup

QR 1.16
CONV 2.21
FIR 1.30
CT 2.06
DB 0.51
CFAR 1.14
PM 0.93
SVD 0.32

Table 9: Speedup Relative to Alpha 21264

vides a balanced mix between CPU and memory opera-
tions. This kernel is representative of the pattern match-
ing needs of many DSP applications including radar
and signal identification, where noisy inputs need to be
matched to a library of known signals.

The optimizations described in detail in the preceding
sections were applied to PM. We found loop unrolling
and block merging to be the most effective. Overall,
we achieved a 50.3% increase in performance over the
compiler generated code. PM’s 32-bit floating point
operations highlighted the prototypes shortcomings in
single precision floating point arithmetic and exposed
many prototype-necessary floating point precision con-
versions. These precision conversions are an artifact of
the prototype and artificially increase the length of the
critical path. As demonstrated in QR, significant perfor-
mance gains and further optimization opportunities can
be achieved by assuming that 32-bit hardware support is
available and removing these conversion instructions.

4 Comparison to Alpha 21264

In order to make an apples to apples comparison the
TRIPS results were compared with the Alpha 21264
general purpose processor. The Alpha 21264 is an in-
dustry developed aggressive high performance micro-
processor with a mature optimizing compiler. The Al-
pha 21264 provides an accurate comparison of architec-
tures since its ISA closely resembles that of TRIPS. It
has several hardware advantages over the TRIPS proto-
type such as hardware floating point division and square
root functions [5]. The QR and SVD kernels require the
square root operation, while QR, FIR, PM, and SVD
all require the floating point division operation. All

8

of these benchmarks demonstrated significant gains on
the Alpha because of its hardware support for square
root and floating point division. In order to generate
the Alpha results we used a cycle accurate simulator
previously developed [3, 4]. This simulator provides
very detailed information about a programs execution
and allows fine tuning of parameters to minimize differ-
ences in the memory systems of the two processors. The
TRIPS processor was able to outperform the Alpha pro-
cessor on six of the kernels. This highlights the potential
of the TRIPS architecture despite prototype shortcom-
ings. The results of the comparison between TRIPS and
Alpha are shown in Table 4. Future work would be to
make a quantitative comparison of the benchmarks with
a DSP core.

5 Code Size

A major concern when applying ILP optimizations such
as loop unrolling and inlining is the increase in code
size. Since many embedded processors have limited
memories the code size metric should be considered
when evaluating the effects of different optimizations.
Table 5 shows the code size before and after optimiza-
tions were applied for the eight kernels. Optimizations
such as instruction elimination and block merging re-
duce the code size. The combination of optimizations
that both increase and decrease the code size results in
an overall insignificant change in binary size. One ob-
stacle that TRIPS faces with respect to binary size is
that nonfull blocks are padded with nop instructions up
to either, 32, 64, 96, or 128 instructions. This is simi-
lar to VLIW padding where words are padded with nop

Kernel Initial Optimized Change
Name (bytes) (bytes) (%)

QR 433,603 432,731 -0.2
CONV 531,426 531,138 -0.05
FIR 517,251 526,689 1.8
CT 662,287 662,200 -0.01
DB 593,076 593,187 0.02
CFAR 384,740 384,387 -0.09
PM 436,732 437,657 0.2
SVD 662,454 506,571 -23.5

Table 10: Optimization Effects on Code Size

instructions up to the word size. The only significant
change in code size occured in SVD and this can be at-
tributed to a change in the supporting math libraries.

6 Conclusion

Although many optimization techniques were applied,
a few stood out as particularly beneficial to the per-
formance of these DSP kernels on the TRIPS proces-
sor. In particular, loop unrolling produced performance
boosts in kernels such as QR, CT, SVD, and convolu-
tion. On the TRIPS architecture, unrolling iterations of
loops without loop-carried dependences provided an op-
portunity to fill blocks and exploit the inherent opportu-
nities for concurrency. While loop unrolling is an effec-
tive optimization on conventional processors, it provides
additional gains on the TRIPS architecture by exposing
more opportunities for parallelism within a block.

Ultimately, the biggest performance gains on the
TRIPS architecture can be achieved by reducing the
number of executed blocks. Aside from loop unrolling,
the number of executed blocks can be reduced by inlin-
ing, block merging, and predication. While inlining on
a conventional architecture simply eliminates the over-
head of a function call, on the TRIPS architecture, it re-
moves an entire block from the execution. Since blocks
are large and the overhead of a block is costly, the gains
of inlining on the TRIPS architecture are more empha-
sized. Blocks of sufficiently small size can be arbitrarily
merged provided there exists no entry paths to removed
blocks. This not only removes a block from execution,
but provides opportunities to merge common instruc-
tions and expose more ILP. The use of predication works
in a similar fashion. By converting a control dependence
to a data dependence the number of exposed branches is
reduced, thus allowing the grouping of larger segments
of code on a single execution block.

Perhaps most notably, we found these optimizations
to be mutually beneficial and we performed many of
them either together or in succession. Loop unrolling
increases opportunities to reduce redundant instructions
and perform tree height reduction. Inlining removes the
artificial block boundaries created by a function call.
Such techniques expose new opportunities for block
merging, which in turn provides new opportunities to
merge instructions and increase overall ILP.

We were able to achieve an average speedup of 1.83

9

Kernel Scale -O4 Hand Optimized Hand Optimized Alpha cc Hand Optimized
Cycles Cycles vs. Scale -O4 Cycles vs. Alpha cc

QR 146,404 94,528 1.55 109,652 1.16
Convolution 313,484 126,193 2.48 278,887 2.21
FIR 168,639 117,444 1.43 153,205 1.30
CT 193,305 58,366 3.31 120,234 2.06
DB 203,273 164,067 1.24 83,647 0.51
CFAR 190,717 158,342 1.20 180,510 1.14
PM 258,777 130,227 1.99 121,111 0.93
SVD 108,317 76,127 1.42 24,373 0.32

Table 11: Summary of Results. Average Speedup over Alpha is 1.20, over Scale is 1.83.

over the compiler and an average speedup over alpha
of 1.20. While this might seems unimpressive at first
glance, the Alpha has a more advanced compiler and
hardware advantages such as a floating point square
root, hardware divide, and 32-bit floating point opera-
tions. Minor hardware improvements in the prototype
and migration of optimizations into the compiler could
significantly enhance performance. By experimenting
with different hand optimization techniques we have
highlighted opportunities for additional compiler opti-
mizations on DSP kernels. We have found several char-
acteristics of the TRIPS architecture, such as its limited
dataflow and block atomic execution model, to be well
suited to provide high performance while still maintain-
ing power efficiency for future signal processing codes.

Acknowledgments

We thank the anonymous reviewers for their sugges-
tions that helped improve the quality of this paper. This
research is supported by the Defense Advanced Re-
search Projects Agency under contracts F33615-01-C-
4106 and NBCH30390004 and an NSF instrumentation
grant EIA-0303609. All opinions, findings and conclu-
sions expressed herein are the authors’ and do not nec-
essarily reflect those of the sponsors.

Finally, the authors would like to extend their appre-
ciation to Ramadass Nagarajan for his many contribu-
tions.

References
[1] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K.

John, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, and
W. Yoder. Scaling to the end of silicon with edge architectures.
IEEE Computer, pages 44–55, July 2004.

[2] DARPA. Polymorphous Computing Architecture Program,
http://www.darpa.mil/ipto/programs/pca, January 2006.

[3] R. Desikan, D. Burger, S. Keckler, and T. M. Austin. Sim-
alpha: a validated, execution-driven alpha 21264 simulator.
Technical Report TR-01-23, Department of Computer Sci-
ences, The University of Texas at Austin, October 2001.

[4] R. Desikan, D. Burger, and S. W. Keckler. Measuring exper-
imental error in microprocessor simulation. In28th Interna-
tional Symposium on Computer Architecture, July 2001.

[5] R. E. Kessler. The alpha 21264 microprocessor. Technical
Report 2, IEEE Micro, March 1999.

[6] R. McDonald, D. Burger, S. W. Keckler, K. Sankaralingam,
and R. Nagarajan. Trips processor reference manual. Technical
report, Department of Computer Sciences, The University of
Texas at Austin, 2005.

[7] K. S. McKinly, J. Burrill, D. Burger, B. Cahoon, J. Gibson,
J. E. B. Moss, A. Smith, Z. Wang, and C. Weems. The scale
compiler. Technical report, University of Massachusetts,Uni-
versity of Texas, 2005.

[8] R. Nagarajan, X. Chen, R. G. McDonald, D. Burger, and S. W.
Keckler. Critical path analysis of the trips architecture.In
IEEE International Symposium on Performance Analysis of
Systems and Software, 2006.

[9] R. Nagarajan, S. K. Kushwaha, D. Burger, K. McKinley,
C. Lin, and S. W. Keckler. Static placement, dynamic issue
(spdi) scheduling for edge architectures. InInternational Con-
ference on Compilation Techniques (PACT), September 2004.

[10] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
D. Burger, S. W. Keckler, and C. R. Moore. Exploiting ilp,
tlp, and dlp with teh polymorphous trips architecture. InPro-
ceddings of the 30th Annual International Symposium on Mi-
croarchitecture, pages 422–433, May 2003.

10

