
Appears in the Proceedings of the 2010 Workshop on Parallel Executionof Sequential Programs on Multi-core Architectures
(PESPMA) held in conjunction with the 37th International Symposium on Computer Architecture (ISCA)

ReFLEX: Block Atomic Execution on Conventional ISA Cores

Mark Gebhart∗ Stephen W. Keckler∗†
∗Department of Computer Science †Architecture Research Group
The University of Texas at Austin NVIDIA

mgebhart@cs.utexas.edu skeckler@nvidia.com

Abstract

Modern multicore chips target thread-level paral-
lelism at the expense of increasing instruction-level
parallelism from single threaded programs. While
recent work has attempted to construct a wide-ILP
machine from multiple simple cores, these ap-
proaches suffer from ISA overheads or scalability
challenges. In this paper, we describe an architec-
ture that is inspired by the scalability and flexibility
of the TFLEX architecture, yet elides the unortho-
dox ISA and the overheads that stem from its
dataflow execution model. Our results focus on the
tradeoff between near out-of-order execution (small
out-of-order window within a block of instructions)
and far out-of-order execution across blocks.
Experiments indicate that a small out-of-order
window combined with block-level speculation en-
ables our proposed ReFLEX architecture to achieve
comparable performance and flexibility as TFLEX
yet with simpler cores and a more conventional ISA.

1 Introduction

With the end of clock-rate scaling, current and fu-
ture processors must rely on concurrency to provide
continued performance scaling. Modern multicore
processors target thread-level parallelism through a
small number of simultaneous-multithreaded cores
and data-level parallelism through short-vector
extensions such as SSE. GPUs target both thread
and data-level parallelism via a large number
of massively multithreaded but (mostly) scalar
cores. In either case, instruction-level parallelism
for single-threaded programs or procedures is no
longer the focus of multicore systems.

While emerging programs and workloads have a
much greater focus on parallelism, many programs
still have regions in which few or even one thread is
operating. A common program paradigm is to alter-
nate between serial and parallel phases, expanding
thread count at the beginning of a parallel region
and contracting back to a single thread which may
process data prior to subsequent work creation. In
such cases, Amdahl’s law can dominate. We seek

to harness the resources from multiple simple cores
to exploit ILP when there are insufficient threads to
saturate a multicore system.

Exploiting dynamic expansion and contraction of
parallel threads in a manner that effectively utilizes
the machine requires an agile system that can create
work and synchronize quickly. Further, the capa-
bility to dynamically aggregate processing cores to
form larger logical processors can enable the hard-
ware to adapt to changing demands of parallel and
sequential execution. Recent work on flexible core
architectures that intend to exploit these capabilities
include Core Fusion [5], Federation [15], and
Composable Lightweight Processors (TFLEX) [7].
Of these, TFLEX is the most scalable enabling ag-
gregation of up to 32 cores and performance scaling
to 8 cores (SPEC-INT) and 32 cores (SPEC-FP).

However, TFLEX has several drawbacks. First,
it requires a decomposition of a program into
program regions (hyperblocks) of a fixed maximum
size. Second, the dataflow oriented instruction set
that was designed to scale ILP across many cores
incurs substantial overheads for data movement
and copying. Third, the microarchitecture requires
sizable storage structures (reservation stations) to
deploy the dataflow instruction set; because the
reservation stations hold instructions that have both
executed and are waiting to execute they can incur
power overheads.

In this paper, we propose ReFLEX, a more
conventional ISA architecture inspired by the
advantages and capabilities of TFLEX. ReFLEX
employs a conventional RISC-style architecture,
augmented with block atomic semantics and full
predication, and a microarchitecture that enables
block-atomic execution without restricting blocks
to a fixed minimum or maximum size. The
ReFLEX microarchitecture consists of simple dual-
issue cores with a small out-of-order window to
capture ILP from nearby instructions. Consecutive
blocks can be mapped to different cores to exploit
speculation and far-range ILP. The ReFLEX mi-
croarchitecture manages the register file and mem-
ory in a distributed fashion, enabling register and

1



memory locality to be exploited within the cores.
We view ReFLEX as a step toward architectures
that are amenable to modern compiler optimization
algorithms and that can ultimately support dynamic
expansion and contraction of threads spanning the
cores and their aggregation into processors.

The remainder of this paper first provides an
overview of the ReFLEX ISA, execution model,
and microarchitecture. It then compares the
performance of ReFLEX to that of TFLEX, an
architecture with greater complexity. Results show
that with a small out-of-order window within a
core, ReFLEX can attain comparable performance
as the more complicated TFLEX processor.

2 Execution Model and Microarchitecture

2.1 ISA

The two fundamental changes to the ReFLEX ISA
compared with a convention RISC ISA are support
for block atomic execution and full predication. The
ReFLEX ISA is similar to an EDGE ISA [1] except
that instead of dataflow execution within a block,
execution within a block has tradition RISC style
in-order semantics. This avoids the overheads as-
sociated with dataflow execution, including fanout
instructions, needed when a value is consumed by
multiple instructions and nullification instructions,
necessary to detect when a block has completed [4].
The results in Section 4 show that ReFLEX executes
roughly 15% fewer instructions than TFLEX.

For the current version of this work, a block is
defined as having up to 128 instructions with a
single entry point and multiple exit points. There
is no inherent reason that a ReFLEX block should
have a fixed minimum or maximum size. At one
extreme, atomic blocks could simply be basic
blocks which would require little software support
to form. However, larger block better amortize
execution overheads. Register storage is partitioned
into a global register file and block private data
and predicate register files. Values in the private
register files are valid only for the duration of a
single dynamic instance of a block. Using this
block atomic execution model has several benefits:

• Out of order local commit: Since the global ma-
chine state is only updated when blocks commit
and blocks commit in-order, instructions within
a block can be retired locally out-of-order. Only
block outputs need to be buffered, rather than the
speculative state of all instructions as done in a
conventional reorder buffer.

• Register hierarchy: Since each block has its
own set of temporary register names, the need to

perform register renaming is reduced compared
with a conventional processor. Additionally, the
block private values are not stored to the glob-
ally shared structures, reducing pressure on these
structures.

• Distributed execution: The execution overheads
of distributed execution are amortized across the
instructions in a block allowing for a more scal-
able system.

2.2 Dataflow Predication

ReFLEX uses predication to create large blocks
which better amortize block execution overheads.
All of the instructions, except for two constant gen-
eration instructions, support predication. Instruc-
tions use dataflow predication where an instruction
can either be directly predicated or indirectly pred-
icated when one of its operands is predicated [13].
Alternatively, a traditional full predication model
could be used [8]. The advantage of dataflow pred-
ication is that the compiler is already targeted to
TRIPS and TFLEX which use dataflow predication.
Additionally, the encoding of dataflow predication
is more compact since nested predication can be
encoded with a single predicate. The disadvantage
of dataflow predication is that more complex state
must be tracked to ensure that only the intended
instructions are executed. To implement dataflow
predication, each block private register is aug-
mented with a valid bit. When a block begins
executing, all of the registers are invalid. When
a value is written to a register, the valid bit is set.
Instructions only execute if their predicates match
and the valid bits for all source operands are set.

Since there are only 32 entries in the temporary
register file (TRF) and up to 128 instructions in a
block, the compiler must perform register allocation
and reuse some of the entries in the TRF across
multiple live ranges. Special care must be taken
to update the valid bits after mispredicated instruc-
tions. Each instruction can be augmented with a
specifier “C” which signals that the valid bit for the
destination register should be cleared if the instruc-
tion does not execute. Figure 1 shows an example
of how these modifiers are used. In this example,
after register allocation R0 and R1 are used at both
the top and bottom of the block. The predicated
addi must be augmented with the “C” specifier
because if P0 is false, P1 will not be produced. The
predicatedaddi andsubi will not execute, since
the valid bit for P1 will not be set. If the predicated
addi did not have the “C” specifier, the finaladdi
in the block would read the value of R1 from the

2



Figure 1: Example of dataflow predication, theaddi instructions must clear their destination register if
they are mispredicated to prevent consumers from seeing the values of R1and R0 from previous live ranges
(read instructions).

P P P P

P P P P

P P P P

P P P P

P P P P

P P P P

P P P P

P P P P

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

P P

P P

P P

P

P

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

P

(a) 32 2-wide CLP config. (b) 8-processor CLP config. (c) One 64-wide CLP config.

Figure 2: Composability of a 32 core system.

read of G1. The intended behavior is for theaddi
to not execute when P0 is false. The non-predicated
addi must have the “C” specifier because if it does
not execute, later consumers could read the value
of R0 produced by the read instruction.

In general, all instructions that define a new
live range should have the “C” specifier. The two
exceptions to this rule are instructions that define
the first use of a register in a block do not need the
“C” specifier, since initially all registers are invalid.
Second, when a register is defined by multiple
predicated instructions, only the first instruction
should have the “C” specifier. An example of this
case is the lack of a “C” specifier on the predicated
subi instructions in Figure 1.

2.3 Composability

Figure 2 shows some of the different ways a 32-core
system can be configured. This ranges from using
each core as a separate processor, allowing for 32
simple processors, aggregating all of the cores into

a single processor, or some point in between. Each
core has 128 registers; when multiple cores are
composed, the program has access to a total of 128
registers which are partitioned across all composed
cores. Each core has a 8KB L1 data cache and a
2KB L1 instruction cache. When multiple cores are
composed, the caches are combined with address
partitioning, giving the program access to 8KB
times the number of cores of data cache and 2KB
times the number of cores of instruction cache.
Each block is assigned a home core which is
responsible for performing branch prediction and
detecting when a block completes. The full details
can be found in the original TFLEX paper [7].

2.4 Microarchitecture

In this work we leverage the microarchitecture of
TFLEX [7] with some changes to support the mod-
ified execution model. Figure 3 shows an overview
of the microarchitecture of a 2 core ReFLEX
system; the exact microarchitecture parameters

3



Parameter Configuration
Instruction Partitioned 2KB (per core) I-cache (1-cycle hit)
Supply Local/GShare Tournament predictor(2K+256 bits, 3 cycle latency) speculative updates

Num. entries: Local 128(L1) + 256(L2)
Global: 1024, Choice: 1024, RAS: 16, CTB: 32, BTB: 256, BType: 512.

Execution In-order / Out-of-order execution, CAM structured variable entry execution window
Limited dual-issue (1 FP and 1 INT or 2 INT)

Data Supply Partitioned 8KB D-cache (per core) (2-cycle hit, 2-way set-associative, 1-read port and 1-write port)
4MB decoupled S-NUCA L2 cache [6] (8-way set-associative, LRU-replacement)
L2-hit latency varies from 5 cycles to 27 cycles depending onmemory address
Average (unloaded) main memory latency is 100 cycles; 64-entry LSQ / core

Table 1: Microarchitecture parameters.

Figure 3: Microarchitecture of a 2 core system.

used for this study are shown in Table 1. To each
core, we added a 32-entry temporary register file
(TRF), a 8-entry predicate register file (PRF), and
a small execution window to allow for out-of-order
execution within a block to improve performance.
The 128-entry global register file is partitioned
across all cores. Dedicated read and write instruc-
tions are used to access the global register file. The
128 reservation stations per core used by TFLEX
to support dataflow execution within a block are no
longer needed. Like TFLEX, multiple blocks can be
executed concurrently but they commit their outputs
(writes to the global register file and stores to the
memory system) in program order. A memory de-
pendence predictor is used to allow memory opera-
tions to optimistically execute out of program order.

Global out-of-order execution can be achieved in
two ways. First, since multiple blocks are in-flight
concurrently, instructions in different blocks are
free to execute out of global program order. Second,
the instructions within a block are locally executed
out-of-order. Figure 3 shows a system configured
with an out-of-order execution window of size
2. Section 4 illustrates the performance tradeoff
between exploiting near versus far parallelism.

Along with the valid bits needed to implement
dataflow predication, the pending reads and writes
to a register must also be tracked. These pending
operations come from the local out-of-order execu-
tion. Pending reads and writes are identified by their

instruction number within the block. An instruction
may only execute if there are no pending writes
to its source registers from earlier instructions and
no pending reads to its destination register from
earlier instructions. When WAW and WAR hazards
are encountered, the processor stalls until they are
resolved, unless register renaming is being used.

In this version of the work, each block can have
up to 32 memory operations. Each core has a 64-
entry LSQ which uses a NACK policy to stall mem-
ory operations when the LSQ is full [11]. The LSQs
are addressed partitioned across the cores. Since the
LSQ can reject a memory operation when it is full,
each core has a 16-entry memory instruction skid
buffer. Once issued, memory instructions are moved
from the issue window to the skid buffer. Once an
entry has been successfully allocated in the LSQ,
the instruction is removed from the skid buffer.
Since TFLEX has dedicated storage for all instruc-
tions in a block, a memory skid buffer is not needed.

3 Methodology

We use Simpoints [12] from the SPEC2K bench-
marks to evaluate ReFLEX. Our current infras-
tructure supports a total of 14 of the C and Fortran
benchmarks. Additionally, we evaluate ReFLEX
on 28 of the EEMBC benchmarks [3]. We use the
Scale compiler [9] to produce block atomic RISC
code. The instructions within a block are scheduled
by a modified TRIPS scheduler [2]. All of the
simulations are done on a cycle level execution
driven simulator.

4 Preliminary Results

In this section we present preliminary results, as
we are still tuning the compiler for ReFLEX. The
reduction in the number of instructions executed
by ReFLEX compared with TFLEX is shown in
Figure 4. These results are with an 8-core system
with an execution window of 9 instructions without
register renaming. The number of instructions exe-
cuted across all of the different configurations for a

4



(a) (b)

Figure 4: Number of Instructions Executed Normalized to TFLEX for SPEC INT and SPEC FP

given benchmark varies by less than 1%. Therefore,
results for just this one configuration are shown.
Fewer instructions are executed by ReFLEX com-
pared with TFLEX on the integer benchmarks than
the floating point benchmarks. This is due to the
complex control of the integer benchmarks, which
requires more dataflow overhead instructions. Some
benchmarks, such as vpr and equake see no reduc-
tion in instruction count compared with TFLEX.
In fact, equake actually executes 19% more in-
structions on ReFLEX. For this benchmark, the
compiler has formed blocks differently than when
compiling for TFLEX and the blocks produced
are less efficient, requiring more instructions to be
executed. Overall, there is a savings of roughly 15%
in the number of instructions that must be executed.

Figure 5 shows the geometric mean across all of
the benchmarks normalized to a 1-core configura-
tion where the baseline core executes a block in-
order. Each line shows results for increasing the
amount of out-of-order execution performed locally
within a core. An execution window of 128 allows
for full out-of-order execution across a single block.
With an execution window of 128 instructions,
ReFLEX is equivalent to TFLEX except for the
dataflow overhead instructions present in TFLEX.
When compiling for ReFLEX, the compiler forms
different blocks than when compiling for TFLEX
since it does not need to allocate space in the block
for these dataflow overhead instructions. Generally
this results in better performance; however, in some
cases the ReFLEX blocks are less efficient. Tuning
the compiler for ReFLEX is ongoing work. Results
are shown for SPEC INT, SPEC FP, and EEMBC
both with and without register renaming on the TRF

and PRF. Increases in the size of the local execution
window result in performance increases; however, a
local window of 17 instructions captures nearly all
of the performance of a maximally sized 128 en-
try execution window. The scalability varies greatly
based on the benchmark suite. SPEC INT and
EEMBC have limited scalability and performance
generally peaks at 8 cores. SPEC FP sees perfor-
mance increases up to 16 cores. When 32 cores are
used, the performance degrades due to increases in
communication costs and decreases in branch pre-
dictor accuracy at a large speculation depth.

On SPEC INT and EEMBC, where the amount
of parallelism exploited is limited, the gains from
performing register renaming are limited. For these
benchmarks, the energy overhead of performing
register renaming is not justified. On SPEC FP,
register renaming increases the maximum speedup
achieved from 4.5 to just under 5.5. In cases where
absolute performance is critical, a large execution
window coupled with register renaming provides
the best performance. In other cases, energy can
be saved by not performing register renaming and
simply stalling when WAW and WAR hazards are
encountered.

As the number of cores increases, the difference
in performance between in-order and out-of-order
cores increases. Out-of-order cores can better
tolerate the increasing communication delays
present in larger configurations. To achieve high
performance, some degree of out-of-order execu-
tion is needed to exploit near parallelism, especially
with a large number of cores. When only in-order
cores are used, the performance is limited and 2
out-of-order cores with an execution window size

5



(a) (b)

(c) (d)

(e) (f)

Figure 5: Scalability compared to 1 in-order core across SPEC INT, SPECFP, and EEMBC both with and
without register renaming on the PRF and the TRF

6



of 17 can match the performance of 16 in-order
cores. Performance can be increased either by
increasing the size of the local execution window or
increasing the number of cores depending on area
and power constraints. There is ongoing work to
increase the scalability of TFLEX on benchmarks
such as EEMBC and SPEC INT. Some of these
mechanisms could also be applied to ReFLEX.

Figure 6 compares the performance of ReFLEX
to TFLEX [7] across the three sets of benchmarks.
TFLEX has an advantage in that it can choose
to execute any ready instruction within the block
but its performance is limited by the overhead
instructions needed to perform dataflow execution
within a block. When the local execution window
is 9 entries or larger, ReFLEX is competitive
with TFLEX. On SPEC FP register renaming is
needed to remain competitive with larger number of
cores. ReFLEX performs better on SPEC INT and
EEMBC compared to TFLEX since the scalability
of these benchmarks is limited, thus ReFLEX’s
limitations have less of an impact on performance.

As the number of cores increases, generally,
performance decreases relative to TFLEX. With a
large number of cores, the scheduling of instruc-
tions within a block has the potential to degrade
the performance of not only the current block but
also consumers of the current block’s outputs. The
scheduler must deal with two competing interests.
It must place instructions that produce values
consumed by other blocks early in the block, to
produces these outputs as soon as possible. At the
same time, it must place instructions that consume
values from other blocks later in the block so that
these consumers do not delay the execution of
independent instructions while waiting for remote
values to be produced. Instructions can be both
a consumer of a value from a prior block and a
producer of a value needed by a subsequent block.
We found that the best scheduling heuristic was to
order instructions based on their transitive distance
to the top of the dataflow graph, where instructions
with large distances being placed later in the block.
We look across the likely block predecessors to
include the dataflow graphs for prior blocks. This
heuristic places instructions that are less likely
to stall execution while waiting on predecessors
earlier in the block. Those instructions that are
more likely to have to wait on predecessors are
placed later in the block.

Figure 7 shows the individual benchmark per-
formance compared with TFLEX with a local
window size of 9. The EEMBC benchmarks are

omitted for space constraints due to the large
number of benchmarks in the suite. Performance
ranges from 50% worse than TFLEX to 80% better
than TFLEX. This wide range is a function of
the amount of fanout in each benchmark, which
ReFLEX eliminates, and the importance of a large
local execution window, where TFLEX has the
advantage. Register renaming is particularly impor-
tant to mcf, providing roughly a 20% performance
improvement for larger number of cores.

5 Related Work

Block structured ISAs: Multiscalar proces-
sors [14] use software to divide a program into a
collection of tasks where each task is similar to an
atomic block. Predication is not used to grow the
size of tasks but rather internal control flow is al-
lowed. Most tasks have far fewer dynamic instruc-
tions than the number of static instructions in a Re-
FLEX block. Each task is executed by a separate
processor and a single register file is keep glob-
ally consistent by connecting the processors in a
ring and forwarding register values around this ring.
This ring structure requires that tasks be mapped in
a round robin fashion. Blocks in ReFLEX can be
mapped to arbitrary cores which can be exploited
for locality advantages. Additionally, the ring struc-
ture establishes a static processor granularity where
one of the main goals of ReFLEX is to enable com-
posable execution.

Melvin and Patt proposed a block structured ISA
to increase the fetch bandwidth [10]. In their work,
blocks are the atomic unit of work and instructions
within a block execute in dataflow order. Their
program structure is similar to an EDGE ISA
without support for predication. They use both a
global architectural register file and block local
storage. Each block can have up to 256 instructions
which requires a large amount of local storage.
Since they perform dataflow execution within a
block they face many of the challenges of TFLEX.
Their main goal was to increase performance by
exploiting ILP and a flexible microarchitecture that
supported composability was not a focus.

Composable processors:There have been sev-
eral projects that used traditional ISAs to con-
struct composable processors. However, the per-
instruction bookkeeping overheads associated with
traditional ISAs limit scalability. Federation [15]
considers using tightly coupled in-order cores to
achieve out-of-order execution. This is similar
to how ReFLEX achieves out-of-order execution
across blocks. They focus on enabling this small

7



(a) (b)

(c) (d)

(e) (f)

Figure 6: Performance compared to TFLEX across SPEC INT, SPEC FP,and EEMBC both with and
without register renaming on the PRF and the TRF

8



(a) (b)

(c) (d)

Figure 7: Performance compared to TFLEX for SPEC INT and SPEC FP both with and without register
renaming on the PRF and the TRF and a fixed window size of 9 instructions

scale composability to avoid the area and power
overheads of out-of-order cores. The focus of Fed-
eration is to join 2 or 4 cores while ReFLEX lever-
ages its block atomic ISA to compose a larger num-
ber of cores. Federated cores exploit near paral-
lelism while ReFLEX cores exploit far parallelism
by executing different portions of the instruction
stream.

Core Fusion [5] aims to use composable execu-
tion to exploit both ILP and TLP across an 8 core
microarchitecture. One key advantage of this work
is that it requires no changes to the ISA. When
running a single sequential SPEC2K application
Core Fusion is 30% and 50% faster than a single
two-wide issue out-of-order core on SPEC INT
and SPEC FP respectively. Section 4 shows that
ReFLEX can achieve better scalability on SPEC2K
due to its block structured ISA.

TFLEX [7] leverages an EDGE ISA, which uses

block atomic execution and dataflow within a block,
to enable composability. However, the dataflow
execution within a block has high overheads. Up
to 20% of the instructions executed are dataflow
overhead instructions which often are on the critical
path. Additionally, these dataflow overhead instruc-
tions limit the amount of useful work that can be
put into a given sized block. Using composability
to support dynamic expansion and contraction of
parallel work was not studied.

6 Conclusions

In this work, we have shown that a RISC ISA,
augmented with block semantics and support for
predication, can efficiently execute on a distributed
composable microarchitecture. This approach does
not rely on register renaming or a reorder buffer to
perform out-of-order execution. A ReFLEX pro-
cessor, with a nine entry local execution window,

9



is competitive with the dataflow execution TFLEX
processor. We are currently conducting a detailed
power evaluation. Compared with TFLEX this
model reduces the number of instructions executed
by roughly 15% and replaces a 128-entry RAM
based instruction window with a small (9 entry)
CAM based execution window.

We are exploring the potential of internal control
flow for reducing the number of fetches for blocks
that are part of a tight loop. In order to take
advantage of phase changes in the program we
are exploring support for lightweight mechanisms
to spawn and then contract parallel work when
parallel sections are encountered. We believe that
the block model is a good mechanism for support-
ing this requirement because spawning blocks is a
lightweight operation. We also plan to study the
algorithms that assign blocks to cores. Dependent
blocks in serial sections should be scheduled on
the same core while independent blocks in parallel
sections need to be scheduled on different cores.

This model allows for more aspects of the proces-
sor to be dynamically tuned to adjust performance
and rapidly adapt to the changing parallelism needs
of a program. Further, the lightweight communica-
tion provided by this model can potentially exploit
fine-grained parallelism that is not profitable to
exploit on coarser grained designs. We view this
work as a first step and future work will exploit
the capabilities of ReFLEX to efficiently execute
programs with varying degrees of parallelism.

Acknowledgments

This research is supported by NSF grant CCF-
0936700. The authors thank Katherine Coons and
Bertrand Maher for their help with the TRIPS tools.

References

[1] D. Burger, S. W. Keckler, K. S. McKinley,
M. Dahlin, L. K. John, C. Lin, C. R. Moore,
J. Burrill, R. G. McDonald, W. Yoder, and the
TRIPS Team. Scaling to the End of Silicon with
EDGE Architectures.IEEE Computer, 37(7):44–55,
July 2004.

[2] K. Coons, X. Chen, S. Kushwaha, D. Burger, and
K. McKinley. A Spatial Path Scheduling Algorithm
for EDGE Architectures. InInternational Confer-
ence on Architectural Support for Programming
Languages and Operating Systems, pages 129–140,
October 2006.

[3] http://www.eembc.org.
[4] M. Gebhart, B. A. Maher, K. E. Coons, J. Diamond,

P. Gratz, M. Marino, N. Ranganathan, B. Robatmili,
A. Smith, J. Burrill, S. W. Keckler, D. Burger,
and K. S. McKinley. An Evaluation of the TRIPS

Computer Systems. InInternational Conference on
Architectural Support for Programming Languages
and Operating Systems, pages 1–12, March 2009.

[5] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez.
Core Fusion: Accommodating Software Diversity in
Chip Multiprocessors. InInternational Symposium
on Computer Architecture, pages 186–197, 2007.

[6] C. Kim, D. Burger, and S. W. Keckler. An Adaptive
Non-Uniform Cache Structure for Wire-Dominated
On-Chip Caches. InInternational Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, pages 211–222, October 2002.

[7] C. Kim, S. Sethumadhavan, M. Govindan, N. Ran-
ganathan, D. Gulati, S. W. Keckler, and D. Burger.
Composable Lightweight Processors. InInter-
national Symposium on Microarchitecture, pages
281–294, December 2007.

[8] S. Mahlke, R. E. Hank, J. E. Mccormick, D. I.
August, and W. W. Hwu. A Comparison of Full
and Partial Predicated Execution Support for ILP
Processors. InIn Proceedings of the 22th Interna-
tional Symposium on Computer Architecture, pages
138–150, 1995.

[9] K. S. McKinley, J. Burrill, D. Burger, B. Cahoon,
J. Gibson, J. E. B. Moss, A. Smith, Z. Wang, and
C. Weems. The Scale Compiler. Technical report,
University of Massachusetts, University of Texas,
2005.

[10] S. Melvin and Y. Patt. Enhancing Instruc-
tion Scheduling With a Block-Structured ISA.
International Journal on Parallel Processing,
23(3):221–243, June 1995.

[11] S. Sethumadhavan, F. Roesner, J. S. Emer,
D. Burger, and S. W. Keckler. Late-binding:
Enabling unordered load-store queues. InInterna-
tional Symposium on Computer Architecture, pages
347–357, June 2007.

[12] T. Sherwood, E. Perelman, and B. Calder. Basic
Block Distribution Analysis to Find Periodic Be-
havior and Simulation Points in Applications. In
International Conference on Parallel Architectures
and Compilation Techniques, pages 3–14, September
2001.

[13] A. Smith, R. Nagarajan, K. Sankaralingam,
R. McDonald, D. Burger, S. W. Keckler, and K. S.
McKinley. Dataflow Predication. InInternational
Symposium on Microarchitecture, pages 89–102,
December 2006.

[14] G. S. Sohi, S. Break, and T. N. Vijaykumar.
Multiscalar Processors. InInternational Symposium
on Computer Architecture, pages 414–425, 1995.

[15] D. Tarjan, M. Boyer, and K. Skadron. Federa-
tion: Repurposing Scalar Cores for Out-of-order
Instruction Issue. InDAC ’08: Proceedings of the
45th annual Design Automation Conference, pages
772–775, 2008.

10


