SimpleScalar Simulation of the PowerPC Instruction
Set Architecture

Karthikeyan Sankaralingam Ramadass Nagarajan Stephen W. Keckler Doug Burger
Computer Architecture and Technology Laboratory
Department of Computer Sciences
Tech Report TR2000-04
The University of Texas at Austin
cart@cs.utexas.edu — www.cs.utexas.edu/users/cart

ABSTRACT

In this report, we describe a modification to the SimpleScalar tool set to support the PowerPC
ISA. Our work is based on Version 3.0 of the publicly available SimpleScalar tool set. We briefly
describe features of the PowerPC ISA relevant to the simulator and provide operating system
specific implementation details. We made modifications to the suite of five simulators that model
the micro-architecture at different levels of detail. The timing simulator sim-outorder simulates
PowerPC binaries on the Register Update Unit (RUU) micro-architecture. The five simulators were
tested by simulating the SPEC CPU95 benchmarks to completion. The tool set simulates binaries
compiled for 32-bit IBM AIX running on PowerPC.

1 Overview

The SimpleScalar tool set (release 3.0) can simulate the Alpha ISA and the PISA ISA [1]. In this
work, we extend this tool set to support the PowerPC ISA which is defined in The PowerPC Archi-
tecture Specification [2]. Currently, only the 32-bit implementation of the PowerPC architecture is
supported. Future versions may support the 64-bit architecture. Binaries compiled for 32-bit IBM
ATX can be run on one of the several provided simulators on an IBM AIX machine. The target
operating system we support in this release is IBM AIX. However, we also provide a minimally
tested cross—platform simulator running on Sun Solaris, simulating PowerPC binaries compiled on
an IBM AIX machine.

The remainder of this report is organized as follows. Section 2 explains the features of the
PowerPC ISA and its differences from the Alpha and PISA ISAs. In Section 3, we explain the
machine/Operating System (OS) specific details that should be addressed in a simulator. Section 4
provides an overview of the different simulators in the tool set and briefly describes the modifi-
cations we made to each of the simulators. In Section 5, we provide the details on instruction
emulation. The functioning and simulation of the loader is explained in Section 6 and in Section 7,
we provide the details of executing system calls. Miscellaneous operating system issues handled by
the simulator are dealt with in Section 8. The working of the timing simulator (sim-outorder) is
explained in Section 9. Instructions for building and using the simulator are provided in Section 10.

In the remainder of this document, target will refer to the ISA being simulated (PowerPC) and
host will refer to the machine on which the simulator is executed.

2 ISA Description

The PowerPC ISA has some features that make it different from the Alpha and PISA ISAs. For
example, the Alpha ISA has 215 instructions with 4 instruction formats and the PISA ISA has 135
instructions with 4 instruction formats. The PowerPC ISA on the other hand has 224 instructions
with 15 instruction formats. Not all of these instructions are implemented in the simulator. In this
section, we describe features of the ISA that are implemented in the simulator.

2.1 Registers

The PowerPC architecture defines 32 General Purpose Registers (GPR) and 32 Floating Point
Registers (FPR). The GPRs are 32 bits wide and the FPRs are 64 bits wide. A 32-bit Condition
Register (CR) is logically divided into 8 subfields CR0O to CR7 each subfield being 4 bits long. This
register holds condition codes. The 32-bit Link Register (LR) is used for transferring program flow
and a 32-bit Count Register (CTR) is used for loops. Certain instructions implicitly compare the
CTR to zero to detect loop termination condition. The CTR can also be used for transferring
program flow. The status of the floating point unit is saved in a 32-bit wide Floating Point Status
Control Register (FPSCR). A 32-bit wide Fixed Point Exception (XER) contains the status and
exceptions generated while executing fixed point instructions. This 27 fields of the FPSCR, and the
5 fields of the XER are described in pages 137-141 and pages 48-49 of The PowerPC Architecture
Specification [2]. Figure 1 outlines all of the user registers in the SimpleScalar implementation of
the PowerPC ISA. The machine specific registers defined in the PowerPC ISA are not shown and
are not handled in the simulator.

CR GPRO00 FPROO
0 31 GPRO1 FPRO1
LR GPRO02 FPRO2
0 31
CTR
GPR31 FPR31
0 31
0 31 0 63
XER
0 31
FPSCR
0 31

Figure 1: PowerPC user register set

2.2 Instructions

PowerPC instructions are four bytes long and always word aligned. Thus for a given instruction
address, the two lower order bits are ignored. Bits 0-5 always provide the opcode. Many instruc-
tions also have an extended opcode. Some instructions have reserved fields which must be set to
zero. Illegal instructions that are not defined invoke the system illegal instruction handler. In the
simulator, a panic call halting the simulator is invoked during instruction decode. Not all of the
instructions defined in the ISA are implemented by the simulator. Only the user level instructions
allowed on a 32-bit target are implemented.

2.3 Storage Model

PowerPC provides for bytes, halfwords and words as its primitive data types. Bytes in memory are
numbered consecutively starting with 0. Each number is the address of the corresponding byte.
Storage operands may be bytes, halfwords, words or double words, or for the Load/Store Multiple
and Move Assist instructions, a sequence of bytes or words. The address of a storage operand is
the address of its first byte. Misaligned addresses are allowed for data accesses. The PowerPC
architecture supports both little endian — MSB at bit 32/64 and big-endian — MSB at bit 0, byte
ordering. Only the big-endian byte ordering, is supported in the simulator.

3 AIX Operating System Overview

Two main operating system issues involved in porting SimpleScalar to a new architecture are:
1. Loader
2. System calls

Loader: Since the simulator takes a binary file as input, we need to know the binary file format
and the tasks performed by the OS loader before it starts executing the program. The AIX loader
loads the program into memory and resolves relocatable references to memory addresses. System
calls which are embedded in the binary file as relocatable references are also resolved by the loader.

There are also other minor issues like passing environment variables and program arguments which
need to be handled by the loader. These implementation details for our simulator are explained in
Section 6.

System calls: Since we implement only user level instructions, system calls are implemented
using the host machine as a proxy to execute the system call. When a system call is made by the
simulated program, the simulator obtains the arguments passed to the call and makes the call at
the source level by calling the corresponding user level function call. The details of detecting and
executing the system calls are explained in Section 7.

4 Implementation Overview

The SimpleScalar tool set is modular and can be modified to provide support for new ISAs and
micro-architecture features. The different “structures” simulated like the cache, memory, registers,
instruction emulation and micro-architecture are placed in separate files. The five simulators —
sim-fast, sim-cache, sim-profile, sim-bpred and sim-outorder in the tool set share these common
files. The objective of the project was to create a functional simulator and a timing simulator using
the register update unit(RUU) micro—architecture and executing the PowerPC instruction set.

Getting the functional simulator to work involves changing the register definitions, register file
sizes, instruction emulation, the loader and the system call interface. The cache simulator and
branch prediction simulator are based on the functional simulator and worked right away when we
completed the functional simulator. We needed to make relatively minor changes for getting the
full timing simulator (sim-outorder) to work because of several idiosyncrasies in the PowerPC ISA
which were incompatible with the RUU micro-architecture capability. The problems we faced and
the solutions are explained in Section 9.

5 Instruction Emulation

All of the five simulators share the instruction definitions from the same file called machine.def.
This file contains the code for instruction emulation (in C or inline assembly) and the register and
functional dependencies of the instruction. The correctness of the dependencies in an instruction
does not affect its definition. Even if some dependencies are wrong, the functional simulator, cache
simulator and branch prediction simulator will work. However, for the correct functioning of the
timing simulator, these dependencies must be defined correctly.

The mechanism of defining an instruction’s dependencies and its implementation are explained
in [1] and we will not dwell on those details. Instruction decoding and the mechanism for supporting
extended opcodes for a single primary opcode are also explained in the technical report. We made
minor modifications to the tool set to support instruction decode for the PowerPC ISA. These
changes are documented in the provided source code.

The instructions defined are listed appendix A. As previously mentioned, a few instructions are
defined only in the 64-bit mode, and the simulator halts with an illegal instruction error when any
of these instructions are encountered.

The PowerPC architecture implements the IEEE Standard 751-1985 floating point arithmetic
specification. The floating point processor raises a number of exceptions and supports four rounding
modes. To simulate the floating point processor we adopted a two pronged approach. On an IBM
AIX host, all the floating point instructions are executed natively using inline assembly code. On

a non-native host, the instructions are emulated at the source level. This emulation is incomplete
and does not emulate all of the behavior of the processor being simulated. All the information that
is stored in the FPSCR, which controls rounding modes and exception status is ignored. The host
type is detected when the simulator is compiled and the appropriate implementation is selected.

5.1 Native Floating Point Implementation

Most of the computational floating point instructions modify a large number of fields/flags in the
FPSCR. Computational instructions are those that perform addition, subtraction, multiplication,
division, extracting the square root, rounding, conversion, comparison, and combinations of these
operations. On a native host, a true emulation of the floating point processor can be achieved
by executing the instruction natively. By true emulation, what we mean is the change of state
in the simulated machine after the execution of the instruction will be same as the change of
state—registers and memory, of a real machine.

In the simulator, true emulation is achieved by executing the instruction using inline assembly.
The state variables affected by a computational floating point instruction are:

1. One of the Floating Point registers (FPR)
2. Floating point status and control register (FPSCR)
3. Condition Register (CR)

The register file of the simulated machine is saved as a variable in the simulator. The FPSCR
and CR are fields in this register file. The following steps are done to execute a computational
floating point instruction:

1. Copy the simulated machine’s FPSCR, (from register file variable) into the host machine’s
FPSCR.

2. Execute the floating point instruction in the host machine—machine on which the simulator
is running. This will affect the state of the FPSCR in the real machine. The output generated
by execution is copied to the simulator’s register file.

3. Copy the value of the FPSCR from the host machine into the FPSCR field in the target
machine’s register file data structure.

Figure 2 shows a typical Floating Point instruction emulation. It shows the code fragment for
the FADD instruction.

Lines 8 to 11 execute the instruction natively. The original FPSCR value is passed using
fpscrin and the updated value is written to fpscrout. This value is copied to the register file
variable maintained by the simulator using the macro on line 16. The mtfsf and mffs instructions
copy values into the FPSCR and from the FPSCR respectively. Lines 14 and 15 copy the output
register value generated by the execution of this instruction to the register file in simulator.

5.2 Non-native Floating-Point Implementation

Figure 3 contains the code listing for the non-native implementation of the FADD instruction. As
can be seen from the code, the modifications to FPSCR are ignored. On a non-native host, the
contents of the FPSCR are ignored and the rounding mode of the compiler which is used to compile

4

#define FADD_IMPL

{

1: qword_t _a, _b;

2: qword_t *dest;

3: double double_a, double_b, double_dest;

4: _a = PPC_FPR_DW(RA); /* copy source registers into temporary */

5: _b = PPC_FPR_DW(RB); /* register type variables */

6: memcpy(&double_a, &_a, sizeof(double)); /* copy temporary reg. type */
7: memcpy (&double_b, &_b, sizeof (double)); /* variables into doubles */
8: asm ("mtfsf OxFF,%2; fadd %0,%3,%4; mffs %1"

9: "=f" (double_dest), "=f" (fpscrout) /* copy in FPSCR */

10: "f" (fpscrin), "f" (double_a), /* add */

11: "f" (double_b)); /* copy out resulting FPSCR */
12: fpl = (int *) (&fpscrout); /* and output value */

13: memcpy(&_fp, (fpil+l), 4);

14: dest = (qword_t *) (&double_dest);

15: PPC_SET_FPR_DW(FD, *dest); /* write output value to reg. */
16: PPC_SET_FPSCR(*(int *) (fpl+1)); /* write resulting FPSCR */
}

Figure 2: FADD implementation on IBM AIX host

the simulator is always active. In our simulation of the SPEC CPU95 benchmarks, we noted that
ignoring changes to FPSCR did not affect execution.

A few of the computational floating point instructions modify the Condition Register (CR).
According to the result of the instruction - <,>,= 0 or overflow, CR1 (second 4 bits of CR) is set
to 0, 1, 2 or 3. On the simulator this is done by comparing the result generated after execution.
This step does not vary between native IBM AIX and non-native hosts.

5.3 Misaligned Accesses

The PowerPC architecture allows misaligned addresses to access data. To support this in the
simulator, the alignment of every memory read and write is checked and for every misaligned
read/write, the two consecutive words are read and the correct bytes are stitched together and
returned.

Every misaligned memory read-word results in two simulated memory reads and consequent
simulated page-faults and cache-misses if any. Every misaligned memory write-word results in two
simulated memory reads to read the two words aligned on word boundaries that are affected by
the write, two memory writes to write back both the modified words and the consequent simulated
page-faults and cache-misses of all these four accesses.

A misaligned memory read/write of a half-word (16 bits) spanning two words, results in two
reads for a memory read and two reads and two writes for a memory write. A misaligned memory
read/write of a half-word that does not span a word, does not incur any extra reads or writes.

#define FADD_IMPL \
1: { \
2: qword_t _a, _b; \
3: qgword_t *dest; \
4: double double_a, double_b, double_dest; \
5: _a = PPC_FPR_DW(RA); \
6: _b = PPC_FPR_DW(RB); \
7: memcpy (&double_a, &_a, sizeof(double)); \
8: memcpy (&double_b, &_b, sizeof(double)); \
9: double_dest = double_a + double_b; \

10: dest = (qword_t *) (&double_dest); \

11: PPC_SET_FPR_DW(FD, *dest); \

}

Figure 3: FADD implementation on non-AIX host

5.4 Little Endian Hosts

Support for little endian hosts is based on the cross endian memory access macros provided in
SimpleScalar 3.0. Little endian hosts are supported by reordering the bytes before they are written
to or read from simulated memory. During program execution memory is accessed in four ways.

1. Loading the program: The OS loader copies the program code segment to memory when the
program is loaded. In the simulator the code segment is read from the program binary file
and written to simulated memory.

2. Data segment, program arguments and environment variables: These values are also written
by the loader to memory.

3. System calls: Some system calls read or write data to buffers. The fread system call for
example reads a block from a file and writes it to a buffer in memory

4. Load/Store instructions: Instructions that read or write register values to memory.

All four types of memory accesses pass through the same memory access macros in the simulator.
To provide cross endian support the bytes written to memory are reordered before writing and
after reading from simulated memory on little endian hosts. Reordering the bytes in this manner,
guarantees that the contents of simulated memory is big endian irrespective of endianness of the
host. Reordering the contents using the macros provides the correct values on little endian host
when the values are used in computation in the instruction emulation sections of the simulator.
The memory access macros are defined in memory.h. The functional simulator has been tested only
for a few of the integer SPEC benchmarks on X86 Linux.

6 Loader

As previously mentioned, there are two main functions that are performed by the loader:

1. Loading the program into memory, setting up its environment variables and arguments

BOTTOM OF STACK

w Envp[N-1]
=
«Q
<
N
c
]
envp[0]
argv[N-1]
argv[0]
NULL
Addresses
g
=
@
2]
5]
3 NULL
4
é Addresses

TOP OF STACK

Figure 4: Stack layout with environment variables and program arguments

2. Relocatable references in the loader segment of the program are assigned to locations in
memory. Relocatable references are addresses to objects whose memory address is determined
and allocated at run time by the loader.

The IBM AIX system calls are present as relocatable references in the loader segment. The
loader determines the addresses of these system calls and writes those values in memory when the
program is loaded.

6.1 Environment Variables and Program Arguments

On a real machine, environment variables are passed as an array of string pointers to the main
function call (for a C program). The loader decides where to allocate space for the environment
variables and creates the array of pointers and passes the first element of the array to main. The
end of the array is denoted by a NULL value. Every environment variable is a single string with
an “=” separating the variable name and its value.

In the simulator, the environment variables and the array of pointers to the variables are saved
on the stack. The environment passed to the program being simulated is the environment in

which the simulator is running. First, all the environment variables are pushed on the stack one

after another. These variables are null-terminated strings (character arrays). Then the program
arguments are pushed on the stack one after the other in reverse order, argv[0] (the full path of the
program being simulated) pushed as the last argument. These arguments are also null-terminated
string values.

A zero (NULL) is then pushed on the stack. Then the address of each environment variable is
pushed on the stack. The zero pushed earlier is used to determine end of environment variables
when the values are popped by the program from the top of the stack. The top of stack at this
stage is saved as the pointer to the environment variables. Another zero (NULL) is pushed on the
stack to indicate end of array of program argument pointers. Then the address of each argument is
pushed on the stack. The top of stack at this stage is saved as the pointer to the program arguments.
Figure 4 shows the layout of the stack when the loader has completed storing environment variables
and program arguments.

Figure 5 shows the actual contents of the stack for a simulated program. Note that the list of
environment variables has been truncated.

Ox7fff ffff HOME=/home/karu\0 # envp[4]
0x7fff ffef TERM=xterm-color\O # envp[3]
0x7fff ffde PWD=/home/karu/ss3ppc\0 # envp[2]
0x7fff ffc8 SHELL=/bin/bash\0 # envp[1]
0x7£ff £fb8 PS1=\h:\w>\0 # envp[0]
O0x7fff ffad ijpegl\0 # argv[1]
0x7fff ffa6 ./sim-outorder\0 # argv[0]
0x7fff ££97 \0\0O\O # 3 zeros for padding

remaining values on stack
are all addresses of values above
0x7£ff ££94 0x0000 0000 # NULL (4 bytes of zero)
Denotes end of array to follow
Ox7fff ££90 Ox7fff ffff
0x7fff ££8c Ox7fff ffef
0x7fff ££88 0x7fff ffde
Ox7fff ££84 Ox7fff ffc8
0x7fff ££80 Ox7fff ffb8
0x7£ff ££7c 0x0000 0000 # Denotes end of array to follow
ox7fff ££78 0x7fff ffad
Ox7fff ££74 Ox7fff ffab

R4 = Ox7fff ff74
R5 = Ox7fff ££80
Bottom of stack = Ox7fff ffff
Top of stack = Ox7fff ££f74

Figure 5: Stack contents at program startup

As specified by the AIX calling conventions, registers 3 onwards are used to pass arguments.
The loader sets register 3 to the number of program arguments (argc), register 4 to the address of

4bytes 4bytes System call code
kread kread i 3 i 3
kwrite g - 3 ,‘?‘f’,'?‘e? 3
=) n
open 1}
-
close) a — ¢ Kioctl =
o | 2 |
sbrk %
kioctl open close% sbrk
TOC MEMORY 1 0s MEMORY

Figure 6: System Call Mechanism. The first memory block is allocated by the loader and each
entry is 8 bytes long. The second memory block is the entire system memory and the OS system

call code resides there.

0x10007£40 <sbrk>: lwz r12,188(r2) # Read an address from TOC+188
0x10007f44 <sbrk+4>: stw r2,20(r1) # Save R2 on stack
0x10007£f48 <sbrk+8>: lwz r0,0(r12) # Load first word from address
pointed to by R12 into RO
0x10007f4c <sbrk+12>: luz r2,4(r12) # Load second word into R2
0x10007£50 <sbrk+16>: mtctr r0 # Copy RO into CTR
0x10007£54 <sbrk+20>: bctr # Jump to CTR
The actual system call code
is at address CTR

Figure 7: Instructions for SBRK system call

program arguments (argv[]), and register 5 to the address of environment variables (envp[]).

6.2 System calls

System calls are listed as relocatable references in the loader segment of the binary file. Every such
entry in the loader segment has a name, address and various other fields. The address field points
to an entry in the Table of Contents (TOC), which contains a unique entry for every system call.
On a real machine 8 bytes (2 words) of memory are allocated by the loader and the start address
of these 8 bytes is written into the TOC entry for that system call. The loader also fills in the
values of the two words that it has allocated. The first word is a unique number that identifies
the system call and the second word is the address where the actual system call code resides in
memory. Figure 6 explains the system call mechanism.

For each system call a sequence of user level instructions are executed. Figure 7 contains all
of the user level code executed for the sbrk system call. Every system call contains the same six
user level instructions except for the offset in the first instruction. Adding this offset to the start

of the TOC gives the address of the system call in the TOC. This is the address that is saved in
the loader segment of the binary file.

In the simulator, a predecode is done before the simulation starts. In this predecode step,
the entire instruction stream is scanned word by word and when this sequence of 6 instructions is
detected, the last of these instructions - bectr is replaced with a new instruction called sc. This
sc instruction is the System Call instruction that the PowerPC defines. A user level program is
guaranteed to not have this in its instruction sequence. So it is safe to use this opcode to indicate
a system call.

The loader in the simulator does things a bit differently compared to a real loader. Every
element in the loader segment is examined. Whenever a relocatable entry is detected the name of
the field is compared with the names of system calls emulated by the simulator. If this system call
is implemented in the simulator, eight bytes are allocated on the stack. The first word is set to a
unique number identifying the system call, the second word is ignored. The unique numbers for
the system calls are chosen arbitrarily and are listed in syscalls.h. The address of the first word
is written to the TOC address present as a field in the loader segment entry. If a system call is
encountered that is not supported, the unique number stored for the system call is -1.

When the sc instruction is encountered, the simulator is in exactly the same state as a real
machine would have been except for the values in CTR, RO and R2. While a real machine would
have had a valid memory address pointing to the system call code in CTR and RO, the simulated
machine has a unique number identifying the system call in R0. We compare R0 with the known
unique values and appropriate system call code is “simulated”. A value of -1 in RO indicates that
the simulated program is making an unsupported system call. When this happens, the return value
from the system call is set to zero and a warning is printed to stderr.

7 Executing System Calls

A system call is exactly like a function call, except that it is OS code and not visible to the user.
On the simulator, a system call results in the sc instruction being emulated as explained in the
previous section. We first examine R0 to determine what system call has been made. System calls
are passed arguments like any user level function, in the registers R3-R31. The arguments are read
into variables in the simulator and the user level function call corresponding to the system call is
called from the simulator with the arguments. Return values if any, are passed back by setting R3.
Changes if any, that are made to the buffers are simulated by copying changes to the simulated
memory. Figure 8 contains the code executed by sc when a kread system call is encountered.

System calls flags contain implicit meaning based on their values which vary across operating
systems. Hence, on a non-AIX host, the system flags if any, have to be translated from the AIX
values to the host OS values before the system call is made and back from host values to the
corresponding ATX values. On Solaris for example, the second argument to the fseek system call is
one of 0,1 or 2 meaning beginning, current or end of file respectively. On AIX the same argument
contains the macro SEEK_SET, SEEK_END or SEEK_CUR to indicate the whence argument.
For each system call, its system flags should be translated. This procedure is documented for
SimpleScalar 3.0 and is explained in [1].

10

char *buf;
int retval;

buf = (char *) malloc(regs->regs_R[5]+1);

assert (buf != NULL);

retval = read(regs->regs_R[3], buf, regs->regs_R[5]);

/* write back output to simulated memory */
mem_bcopy(mem_access, mem, Write, regs->regs_R[4], buf, retval);
regs—->regs_R[3] = retval;

free(buf);

Figure 8: Emulated source code for read system call

Name Function Address
divss a = a % b return remainder 0x3200
divus a = a % b (unsigned) return remainder 0x3280
quoss a = a / b return quotient 0x3380
quous a = a / b (unsigned) return quotient 0x3300
mulh a =a * b (return high 32 bits) 0x3100
mull a=a*b (return low 32 bits) 0x3200

Table 1: Millicode instructions

8 Other OS specific details

8.1 Millicode

A few operations in PowerPC are implemented using millicode. These are like function calls and
the meaning of the arguments is implicit. There are 6 millicode instructions whose functions are
defined in Table 1. On a real machine their location is fixed in memory and they are called by
branching to their address. Program flow is resumed by saving the next Program Counter in the
Link Register (LR) before branching and transferring program flow to the LR at the end of the
millicode routine.

This behavior is faithfully simulated including the address where the millicode is located. The
millicode is written to memory by the loader by calling the writemillicode function in loader.c.

8.2 System Configuration

ATX maintains a data structure called system-configuration which contains a number of fields
describing the configuration of the system. The definition of the struct can be found at
/usr/include/sys/systemcfg.h on an IBM AIX system. In the simulator we do not define all
the fields of this struct. Only the architecture and implementation fields are set. Architecture is
set to 0x02 and implementation is set to 0x10 corresponding to POWER-604.

11

lwzx rd,ra,rb
Input Dependencies: DNA,PPC_DGPR(RA) ,PPC_DGPR(RB) ,DNA,DNA
Output Dependencies: PPC_DGPR(RD) ,DNA,DNA,DNA,DNA

stwx rs,ra,rb

Input Dependencies:

PPC_DGPR(RS) ,PPC_DGPR(RA) ,PPC_DGPR (RB) ,DNA,DNA
Output Dependencies: DNA,DNA,DNA,DNA,DNA

DNA means no dependency.

PPC_DGPR is a macro that refers to the register file data
structure in the simulator.

RA, RB, RS are implicit arguments whose values are
detemined by decoding the instruction.

Figure 9: Example to illustrate input and output dependencies for the PowerPC ISA

9 Full Timing Simulation

sim-outorder is the detailed out-of-order pipeline simulator of the SimpleScalar’s suite of simula-
tors. Existing versions of SimpleScalar support the PISA and the Alpha ISA. We describe a port
of sim-outorder to support the PowerPC architecture. The complexities of the PowerPC ISA
as opposed to the simple PISA and Alpha ISA’s present implementation challenges. This section
describes the problems faced and consequent changes that were made to sim-outorder in order to
port it to the PowerPC architecture. We made modifications in the timing simulator to handle the
increased number of dependences an instruction is allowed to have in the PowerPC ISA. We also
made several modifications to support misaligned accesses, complex memory instructions which
write to memory and modify registers and a few complex floating point instructions that perform
more than one simple floating point operation.

9.1 machine.def

machine.def contains the input/output dependencies and functional unit requirements for every
supported PowerPC instruction. These specifications are crucial to ensure a correct and deadlock
free timing simulation. These specifications are read by the timing simulator to enforce dependences
and simulate out-of-order execution. Integer instructions are allowed up to have 5 input and 5
output dependence. For memory operations, a particular order was enforced in the specification of
input dependencies. The first input dependence is the register value to be written to the memory
(only for a store, no dependences for a load) and the second and the third input dependencies
specify the input operands for effective address computation as shown in Figure 9 for an example
load and store instruction.

9.2 Register and Memory Access Functions

The floating point and condition register access functions were rewritten for PowerPC as they were
different from PISA and Alpha. Memory access functions were modified to ignore certain type of

12

faults such as mis-alignment faults, since PowerPC allows addresses to be misaligned unlike PISA
and Alpha. The PowerPC ISA supports a few complex floating point instructions that perform
more than one simple floating point operations. We made a few modifications to account for the
multiple cycles these instruction would require to execute.

9.3 Register Dependencies

PowerPC instructions may have up to five input and up to five output dependencies. For example,
the fnmsubsd rd,ra,rc,rb instruction(Floating Negative Multiply-Subtract Single) uses all the
five input dependencies (three source operands, FPSCR and CR). The ruu dispatch and ruu issue
modules were augmented to check for these extra dependencies before firing the instruction execu-
tion.

9.4 Stores with Updates

Previous versions of SimpleScalar required that a store instruction does not modify the architected
register file. When a store instruction is issued, it has all the information required from the
architectural state (a register value) and the writeback pipeline stage is bypassed. In PowerPC,
store instructions could modify the register file. For example, the stwu instruction stores a word
in the memory and writes the effective address into a specified register. (stwu rs,4(ra) writes
4+(ra) back into ra). To account for these register updates, in our implementation, all stores were
made to go through the writeback stage.

9.5 Millicode

The Program Counter (PC) nearly always points to an address within the text segment. However,
on a mis-speculated path, the PC can point to an address that lies outside the text boundary.
sim-outorder puts in a semantic check to recognize these invalid addresses, and when these are
encountered a NOP (ori r0,r0,r0O)instruction is passed down the pipeline, instead of the invalid
instruction. This behavior prevents invalid instructions from crashing the simulator. This check is
done for every fetched instruction.

As described in section 8.1, PowerPC uses millicode to execute some arithmetic operations.
Millicode resides in the lower memory which is outside the text area. During the execution of
a millicode instruction, say the mull instruction, the PC contains the address corresponding to
this millicode. This address must be interpreted as legal, even though it does not fall in the text
segment. Hence, the semantic check described earlier should be augmented to recognize addresses
that fall in the millicode area. There are a total of six millicode instructions and the code for
these do not lie in one contiguous block. Instead of checking for each millicode address, only the
boundaries are checked. This is an optimization to save simulation time, as this check needs to be
performed every cycle.

9.6 Predecode

In SimpleScalar 3.0 predecode of the instruction stream is not done in sim-outorder. However,
for reasons described in the previous sections we require a predecode for each of the simulators to
make minor code modifications to handle system calls.

13

9.7 Load and Store Multiple Words

PowerPC has two fixed-point load and store multiple instructions (LMW and STMW) and 4 fixed-point
move assist instructions (LWSI,LSWX,STSWI, STSWX). On PowerPC systems operating in little-
endian byte order, executing these instructions causes the system alignment error handler to be
invoked. On systems operating in big-endian byte order, they fetch/store one or more words from/to
storage. Since these instructions access one or more words and hence one or more registers in a
single instruction, they could cause a lot of register dependencies, potentially up to 32.

These instructions have been implemented as blocking instructions in the simulator and follow
the big-endian behavior. We do not implement little-endian mode. Before an instruction of this class
is dispatched, the pipeline is drained so that all the previous instructions are committed. No other
instruction that follows this instruction is dispatched until this instruction has committed. Such
an implementation makes sure that all dependencies with respect to previous and later instructions
are satisfied correctly.

In order to correctly account for the memory stalls that may be caused by these instructions,
the following has been done.

1. Each of the addresses that an instruction of this form accesses, is presented to the memory
system one by one to check for tlb and cache hits.

2. The access latency for each address is computed and the total access latency for this instruc-
tion is found.

However, there is one problem with this implementation. All stores go to the Load/Store
queue(LSQ) and loads first check this queue before going to the memory system. But according to
the current implementation, for a STMW instruction, only the first word in the sequence of accesses
is stored in the LSQ, subsequent words are not stored. Hence, the memory access penalty may not
be captured accurately by the simulator. Most PowerPC hardware implementations use microcode
to perform the LMW and STMW instructions and our implementation is a close approximation to
what happens in reality.

9.8 Misaligned Accesses

Previous versions of SimpleScalar required memory addresses to be aligned on a word boundary and
exited with a fault when a misaligned address was encountered. PowerPC however, allows memory
addresses to be misaligned. A misaligned word access essentially translates to two consecutive
accesses followed by a selection and combination of the correct set of bytes. The memory access
functions of sim-outorder were modified to allow misaligned addresses. To correctly account
for memory system latencies, the same solution, as described previously for load/store multiple
instructions is adopted. The memory system is always presented with the correct number of accesses
in case of a misaligned access. We have assumed here that a misaligned access can involve at the
most one more memory access. Two consecutive addresses need to be presented only in the following
cases.

e Misaligned word access
e Half-word access that spans two aligned words

The ruu dispatch module was modified to detect misaligned accesses. Since the instructions are
effectively executed in this stage, the memory address being accessed is known. Using this address

14

and the type of memory operation (LMW/LWZ etc.), the required number of accesses needed to
complete this memory instruction is computed. This involves checking for the type of memory
instruction and checking if the address is aligned (i.e whether the next word needs to be accessed).

9.9 Floating Point Instructions

PowerPC has, as part of its floating point instructions, a set of instructions that perform a float-
ing point multiply, add and possibly negate, all in one instruction. An example is the fmadd
rd,ra,rc,rb instruction (Floating Point multiply add). We assumed that the multiplier unit has
an add and negate block at the end and hence the functional unit latency for these instructions are
assumed to be the same as that of a floating point multiply instruction.

10 Using SimpleScalar-PPC

The simulator is built according to the directions specified in [1] for SimpleScalar 2.0. Refer to that
document for installation and usage of the tool set. Currently there are two separate machine.def
files - one for native and another for non-native floating point implementations. For building the
simulator do the following:

make config-ppc
make sim-fast
make sim-outorder

If you are building the simulator on a non-native host, you must use a different machine.def
file. To do this, issue the following commands.

rm machine.def

1n -s target-ppc/powerpc-nonnative.def machine.def
make clean

make sim-fast

make sim-outorder

10.1 Compiler switches

A few of the instructions are defined only on some PowerPC implementations. These are the
class of Floating Point rounding and conversion instructions. To enable the simulation of these
instructions, the FP_ROUND_CONVERSION INST macro should be defined. If your host machine does
not implement these instructions, you will not be able to build the simulator. The problem does not
arise for non-native builds of the simulator where all the floating point instructions are implemented
in software. Since, GCC can compile for several PowerPC targets, the appropriate target should
be chosen. To cover the entire PowerPC ISA, use the compiler switch -mpowerpc. The target
identification flag is required to provide native support for floating point instructions on IBM AIX
hosts.

The FP_ROUND_CONVERSION_INST macro and the -mpowerpc switch are by default defined in
the Makefile.

15

10.2 Compiling Application Programs

Only programs that are statically linked can be simulated. To create static binary files using gcc,
use the command:

gcec -static file.c -o file.out
If you are using the IBM AIX compiler, use the command:

cc -bnso -bI:/usr/lib/syscalls.exp file.c -o file.out

10.3 Bug Reports

Please send bug reports to karu@cs.utezxas. edu.

11 Acknowledgments

We would like to thank Pat Bohrer, Tom Keller and Rick Simpson for their help in providing us
with details about AIX system behavior.

References

[1] D. Burger and T. M. Austin, “The simplescalar tool set version 2.0,” University of Wisconsin-
Madison Computer Sciences Department Technical Report, June 1997.

[2] C. May, E. Silha, R. Simpson, and H. Warren, The PowerPC Architecture: A Specification for
a new family of RISC processors. Morgan Kaufmann Publishers, May 1994.

16

APPENDIX A

List of instructions implemented. When instructions other than these are encountered, the simula-
tor will come to a halt.

Instruction Name Function

sc Syscall

subf]o], subfo]. Subtract From

subfic Subtract From immediate carrying
subfc[o], subfc|o]. Subtract From carrying

subfe[o], subfe[o]. Subtract From extended
subfme[o], subfe[o]. Subtract From minus one extended
subfze[o], subfe[o]. Subtract From zero extended
add[o], add[o]. Add

addc[o], addc|o]. Add carrying

adde[o], adde[o]. Add extended

addi, addi. Add immediate

addic, addic. Add immediate carrying

addis Add immediate shifted

addme[o], addme[o]. Add to minus one extended
addze[o], addze[o]. Add to zero extended

mulhd, mulhd. Multiply high doubleword
mulhdu, mulhdu. Multiply high doubleword unsigned
mulhw, mulhw. Multiply high word

mulhwu, mulhwu. Multiply high word unsigned
mulld[o], mulld[o]. Multiply low doubleword

mulli Multiply low immediate
mullw(o], mullw[o]. ~ Multiply low word
divw[o], divw][o]. Divide word

divwu[o], divwu[o]. = Divide word unsigned
slw, slw. Shift left word

SIW, SI'W. Shift right word

sraw, sraw. Shift right algebraic word
srawi, srawi. Shift right algebraic word immediate
cntlzw, ctlnzw. Count leading zeros word
extsb, exstb. Extend sign byte

extsh, exsth. Extend sign halfword
extsw, exstw. Extend sign word

cmp Compare

cmpi Compare immediate
cmpl Compare logical

cmpli Compare logical immediate
addi Add immediate

addis Add immediate shifted
xori XOR immediate

xoris XOR immediate shifted
and, and. AND

andc, andc. AND with complement

17

Instruction Name

Function

andi.
andis.
or, or.
orc, orc.
ori

oris

nor, nor.
nand, nand.
XOT, XOr.
xori
xoris
eqv, eqv.
neg[o], negfo].
Ibz

Ibzu
Ibzux
Ibzx

Ifd

lfdu
Ifdux
Ifdx

Ifs

Ifsu
Ifsux
Ifsx

lha

lhau
lhaux
lhax
Ihbrx
lhz

lhzu
lhzux
lhzx
Imw
Iswi
Iswx
Iwa
Iwarx
Iwaux
lwax
Iwbrx
lwz
lwzu
Iwzux
Iwzx

stb

AND immediate

AND immediate shifted

OR

OR with complement

OR immediate

OR immediate shifted

NOR

NAND

XOR

XOR immediate

XOR immediate shifted

Equivalent

Negate

Load byte and zero

Load byte and zero with update

Load byte and zero with update indexed
Load byte and zero indexed

Load Floating Point double

Load Floating Point double with update

Load Floating Point double with update indexed

Load Floating Point double indexed
Load Floating Point single
Load Floating Point single with update

Load Floating Point single with update indexed

Load Floating Point single indexed

Load halfword algebraic

Load halfword algebraic

Load halfword algebraic with update indexed
Load halfword algebraic indexed

Load halfword byte-reverse indexed

Load halfword and zero

Load halfword and zero with update
Load halfword and zero with update indexed
Load halfword and zero indexed

Load multiple word

Load string word immediate

Load string word indexed

Load word algebraic

Load word and reserve indexed

Load word algebraic with update indexed
Load word algebraic indexed

Load word byte-reverse indexed

Load word and zero

Load word and zero with update

Load word and zero with update indexed
Load word and zero indexed

Store byte

18

Instruction Name

Function

stbu

stbux

stbx

stfd

stfdu

stfdux

stfdx

stfiwx

sts

stfsu

stfsux

stfsx

sth

sthbrx

sthu

sthux

sthx

stw

stwbrx

stwu

stwux

stwx

stmw

stswi

stswx

bi[1][a]

bell[a]

belr[l]

becetrl[l]

crand

crandc

cror

crorc

crxor

crnor

crnand

creqv

rlwimi, rlwimi.
rlwinm, rlwinm.
rlwnm, rlwnm.
mcrf

mcrfs

mtfsbl, mtfsbl.
mtfsb0, mtfsbO0.
mtfsfi, mtfsfi.
mtfsf, mtfsf.
mffs, mffs.

Store byte with update

Store byte with update indexed

Store byte indexed

Store Floating Point double

Store Floating Point double with update
Store Floating Point double with update indexed
Store Floating Point double indexed

Store Floating Point as integer word indexed
Store Floating Point single

Store Floating Point single with update
Store Floating Point single with update indexed
Store Floating Point single indexed

Store halfword

Store halfword byte-reverse indexed

Store halfword with update

Store halfword with update indexed

Store halfword indexed

Store word

Store word byte-reverse indexed

Store word with update

Store word with update indexed

Store word indexed

Store multiple word

Store string word immediate

Store string word indexed

Branch

Branch conditional

Branch conditional to Link register

Branch conditional to Count register
Condition register AND

Condition register AND with complement
Condition register OR,

Condition register OR with complement
Condition register XOR

Condition register NOR

Condition register NAND

Condition register Equivalent

Rotate Left Word Immediate then Mask Insert

Rotate Left Word Immediate then AND with Mask

Rotate Left Word then AND with Mask
Move Condition register field

Move to Condition register from FPSCR
Move to FPSCR bit 1

Move to FPSCR bit 0

Move to FPSCR field immediate

Move to FPSCR fields

Move from FPSCR

19

Instruction Name Function

fdiv, fdiv. Floating Point Divide
fdivs, fdivs. Floating Point Divide single
fsub, fsub. Floating Point Subtract
fsubs, fsubs. Floating Point Subtract single
fadd, fadd. Floating Point Add
fadds, fadds. Floating Point Add single
fmul, fmul. Floating Point Multiply
fmuls, fmuls. Floating Point Multiply single
fres, fres. Floating Point Reciprocal
fneg, fneg. Floating Point Negate
fabs, fabs. Floating Point Absolute value
fnabs, fnabs. Floating Point Negative Absolute value
fmsub, fmsub. Floating Point Multiply-Subtract
fmsubs, fmsubs. Floating Point Multiply-Subtract single
fonmsub, fnmsub. Floating Point Negate Multiply-Subtract
fnmsubs, fnmsubs. Floating Negate Multiply-Subtract Single
fmadd, fmadd. Floating Point Multiply-Add
fmadds, fmadds. Floating Point Multiply-Add single
fnmadd, fnmadd. Floating Point Negate Multiply-Add
fnmadds, fnmadds. Floating Point Negate Multiply-Add Single
fsqrt, fsqrt. Floating Point Square Root
fsqrts, fsqrts. Floating Point Square Root single
frsqrte, frsqrte. Floating Point Reciprocal Square Root Estimate
fcmpo Floating Point Compare ordered
fcmpu Floating Point Compare unordered
frsp, frsp. Floating Point round to Single-Precision
fctiw, fctiw. Floating Point convert to integer word
fctiwz, fctiwz. Floating Point convert to integer word with round toward zero
fmr, fmr. Floating Point Move Register
fsel, fsel. Floating Point Select

Notes:

e For all instructions, a dot suffix indicates that the result of the instruction is compared with
zero and CRO bit 0, 1 or 2 is set depending on whether the result is less than, greater, or
equal to zero. Further, CRO bit 3 is set to the Summary Overflow (SO) of the XER register
after completion of the instruction execution.

o A dot suffix for a floating point instruction indicates that, CR1 is set to 0, 1 or 2 is set
depending on whether the result is less than, greater, or equal to zero.

e Fixed point instructions which have an optional “o” suffix update the XER register.

e For the branch processor instructions, a suffix of “1” indicates that the Link Register is
updated by the instruction. A suffix of “a” denotes that the branch target address is calculated
by adding a computed value to the address of the current instruction. The corresponding
instruction without the suffix “a”, would simply compute a branch target address and return
it.

20

