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Abstract

In this report, we examine the effect of the size and latency of critical microarchitectural struc-
tures on TPC. A modified version of Cacti was used to study the scalability of these structures
with technology. We quantify the impact of the capacity of microarchitectural components on
access time. We also investigate the effect of structure capacity and latency on performance
using a suitably modified version of a validated Alpha 21264 simulator.
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Figure 1: Processor clock rates 1995-2000

1 Introduction

Microprocessors have been improving in performance approximately at the rate of 40-50% per year
over the last decade. This improvement in performance has been largely due to improvements
in clock frequencies and improvements in instructions per cycle (IPC). While processor designs
have benefited from improvements in both clock and IPC, some designers have emphasized im-
provements in clock frequency, as can be seen from Figure 1. Others have focused their efforts
on improving instruction throughput, as shown in Figure 2. Both design approaches have yielded
similar improvements in performance across processor generations.

Improvements in IPC can be largely attributed to innovative architectural designs and increased
capacity of microarchitectural components. Smaller technologies have enabled fabrication of more
transistors on-chip. This ability has in turn allowed architects to devote more transistors to microar-
chitectural structures designed to extract program parallelism. The other parameter contributing
to processor performance is clock frequency. Improvements in clock frequency arise in part from
reducing the amount of work done each cycle and also from changes in process technology. The
shorter gate lengths of smaller technologies improve switching speed of transistors and thereby help
achieve higher clock frequencies. Another effect of fabricating devices in smaller technologies is the
increasing dominance of wire delays. As technology scales the resistance of interconnects increases
while their capacitance remains more or less constant. The effect of technology scaling on intercon-
nects is to increase the RC propagation delay. In short, as technology scales wire propagation delay
increases relative to transistor switching delay [1]. While wires are predicted to get slower in future
technologies, the on-chip clock frequency is projected to rise super-linearly [2]. This combination
of slow wires and rapidly increasing clock frequencies will reduce the area on the chip that can be
reached in a single clock cycle [1].

Improving IPC requires microarchitectural structures to store runtime state information. How-
ever, poor scaling of wires and increasing clock frequencies will increase number of cycles to access
these structures. A high performance design will have to balance the access latency of key microar-
chitectural structures and the clock frequency. This report examines two important issues that will
help demonstrate the tradeoffs between clock frequency and pipeline depth (structure size) — (a)
the scalability of microarchitectural structures and (b) the impact of structure latency and capacity
on performance.

The remainder of this report is organized in the following fashion. In section 2 we describe
the methodology used to scale microarchitectural structures and our assumptions regarding how
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Figure 2: Normalized processor performance (SpecInt/MHz)

| Integer | Floating Point |

164.gzip 171.swim
175.vpr 172.mgrid
176.gcc 173.applu
181.mcf 177.mesa
197.parser 178.galgel
252.eon 179.art

253.perlbmk 183.equake
256.bzip2 188.ammp
300.twolf 189.1ucas

Table 1: SPEC 2000 Benchmarks

the structures are pipelined. Section 3 presents a study of the sensitivity of IPC with respect to
individual structure latency and capacity. Sections 4 and 5 examine two design methodologies
future designers could adopt: (a) pipeline scaling, wherein the capacity of the structures is kept
constant and their access latencies are scaled per technology and clock frequency and (b) capacity
scaling, wherein the access latency of structures is held constant and their capacities are scaled
with technology. In section 6 we select the best possible design configurations from the capacity
and pipeline scaling methods, trading off structure capacity against its access latency and section
7 summarizes the results and presents the conclusions.

2 Methodology

2.1 Simulation Methodology

To study the effect of technology scaling on microarchitectural pipeline, we chose to scale the
Alpha 21264 core since it is representative of a modern high performance design. The Alpha 21264
processor is implemented as a seven stage pipeline capable of issuing up to four instructions every
cycle. The memory organization for this processor consists of level-1 instruction and data caches
and a unified level-2 cache. The instruction cache is direct mapped and accessible in a single cycle.
The data cache is 2-way set associative and has an access latency of 3 cycles. Both level-1 caches
are 64KB in size and the level-2 cache is 2MB large.

For our experimental simulations we used a simulator developed by Desikan, et al. [3]. This



| Capacity (bits) | # entries | Bits/entry | Ports | Latency |

L1 I-Cache 512K 1K 512 1 1
L1 D-Cache 512K 1K 512 2 3
L2 Cache 16M 16K 1024 2 6
I-TLB 6K 128 44 1 1
D-TLB 6K 128 44 2 1
Local pred. 3K 1K 3 1 0.5
Local history 10K 1K 10 1 0.5
Global pred. 8K 4K 2 1 1
Choice pred. 8K 4K 2 1 1
Reorder buffer 10K 80 128 8 1
Rename Table 80 80 1 12 1
Issue window 800/320 20 40 8/6 1
Register File 5K 80 64 10 1

Table 2: Capacities of structures used in delay calculations

simulator models the Alpha 21264 micro-architecture to within 18% error. We simulated bench-
marks from the SPEC 2000 suite for up to 500 million instructions. Table 1 lists the benchmarks
used for our simulations. In the rest of this section we describe the methodology used to scale
microarchitectural components.

2.2 Modeling Micro-architectural Structures

To estimate the access latency of microarchitectural structures we model them using Cacti [4].
Cacti is an analytical tool that models access and cycle times of caches and cache-like components.
Given a specific configuration — the size of the cache, cache block size, associativity, the number of
address and output bits and the number of ports — the tool computes the access delay of the cache.
Cacti models different parts of cache circuitry by decomposing them into simple RC equations.
The total delay of the circuit is the sum of the delays of each individual component. The original
version of Cacti models a cache at 0.25 micron technology, Agarwal, et al. [5] extended the tool to
model caches at smaller technologies.

We model the following microarchitectural structures using Cacti: instruction and data caches,
register file, branch predictor, translation look-aside buffer (TLB), register rename table, instruction
issue window and re-order buffer (ROB). The structures were configured as shown in Table 2.

The instruction and data TLBs are modeled as content-accessible memories (CAM) with 56
bits wide tags - 48 bits of virtual address and 8 bits to represent the address space number. Each
entry of the TLB is 44 bits wide to represent the physical address. The branch predictor in the
Alpha 21264 [6] consists of a local predictor, a global predictor and a choice predictor. The local
predictor is a 2-level predictor that uses the contents of a local history table of 1K entries index
into a local predictor table of 1K entries. The local history table itself is indexed using 10 bits of
the branch instruction PC. The global predictor is a table of 4K entries that is indexed by a global
history of the 12 most recent branches. The choice predictor selects between the predictions made
by the local and global predictors. All three predictors can be accessed in parallel, therefore the
latency of the branch predictor is determined by the slowest of the three predictors. We found that
the local predictor latency was always the component that determined the branch predictor latency
across all technologies and clock frequencies.

The instruction issue window (IW) is modeled as a 8-bit wide CAM and a 40-bit wide direct



mapped structure. The IW has 8 ports which are used to write 4 new instructions every cycle and
to issue 4 instructions. The IW in the Alpha 21264 is a self collapsing window - it collapses empty
slots at the beginning of the cycle to make room for new incoming instructions. Qur model of the
instruction window does not account for this functionality.

The rename table is organized as a CAM [7]. The CAM has one entry for each physical register.
Each entry has two fields - a logical register designator and a valid bit. The valid bit is set if the
current mapping is valid. Renaming is done by matching the logical register designator field. The
rename table has 12 ports to enable renaming of up to four instructions in a cycle.

The access latency obtained from Cacti is used to scale the microarchitectural structures for
the pipeline and capacity scaling experiments. We also assume that all of the structures can be
perfectly pipelined.

3 Sensitivity Analysis

The size and access latency of microarchitectural structures have a direct impact on the performance
of the processor. Large microarchitectural components result in better performance of the structures
— in the case of branch predictors it results in better accuracy while in the case of caches and TLBs
it results in better hit rates. However, increasing structure capacity also increases access latency
of the structures. This increase in access latency could degrade overall performance.

In this section we examine the impact of structure size and latency on IPC. We performed two
sets of experiments. In the first set of experiments the structure sizes are configured to be the
same as the base case while the access latencies of these structures is varied. The second set of
experiments vary the capacity of structures while holding their access latencies to be the same as
the base case.

In each of the experiments either the access latency or the capacity of one structure is varied
while all other structures are configured as in the base case. For our experiments we simulated the
SPEC 2000 benchmark suite, for all experiments we report the harmonic mean of the IPC of the
integer and floating-point benchmarks. All simulations were run for 500 million instructions. We
used a modified version of the sim-alpha [3] simulator for our studies.

3.1 Impact of Structure Latency on IPC

In this section we study the impact of individual structure latencies on instruction throughput. For
these simulations the capacity of the structures are the same as the base case and the latency is
varied.

3.1.1 Instruction Cache

The instruction cache latency has a large impact on IPC. On every I-cache access the Alpha 21264
processor fetches four instructions, corresponding to its issue width. If the I-cache access time is
increased to two cycles then a bubble is introduced in the pipeline on every fetch. This clearly
hurts performance and is not a realistic design option. Designers can tolerate some I-cache latency
by fetching a larger number of instructions on every fetch and buffering those instructions in a
small memory structure (i.e. caching the I-cache). However, an exhaustive study of such front end
design techniques is outside the scope of this report. While we realize that multi cycle I-caches
are not a valid design option we include the study of the sensitivity of IPC to I-cache latency for
completeness.
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Figure 4: L1 Data Cache Latency Sensitivity

Figure 3 shows a plot of IPC versus instruction cache (IL1) latency. In this graph and all
subsequent graphs in the sensitivity analysis section, we plot the harmonic mean of the integer
benchmark IPCs as the integer curve, similarly the curve marked as floating-point is the harmonic
mean of the floating-point benchmark IPCs. Both integer and floating-point benchmarks show the
largest drop in IPC when IL1 latency increases from 1 to 2 cycles. The integer benchmarks drop
in IPC by about 48% and the floating-point benchmarks show a drop of 37%. For both sets of
benchmarks IL1 latencies beyond 6 cycles do not have a large impact on IPC.

3.1.2 Data Cache

Figure 4 shows a plot of IPC versus DL1 cache latency for integer and floating-point benchmarks.
The integer benchmarks show an IPC drop of about 41% when the latency of the data cache is
increased from 1 to 10 cycles while the floating-point benchmarks show a drop of around 25%. Both
sets of benchmarks execute approximately the same number of load/store instructions. However,
the floating-point benchmarks have greater instruction level parallelism and are therefore able to
hide the memory access latencies by executing more instructions in parallel.

3.1.3 Translation Look-aside Buffer

In Figure 5 we display a plot of the IPC against increasing DTLB latency. The data cache we
considered is a virtually indexed, physically tagged structure. Therefore the cache can be indexed
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Figure 5: DTLB Latency Sensitivity
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Figure 6: L2 Latency Sensitivity

and the appropriate data can be obtained while the TLB is being accessed to obtain the translation.
In effect the latency of a hit in the DL1 is the maximum of the latencies to access the TLB and
the latency to access the data cache. Therefore it is not surprising that the sensitivity curve for
the Data TLB looks exactly like the curve for the DL1 cache.

3.1.4 Level-2 Cache

Almost all the benchmarks have very low L1 cache miss rates and hardly access the L2 cache.
Therefore, as can be seen from Figure 6 the L2 cache latency does not affect IPC significantly.

3.1.5 Branch Predictor

Branch prediction occurs in the second stage of the Alpha 21264 pipeline. In the fetch stage of the
pipeline a line predictor predicts the next cache line to be fetched. The line predictor provides a
prediction in a single cycle. The branch predictor is accessed in the second stage of the pipeline.
If the branch predictor agrees with the line predictor then no special action is taken. However, if
the branch predictor disagrees with the line predictor then the instructions in the fetch stage are
flushed, and in the next cycle the fetch engine begins to fetch instructions from the path predicted
by the branch predictor. Whenever the branch predictor and the line predictor disagree a 1 cycle
bubble is introduced in the pipeline.

For the sensitivity experiments, and in the subsequent pipeline and capacity scaling experiments,
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we do not scale the line predictor. When the branch predictor is configured to take multiple cycles
to provide a prediction, the fetch engine continues to fetch instructions as long as the pipeline
stages between the fetch stage and slot stage have sufficient buffer space to accommodate the new
instructions.

Figure 7 plots the harmonic mean of TPCs against access latency for integer and floating-point
benchmarks. For the integer benchmarks IPC decreases by close to 55% when the latency of the
branch predictor is increased from 1 to 10 cycles. For the floating-point benchmarks this decrease
is noticeably smaller, for a similar increase in branch predictor latency the IPC decreases by only
6%.

The effect of increasing the branch prediction latency is more pronounced on the integer bench-
marks. This is to be expected because the integer SPEC benchmarks encounter a branch in about
every 6 instructions as opposed to the floating-point benchmarks which encounter a branch every
55 instructions.

3.1.6 Register File

For the simulation of the register files we assume that register file access can be fully pipelined. In
addition we also assume a full bypass from the execution units to the register read stages. Increasing
the register read penalty extends the pipeline and adds to the branch mispredict penalty. The effect
of increasing register read latency from 1 to 10 cycles decreases IPC by about 26% for the integer
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Figure 9: Latency Sensitivities

benchmarks and by about 20% for the floating-point benchmarks. The floating-point benchmarks
have better branch prediction rates and therefore suffer the misprediction penalty less frequently
than the integer benchmarks.

3.1.7 Rename Table

We model the rename table latency by increasing the number of stages between slot and map stage
of the original Alpha 21264 pipeline. The only effect of increasing the rename table access latency
has is increasing the branch misprediction penalty. Figure 8B shows that when the rename table
latency is increased from 1 to 10 cycles the IPC of the integer benchmarks falls by around 25%
while the IPC of the floating-point benchmarks falls by around 12%.

3.2 Re-order Buffer Latency

In Figure 9A we show the sensitivity of IPC to ROB latency. The ROB latency affects only the
branch misprediction penalty. Again the IPC of the integer benchmarks are more sensitive to ROB
latency than the floating-point benchmarks. As the ROB latency is increased from 1 to 10 cycles
the integer benchmarks show a drop in IPC of about 35% while the floating-point benchmarks show
a drop in IPC of about 18%.

3.2.1 Functional Unit

The latency of functional units affects the pipeline in two ways — it increases the branch mispre-
diction penalty and delays the execution of dependent instructions. The IPC is therefore more
sensitive to functional unit latency than it is to either register read or rename table latencies.

3.2.2 Instruction Window

The Alpha 21264 has two instruction issue windows — one for integer instructions and one for
floating-point instructions. The function of the instruction windows is to wake up instructions,
thereby marking them as ready to be selected, and selecting from the instructions that are awake.
Every cycle the tags of the operands being committed are compared with the tags of the source
operands of every instruction in the instruction window. If the tags match the source operand for
the corresponding instruction is marked as ready. An instruction is woken up if both its source
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operands are ready. Instructions to be issued are then selected from among those that are awake
based on the availability of functional units. A more detailed description of wakeup-select logic is
presented by Palacharla, et al. [7].

For our simulations we assumed the issue window is fully pipelined. For example, if an issue
window was capable of holding 20 instructions with a 2 cycle access latency. A set of tags are
compared with the first ten entries in the first cycle. In the second cycle the same set of tags are
compared with the next ten entries, while a new set of tags are compared with the first ten entries.
In every cycle potentially the entire instruction window could be woken up.

In Figure 10 we show a plot of the IPC and instruction issue window latency. The integer
benchmarks show a 12% decrease in IPC when the instruction window latency is increased from 1
to 10 cycles while the floating-point benchmarks show a decrease of around 5%. The IPC is not
as sensitive to the instruction window latency as it is to the register read latency or the rename
latency. This effect is seen because of the way the instruction window is pipelined.

3.3 Impact of Structure Capacity on Performance

In this section we examine the impact of structure capacity on instruction throughput. For these
simulations the access latencies of the structures are configured to be the same as the base case
while their capacities are varied. For each experiment the capacity of one individual structure is
varied, the capacities of other structures are held constant.

3.3.1 Instruction Cache

To measure the sensitivity of instruction throughput with respect to the instruction cache we
conducted an experiment varying the I-cache size from 1M Byte to 1K Byte. As the I-cache size
is decreased the miss rate of the cache increases. The decrease in IPC is a direct result of the
increasing miss rate. As shown in Figure 1la for the integer benchmarks the IPC dropped by
about 50% and for the floating point benchmarks the drop was just 11%. One of the reasons for
the surprisingly small reductions in IPC is that we do not execute the programs to completion.
However, since we do not scale the IL1 cache for the pipeline or capacity scaling experiments the
conclusions drawn from those experiments are unaffected by this effect.
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3.3.2 Data Cache

In Figure 11b we show the sensitivity of IPC to data cache size. When the data cache size is
varied from 1MByte to 1KByte the IPC drops by about 256% for both the integer and floating-point
benchmarks. For a cache size of just 1K the miss rate is about 45% for both sets of benchmarks.
The miss rate progressively decreases as the cache size is increased. After about 128K of data
cache memory we see no change in the miss rate when cache sizes are further increased. However,
the IPC does not show any improvement for cache sizes beyond 64KB despite the decrease in miss
rates. The latency of these extra misses is tolerated due to out of order execution and the inherent
parallelism in the instruction stream.

3.3.3 Translation Look-aside Buffer

In the Alpha 21264 the L1 instruction cache is virtually indexed and virtually tagged and therefore
does not require a translation to be accessed. The L1 data cache is virtually indexed and physically
tagged and would require the translated address to perform tag compares. We varied the capacity
of the data TLB from 4 entries to 1024 entries, Figure 12A shows a plot of IPC against the DTLB
capacity. For both sets of benchmarks the IPC is extremely poor for small DTLB capacities between
4-16 entries due to a large number of DTLB misses. For DLTB capacities of 32-128 entries the
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Figure 13: Branch Predictor Capacity Sensitivity

TIPC shows a marginal increase. Increasing the capacity beyond 128 entries shows no benefit in
instruction throughput.

3.3.4 Level-2 Cache

In Figure 12B we plot the sensitivity of IPC to level-2 cache size. The level-2 cache size is varied
from 64KB up to 4MB. For both sets of benchmarks IPC improves by 15% when the cache capacity
is increased from 64KB to 2MB. The relatively small effect of the L2 cache capacity on IPC is
explained by the fact that the L1 caches have high hit rates. The majority of memory requests are
satisfied by the L1 caches. At about 2MB the working set of most benchmarks is captured in the
L2 cache and there is no improvement in IPC for larger cache sizes.

3.3.5 Branch Predictor

The Alpha 21264 branch predictor consists of a 1K entry local predictor and 4K entry global and
choice predictors. In scaling the capacity of the branch predictor we kept the ratio between the
sizes of the local and global/choice predictor the same. The size of the local predictor was varied
between 128-8K entries and correspondingly the size of the global and choice predictors were varied
between 512-32K entries. Figure 13 shows the sensitivity of IPC to branch predictor capacity. The
integer benchmarks are more sensitive to the branch predictor capacity than the floating-point
benchmarks because they have poorer branch behavior. The improvements in IPC saturate for a
branch predictor capacity of - 1K local entries, 4K global entries.

3.3.6 Register File

The Alpha 21264 provides 32 integer architectural registers and the same number of floating-point
architectural registers. In the map stage of the pipeline the operands of every instruction are
renamed, this is the way conventional superscalar architectures remove false dependencies. Once
the destination operand on an instruction is renamed all subsequent instructions that depend on
the current instruction use the new renamed value.

One of the issues related to register renaming is when the physical register is to be released.
The physical register cannot be released when the corresponding instruction is committed as there
could be dependent instructions in-flight. When an instruction is committed the current physical
register is not released, instead the physical register that was previously mapped to the committing

11
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architectural register is released. In order for this mechanism to work there needs to be at least
twice as many physical registers as architectural registers.

Figure 14A shows the sensitivity of IPC to the number of registers. The integer and floating
point register file capacity is increased from 68 to 112. The register file capacity has negligible
impact on the instruction throughput of integer benchmarks. The floating-point benchmarks on
the other hand show an improvement in IPC of close to 40% when the register file capacity is
increased from 68 to 112.

3.3.7 Re-order Buffer

The capacity of the re-order buffer was varied from 4 to 384 entries. As shown in Figure 14B the
IPC increases till about the capacity of the ROB gets to 32 entries. For capacities larger than 32
entries the IPC remains unchanged.

3.3.8 Instruction Window

The instruction issue window was varied from 8 to 128 entries, the sensitivity of IPC to issue
window size is shown in Figure 15. The IPC increases as the capacity of the structure is increased
and peaks at an issue window capacity of 15. Thereafter there is no significant change in the IPC.

12
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4 Pipeline Scaling

Performance is a function of two parameters - instruction throughput and clock frequency. Im-
provements in microprocessor performance in the past has come about by improvements to both
these parameters. One method designers use to obtain higher clock frequencies is by reducing
the amount of work done in every stage of the pipeline and thereby increasing the depth of the
pipeline. However, this improvement in clock frequency comes at a price. Longer pipelines increase
the penalty of mis-predicted branches and therefore tend to reduce instruction throughput (IPC).
Furthermore, in pipelined processors the entire clock period cannot be not used to perform useful
work. A fraction of the period is required by the latches between the pipeline stages to sample and
hold data values. This time is termed as latch overhead. As the amount of work at every pipeline
stage is reduced the overhead becomes an increasing fraction of the clock period. Since a smaller
fraction of the clock period is used to perform useful work in deep pipelines each operation will
take longer time to complete.

Deeper pipelines result in improvements to clock frequency but also degrade IPC due to greater
mis-predict penalties, greater structure access penalties and increased latch overhead. In this section
we study the tradeoff between clock frequency and IPC for deeply pipelined processors. For this
purpose we consider an Alpha 21264 like processor core. The capacities of the microarchitectural
structures such as caches, TLBs, branch predictors etc. are configured to be the same as in the
Alpha 21264. The structure access penalties are varied corresponding to the clock frequency. We
consider frequencies ranging from 2 fanout-of-four to 16 fanout-of-four (fo4). In addition, to examine
how this tradeoff scales in the future we extend our experiments across seven technologies — 250nm,
180nm, 130nm, 100nm, 70nm, 50nm and 35nm.

As explained in section 2.2 we use Cacti to model the microarchitectural components at the
different technologies. Table 3 shows microarchitectural structures we considered and their access
penalties at 100nm technology for each of the clock frequencies we studied. In addition to mi-
croarchitectural components the latencies of functional units were also scaled. Table 4 shows the
latencies of the functional units at 100nm technology in terms of clock cycles. In both tables the
column designated as Clock represents the amount of useful work per pipeline stage. The access
penalties of structures and functional units at other technologies are listed in Appendix A.

Figure 16 shows a plot of the harmonic mean of IPC values, measured across the SPEC 2000
integer and floating point benchmarks, against clock period. The x-axis plots the clock period

13



| Clock (fo4) | DL1 | DTLB | ITLB | L2 | Branch Pred. | ROB | Rename Table | Issue Window | Reg. File |

2 16 11 11 89 10 7 9 9 6
3 11 7 7 60 7 5 6 6 4
4 9 6 6 45 5 4 5 5 3
5.5 7 4 4 33 4 3 4 4 2
6 6 4 4 30 4 3 3 3 2
7 6 3 3 26 3 2 3 3 2
8 5 3 3 23 3 2 3 3 2
9 5 3 3 20 3 2 2 2 2
10 4 3 3 18 2 2 2 2 2
11 4 2 2 17 2 2 2 2 1
12 4 2 2 15 2 2 2 2 1
13 4 2 2 14 2 1 2 2 1
14 4 2 2 13 2 1 2 2 1
15 3 2 2 12 2 1 2 2 1
16 3 2 2 12 2 1 2 2 1

Table 3: Pipeline scaling structure latencies at 100nm technology

| Clock (fo4) | Int. Add | Int. Mult. | Int. Div. [ Fp. Add | Fp. Div. | Fp. Sqrt | Fp. Mult. | Fp. Cmp. |

2 9 61 174 35 105 157 35 35
3 6 41 116 24 70 105 24 24
4 5 31 87 18 53 79 18 18
5.5 4 23 64 13 38 57 13 13
6 3 21 58 12 35 53 12 12
7 3 18 50 10 30 45 10 10
8 3 16 44 9 27 40 9 9
9 2 14 39 8 24 35 8 8
10 2 13 35 7 21 32 7 7
11 2 12 32 7 19 29 7 7
12 2 11 29 6 18 27 6 6
13 2 10 27 6 17 25 6 6
14 2 9 25 5 15 23 5 5
15 2 9 24 5 14 21 5 5
16 2 8 22 5 14 20 5 5

Table 4: Pipeline scaling operation latencies at 100nm technology
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Figure 17: 100nm Technology Pipeline Scaling Performance Trend

increasing from 2fo4 to 16fo4. In general, as the clock period increases the IPCs of both integer
and floating point benchmarks increase up to a point. This improvement in IPC is due to reduced
structure access penalties and branch misprediction penalties at higher clock periods. For both
the integer and floating point benchmarks the frequency of memory operations is greater than the
frequency of branches. In addition, the branch misprediction penalty is paid infrequently due to
high branch prediction accuracy. Therefore IPC is more sensitive to the level-1 data cache access
penalty than the branch misprediction penalty.

The IPC of both benchmarks show a sharp rise for the clock periods between 2fo4 and 6fo4.
This sharp rise is due to the decrease in the access penalty of multiple structures. Though the
reduced penalties of all structures contribute to the improvement the level-1 data cache has the
most significant effect, since on average 1 in 5 instructions is a memory operation. The integer
benchmark IPC shows a smaller improvement for clock periods between 6fo4 to 8fo4. These periods
correspond to locations in Table 3 and Table 4 where the penalty of only one structure or functional
unit decreases. The integer IPC shows a smaller improvement for the clock periods between 6fo4 and
8fo4. Table 3 shows that at these clock periods the access penalty of just one structure or functional
unit decrease. Correspondingly the improvement in IPC is also reduced. For clock periods between
8fo4 and 11fo4 the access penalties of multiple structures and the most commonly used integer unit
(Add) decrease. Therefore IPC shows a much larger improvement for this interval. After the 11fo4
clock period the access penalties of the various microarchitectural structures and integer functional
units remain more or less unchanged. Consequently the IPC of the integer benchmarks remains
almost constant. A small increase in IPC between 14fo4 and 15fo4 clock periods occurs due to a 1
cycle decrease in DL1 access penalty at 15fo4.

The floating point benchmarks have a lot more parallelism as compared the the integer bench-
marks and fewer branches. Therefore their IPCs are inherently less sensitive to structure structure
access penalties and mispredictions. Furthermore, the Alpha 21264 architecture is capable of issu-
ing only two floating point instructions every cycle which limits their absolute IPC. Accordingly,
the impact of varying pipeline depth and structure access penalties has a significantly smaller effect
on the IPCs of floating point benchmarks. A combination of the above factors contributes to a
fairly smooth IPC curve for the floating point benchmarks.

Instruction throughput is only one part of the equation governing performance, the other half
is clock frequency. A reduction in instruction throughput can be tolerated if the corresponding
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increase in clock frequency results in improved performance.

A processor’s clock frequency is determined by the amount of logic in it’s slowest pipeline stage
and the latch overhead. Latch overhead varies between 1-2.5fo4 [CITE Oklob reference| depending
on the design of the latch that is used. In Figure 17 we plot the absolute performance of the
SPEC 2000 benchmarks at different latch overheads. The y-axis on this graph shows performance
in terms of billions of instructions per second. The x-axis shows the clock period (without latch
overhead) in units of fo4. The graph plots five performance curves corresponding to five different
latch overheads (0fo4 - 2fo4).

For the curve assuming perfect latches with no overheads, the clock frequency increases faster
than the rate at which IPC decreases. Therefore overall performance increases as the clock period
decreases. However, perfect latches are not a realistic assumption. Real latches have setup and
hold times that have to be adhered to in addition to the propagation delay through the latch itself.
The curves that assume latch overheads ranging from 1 to 2.5fo4 show that the best performance
is achieved with 6fo4 useful logic at every stage. At clock periods smaller than 6fo4 the decrease in
IPC combined with the latch overhead is too large and the improvement in clock frequency is not
enough to improve performance. At clock periods larger than 6fo4 the improvement in ITPC is not
enough to account for the loss in performance due to lower clock frequency.

The integer benchmarks show a small dip in performance over the period between 6-8fo4. As
explained earlier, the slope of the IPC curve for integer benchmarks between 6-8fo4 is lower than
the slope between 8-11fo4. This reduced slope accounts for the small drop in performance. In
contrast, the floating point benchmark performance curve is very flat. The best performance is
at 6fo4 but the performance at adjacent clock periods is very close. This behavior is due to the
smooth, almost linear increase in the IPC curve of the floating point benchmarks.

Appendix B shows the instruction throughput and performance graphs for the experiments
conducted at other technologies. The IPC and the performance graphs show the same trend across
technologies for both sets of benchmarks. The best performance across all technologies is achieved
with 6fo4 levels of useful logic at each stage.

5 Capacity Scaling

Deep pipelines tend to reduce IPC due to large branch mis-prediction penalties. One design option is
to restrict the capacity of microarchitectural structures so that their access penalties, and therefore
overall pipeline depth, remain small. Reducing the capacities of microarchitectural structures
would decrease their performance and accuracy. For example, reducing the capacity of the branch
predictor reduces the accuracy of the predictions. While shallow pipelines benefit IPC due to the
smaller mis-prediction penalties, the reduced capacities of microarchitectural structures will have an
adverse impact on IPC. In this section we study the tradeoff between microarchitectural structure
capacities and pipeline depths.

We consider six clock frequencies for our studies. The latencies of the various structures were
found using Cacti. In Table 5 and Table 6 we describe the structure sizes used in these experiments
at 100nm technology. The structure latencies are shown in parenthesis. All structure capacities
are specified in terms of the number of entries except for the caches. For the branch predictor
we show two sizes representing the capacities of the local and global predictors. In selecting these
capacities we attempted to find the largest possible size for each structure that could be accessed
with the same latency as the corresponding structure in the Alpha 21264. In situations where we
could not reach a reasonably sized structure we increased the access latency permitting a structure
large enough to be useful. Appendix C describes the sizes and latencies of structures used for other

16



| Clock (fo4) | DL1(Bytes) | DTLB | ITLB | L2(Bytes) | Branch Pred. | ROB |

2 8192(13) | 128(10) | 128(10) | 32768(10) | 256,1024 (8) | 16(5)
3 8192(9) | 512(7) | 512(7) | 32768(7) | 128,512 (5) 8(3)

4 8192(7) | 128(5) | 128(5) | 32768(5) | 256,1024 (4) | 64(3)
5.5 32768(6) | 1024(4) | 1024(4) | 131072(6) | 256,1024 (3) | 32(2)
6 8192(5) | 1024(4) | 1024(4) | 131072(6) | 512,2048 (3) | 64(2)
7 32768(5) | 512(3) | 512(3) | 131072(5) | 2048,8192 (3) | 128(2)
8 8192(4) | 1024(3) | 1024(3) | 131072(4) | 256,1024 (2) | 128(2)
9 16384(4) | 1024(3) | 1024(3) | 262144(6) | 512,2048 (2) | 8(1)

10 65536(4) | 128(2) | 128(2) | 262144(5) | 2048,8192 (2) | 16(1)
11 65536(4) | 1024(2) | 1024(2) | 262144(5) | 4096,16384 (2) | 32(1)
12 8192(3) | 1024(2) | 1024(2) | 524288(6) | 4096,16384 (2) | 64(1)
13 16384(3) | 1024(2) | 1024(2) | 524288(6) | 8192,32768 (2) | 96(1)
14 32768(3) | 1024(2) | 1024(2) | 524288(6) | 8192,32768 (2) | 128(1)
15 65536(3) | 1024(2) | 1024(2) | 524288(5) | 128,512 (1) | 128(1)
16 65536(3) | 1024(2) | 1024(2) | 524288(5) | 256,1024 (1) | 128(1)

Table 5: Capacity scaling structure sizes and latencies at 100nm technology

technologies.

In Figure 18 we show the IPC at different clock frequencies. The graph shows that in general,
as the clock period increases IPC of the integer and floating point benchmarks increase. The
improvement in IPC at the lower frequencies is due to the reduced access penalties and increase in
capacity of microarchitectural structures. Overall the IPC of the integer benchmarks reduces by
76% when the clock period is reduced from 16fo4 to 2fo4. The IPC of floating point benchmarks
reduces by approximately 82% over the same period.

The integer benchmarks show an increase in IPC till a clock period of 6fo4. For clocks between
6fo4 and 9fo4 IPC remains almost constant. At these clock periods Table 5 shows that the access
penalty of the level-1 data cache, the branch predictor and the ROB decrease but their capacities
also decrease. The benefits of reduced structure access penalties are lost due to a corresponding
reduction of their capacities. For clock periods 7-8fo4 the floating point benchmarks also show no
change. At 9fo4 their IPC decreases sharply due to a decrease in the capacity of the ROB. The
the integer benchmarks are not as sensitive to the ROB capacity as the floating point benchmarks.
Therefore their IPC does not decrease when the ROB capacity is decreased.

A comparison of Figure 18 and Figure 16 shows that the instruction throughput of integer
benchmarks for “shallow” and deep pipelines is more or less the same. The benefits of lower mis-
prediction penalties in shallow pipelines are offset by reduced structure capacities. On the other
hand floating point benchmarks show better performance if the overall depth of the pipeline is
small. The reduced capacity of structures do not affect their performance due to their inherently
greater ILP coupled with the ability of the microarchitecture to issue instructions out of order.
Furthermore, floating point code has very few branches and therefore it is not affected by reduced
branch prediction accuracy of the smaller pipelines.

In Figure 19 we show the performance of the SPEC 2000 benchmarks at the different clocks. As
before we consider five different latch overheads. The best performance for both sets of benchmarks
is obtained at a 2fo4 clock if latch overhead is not considered. However, if realistic latch overhead
assumptions are made the best performance is achieved at a clock of 6fo4. In Appendix D we show
similar throughput and performance graphs for other technologies.
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| Clock (fo4) | Issue Window (Int) | Issue Window (Fp) | Reg. File | Rename Table |

2 28(9) 8(8) 100(6) 100(9)
3 28(6) 28(6) 100(4) 100(6)
4 28(5) 8(4) 100(3) 100(5)
5.5 28(3) 12(3) 80(2) 80(4)
6 28(3) 28(3) 100(2) 100(3)
7 28(3) 28(3) 100(2) 100(3)
8 28(3) 8(2) 100(2) 100(3)
9 28(2) 28(2) 100(2) 100(2)
10 28(2) 28(2) 100(2) 100(2)
11 28(2) 28(2) 80(1) 80(2)
12 28(2) 28(2) 100(1) 100(2)
13 28(2) 28(2) 100(1) 100(2)
14 28(2) 28(2) 100(1) 100(2)
15 28(2) 28(2) 100(1) 100(2)
16 28(2) 8(1) 100(1) 100(2)

Table 6: Capacity scaling structure sizes and latencies at 100nm technology
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Figure 18: 100nm Technology Capacity Scaling IPC Trend
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Figure 19: 100nm Technology Capacity Scaling Performance Trend

6 Conclusions

The latency and capacity of microarchitectural structures have a strong influence on instruction
throughput. From the sensitivity analysis we see that among microarchitectural structures the
latency of the branch predictor has the largest impact on IPC for the integer benchmarks. The
SPEC2000 integer benchmarks are control intensive, approximately one in every six instructions is
a branch therefore branch predictor latency has a large impact on IPC. The floating-point bench-
marks, in contrast have much fewer branches and therefore they are not very sensitive to branch
predictor latency. Besides the branch predictor latency, IPC is most sensitive to data cache laten-
cies. For the integer benchmarks IPC falls by 41% when the DL1 latency is increased from 1 to 10
cycles, the floating-point benchmarks show a drop in IPC of about 25%. For both sets of bench-
marks branch prediction accuracy is crucial to obtain high instruction throughput at long pipeline
depths. When structure capacities are increased, for almost all structures the IPC rapidly increases
with capacity for the smaller structure sizes. For small structure sizes the hit rate or accuracy of
the structures is extremely poor yielding very low IPCs. As the structure size is increased the hit
rate of structure gradually improves resulting in better IPC. However, beyond a certain capacity
the performance of the structure remains a constant, thereafter IPC shows no improvement. The
capacity of the re-order buffer and the register file have a greater impact on the IPCs of floating-
point benchmarks than the integer benchmarks. The floating-point benchmarks are representative
of scientific code and have greater instruction parallelism. Increasing the capacity of the register
file or the re-order buffer enables greater exploitation of this parallelism.

We presented two scaling strategies — pipeline and capacity scaling. In the pipeline scaling
strategy we hold structure capacities to be constant while allowing their latencies to be scaled
according to technology and clock frequency. As clock frequencies are increased the latencies of the
structures, and therefore the overall pipeline length, increases. Large pipeline depths cause greater
branch mis-prediction penalties resulting in lower IPCs. Functional unit latencies are also scaled
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according to technology. Increasing functional unit latencies delays the execution of dependent
instructions thereby decreasing IPC even further. Across all technologies maximum performance
is obtained at a clock of 6 FOA4.

For the capacity scaling strategy we attempted to keep the access latency of structures to be as
close to the baseline latencies. At high clock frequencies the structure capacities are small and they
have large access latencies. The small structures are unable to store enough program state and
therefore the structure performance (ie. hit rate or prediction accuracy) is poor. This results in very
low instruction throughput. As the clock frequency is reduced larger structures can be accessed at
the baseline latency. With decreasing clock frequency IPC increases as a result of better structure

performance of the large structures. For this strategy also the maximum performance is achieved
at a clock of 6 FOA4.
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