An Evaluation of the TRIPS Computer System
(Extended Technical Report}

Mark Gebhart Bertrand A. Maher Katherine E. Coons Jeff Diamond Paul Gratz
Mario Marino Nitya Ranganathan Behnam Robatmili Aaron Smith me&Burrill

Stephen W. Keckler Doug Burger Kathryn S. McKinley

Computer Architecture and Technology Laboratory
Department of Computer Sciences
Technical Report TR-08-31
The University of Texas at Austin

cart@cs.utexas.edu — www.cs.utexas.edu/users/cart

Abstract

The TRIPS system employs a new instruction set archite@®w#g called Explicit Data Graph Ex-
ecution (EDGE) that renegotiates the boundary betweenvisarel and software to expose and exploit
concurrency. EDGE ISAs use a block-atomic execution madehich blocks are composed of dataflow
instructions. The goal of the TRIPS design is to mine comaay for high performance while tolerating
emerging technology scaling challenges, such as incrgasine delays and power consumption. This
paper evaluates how well TRIPS meets this goal through &ldéttESA and performance analysis. We
compare performance, using cycles counts, to commeraalssors. On SPEC CPU2000, the Intel Core
2 outperforms compiled TRIPS code in most cases, althougRSIRatches a Pentium 4. On simple
benchmarks, compiled TRIPS code outperforms the Core 2%yah@ hand-optimized TRIPS code out-
performs it by factor of 3. Compared to conventional ISAs, tfock-atomic model provides a larger
instruction window, increases concurrency at a cost of nieséructions executed, and replaces register
and memory accesses with more efficient direct instrudteinstruction communication. Our analysis
suggests ISA, microarchitecture, and compiler enhanctsrienaddressing weaknesses in TRIPS and in-
dicates that EDGE architectures have the potential to ékgleater concurrency in future technologies.

This technical report contains per benchmark data for the SPEC fenchmarks in the ISA section, per benchmark
memory footprint data in the ISA section, detailed characterization data of the memory system and operand network in the
microarchitecture section, and full performance data across alreference platforms in the comparison section that was not
included due to space constraints in "An Evaluation of the TRIPS Cormputer System”; Mark Gebhart, Bertrand A. Maher,
Katherine E. Coons, Jeff Diamond, Paul Gratz, Mario Marino, Nitya Ranganathan, Behnam Robatmili, Aaron Smith, James
Burrill, Stephen W. Keckler, Doug Burger, Kathryn S. McKinley; ASP LOS 2009, Washington DC, USA; March 2009.

An Evaluation of the TRIPS Computer System
(Extended Technical Report)

Abstract

The TRIPS system employs a new instruction set archite@®w#g called Explicit Data Graph Ex-
ecution (EDGE) that renegotiates the boundary betweenvisarel and software to expose and exploit
concurrency. EDGE ISAs use a block-atomic execution madehich blocks are composed of dataflow
instructions. The goal of the TRIPS design is to mine comaay for high performance while tolerating
emerging technology scaling challenges, such as incrgasine delays and power consumption. This
paper evaluates how well TRIPS meets this goal through &ldéttESA and performance analysis. We
compare performance, using cycles counts, to commeraagssors. On SPEC CPU2000, the Intel Core
2 outperforms compiled TRIPS code in most cases, althougRSIRiatches a Pentium 4. On simple
benchmarks, compiled TRIPS code outperforms the Core 2%yah@ hand-optimized TRIPS code out-
performs it by factor of 3. Compared to conventional ISAs, itfock-atomic model provides a larger
instruction window, increases concurrency at a cost of mieséructions executed, and replaces register
and memory accesses with more efficient direct instrudteinstruction communication. Our analysis
suggests ISA, microarchitecture, and compiler enhanctsrienaddressing weaknesses in TRIPS and in-
dicates that EDGE architectures have the potential to eékgle@ater concurrency in future technologies.

1 Introduction

Growing on-chip wire delays, coupled with complexity and power limitationse d&ced severe constraints
on the issue-width scaling of conventional superscalar architectuexsauBe of these trends, major micro-
processor vendors have abandoned architectures for single-peg@rmance and turned to the promise of
multiple cores per chip. While many applications can exploit multicore systems,pthisach places sub-
stantial burdens on programmers to parallelize their codes. Despite thads, thendahl’s law dictates that
single-thread performance will remain key to the future success of comgygiems [8].

In response to semiconductor scaling trends, we designed a new araleited microarchitecture intended
to extend single-thread performance scaling beyond the capabilities efssapar architectures. TRIPS is
the first instantiation of these research efforts. TRIPS uses a newotlassruction set architectures (ISAs),
called Explicit Data Graph Execution (EDGE), which renegotiate the hamdarad software boundary. EDGE
ISAs use a block-atomic execution model, in which EDGE blocks consistafida instructions. This model
preserves sequential memory semantics and exposes greater instruaiaofeurrency without requiring
explicit software parallelization. We constructed a custom 170 million transis36€, an instantiation of
the ISA (TRIPS ISA), TRIPS system circuit boards, a runtime systenfioqmeance evaluation tools, and a
compiler that optimizes and translates C and Fortran programs to the TRIPS h®Alistributed processing
cores of a TRIPS processor issue up to 16 instructions per cycle fnamstxuction window of up to 1024
instructions contained in 8 blocks. The TRIPS ISA and distributed micrdgaothre are designed to exploit
concurrency and reduce the influence of long wire delays by exptsérgpatial nature of the microarchitec-

ture to the compiler for optimization.

This paper presents a performance analysis that explores how welRi#fRSTsystem meets its goals of
exploiting concurrency, hiding latency, and distributing control. Using tR&PE5 hardware and microarchi-
tectural simulators, we use compiled and hand-optimized benchmarks to eothpd&DGE ISA, microar-
chitecture, and performance to modern processors. While we measarpadviler consumed by one TRIPS
processor and the memory system to be 17W (30W for the whole chip with teegsors and no clock gat-
ing), a detailed power analysis and an examination of multicore executionasitbélye scope of this paper.

Our microarchitecture analysis shows that TRIPS can fill much of its instruatiodow; compiled code
shows an average of 400 total instructions in flight (887 peak for thebesshmark) and hand-optimized
code shows an average of 630 (1013 peak). While much higher thaard@nal processors, the number of
instructions in flight is less than the maximum of 1024 because the compiler dbesmpletely fill blocks
and the hardware experiences pipeline stalls and flushes due to |1tésges, branch mispredictions, and
load dependence mispredictions. The EDGE ISA incurs substantial ses@ainstructions fetched and ex-
ecuted relative to conventional RISC architectures because of ptiediead instruction overheads required
by the dataflow model. A strength of the EDGE ISA and distributed control tsTtR#S requires less than
half as many register and memory accesses than a RISC ISA (Alpha in tkeg papause it converts these
into direct producer to consumer communications. Furthermore, communigagingctions are usually on
the same tile or an adjacent tile, which makes them power efficient and minimizesylate

We compare the performance (measured in cycles) of TRIPS to the ImeRCBentium Ill, and Pentium 4
using hardware performance counters on compiled and hand-optimiagcaprs. On EEMBC, the Core 2
executes 30% fewer cycles than TRIPS compiled code. On SPEC200®STRmpiled code executes more
than twice as many cycles than Core 2 on integer benchmarks but the samerrafropcles on floating-
point benchmarks. TRIPS executes 3 times fewer cycles than the Cordn@ndroptimized benchmarks.
These experiments suggest that EDGE processors have the capabitityeteessubstantial performance im-
provements over conventional microprocessors by exploiting commyrrélowever, realizing this potential
relies on the compiler to better expose concurrency and create large IBoERIPS instructions, as well as

microarchitectural innovations in control distribution and branch prediction
2 The TRIPS Processor Architecture

The foundations of the TRIPS system were published in 2001 [15]. Bet®601 and 2004, we refined the
architecture so as to realize it in silicon and began the compiler implementatioif RIRS chip taped out

in August 2006 and was fully functional (no known bugs) in the lab in &akyr2007. The TRIPS chip uses
a 130nm ASIC technology and contains 170 million transistors. One chipioent@ processors and the

simplest system consists of four TRIPS chips. Each chip contains twegsos and 2GB of local DRAM

2

RISC Code TRIPS EDGE Code Dataflow Graph

Labell: .bbegin blockl

d %3, 4(%2) RO: read $t2, $92 RO

blez %3, Label2 R1: read $t4, $g4

1d %5, 8(%2) I0: mov $t3, $t2

addi %3, %3, %5 I1: U $t5, 4(3t2) 10 11 17

st %3, 4(%2) I2: U $t6, 8($t3)

Label2: I3: tlez $t7, $t5

addi %4, %4, #-1 I4: addi f<$t7> $t8, $t5, $t6 12 3 ﬂ

bgez %4, Labell I5: null t<$t7> $t8

Label3: I6: st $t8, 4($t3) A N
I7: subi $t9, $t4, #1 14 15 1191 110
18: teqz $t10, $t9 Lot mmes
I9: b t<$t10> block3
I10:b f<$t10> blockl 16 wo

WO: write $g4, $t9
.bend blockl
.bbegin block3 ...

Figure 1: RISC and TRIPS code with dataflow graph.

connected to a motherboard. While we designed the system to scale to eigbthoatids (64 processors),
this paper examines a single TRIPS processor using single-threadesl ddd summarize the architecture
and compiler below; details are in prior publications [2, 19, 22].

EDGE ISA: Two defining features of an Explicit Data Graph Execution (EDGE) ISAdock-atomic
execution [13] and direct instruction communication within a block, which tagetinable efficient hybrid
dataflow execution. An EDGE microarchitecture maps each compiler-gededataflow graph to a dis-
tributed execution substrate. The ISA was designed to provide higbrpehce, single-threaded, concurrent,
and distributed execution.

The TRIPS ISA aggregates up to 128 instructions in a block. The blockiatxecution model logically
fetches, executes, and commits each block as a single entity. Blocks amertirestpuction bookkeeping
and reduce branch predictions, providing latency tolerance to make disftiexecution practical. Blocks
communicate through registers and memory. Within a bldalect instruction communicatiodelivers re-
sults from producer to consumer instructions in dataflow fashion. Thipastgdistributed execution by
eliminating accesses to a shared register file.

Figure 1 compares RISC and TRIPS EDGE code on an example. The TRIR&r reads (RO, R1) at the
beginning of the block start dataflow execution by injecting values fromegister file into the block. The
block ejects the register write (WO0) and writes regisigd when the block commits. Instruction operands
within the block, such a$t 2, are passed directly from producer to consumer without an interveegister
access. Because the instructions encode their targets, rather théstexr iaga common register file, a 32-bit

instruction encoding has room for at most two targets. When more targete@uired, such as the value

3

TRIPS Tiles
G: Global Control
(predict/fetch)
R: Register File
I: Instruction Cache
D: Data Cache
E: Execution
(ALU array)

TRIPS Controllers

DMA: DMA

SDC: SDRAM
C2C: Chip-to-Chip
EBC: External Bus

On-Chip Network

e B

Prt;cés;o;1
Figure 2: TRIPS die photo with tile overlays.

read in instruction RO, the program needstv (move) instruction (10) to replicate the value flowing in the
dataflow graph. The TRIPS code also shows that branch and nookbirgstructions can be predicated. To
enable the hardware to detect block completion, the execution model retfuérteall block outputs (regis-

ter writes and stores) be produced regardless of the predicated paith tvétblock. Thenul | instruction
produces a token that when passed througtsthéstore) indicates that the store output has been produced,
but does not modify memory. In our experiments, we do not classify thatdlolv execution helper in-
structions as useful when comparing to conventional ISAs. The datgfiawh shows the producer/consumer
relationships encoded in the TRIPS binary.

TRIPS Microarchitecture: Because the goals of the TRIPS microarchitecture include scalability and dis-
tributed execution, it has no global wires, reuses a small set of comooemouted networks, and can be
extended to a wider-issue implementation without source recompilation or I1&4gels. Figure 2 superim-
poses the tile-level block diagram on a TRIPS die photo. Each TRIPS ohiains two processors and a
secondary memory system, each inter-connected by one or more micrdkgetvizach processor uses five
types of tiles: one global control tile (GT), 16 execution tiles (ET), fowigter tiles (RT), four data tiles
(DT), and five instruction tiles (IT). The tiles communicate via six micronetwdks implement distributed
control and data protocols. The main micronetwork is the operand net@&kl), which replaces a bypass
network in a conventional superscalar. The two-dimensional, wormbaoled, 5x5 mesh OPN delivers one
64-bit operand per link per cycle [7]. The other networks perforntribisted instruction fetch, dispatch,
I-cache refill, and completion/commit.

TRIPS fetches and executes each blenkmasseThe GT sends a block address to the ITs which deliver
the block’s computation instructions to the reservation stations in the 16 exetig® (ETS), 8 per tile as

4

specified by the compiler. The ITs also deliver the register read/write @igtns to reservation stations in the
RTs. The RTs read values from the global register file and send them Ed#)estarting dataflow execution.
The GT instigates the commit protocol once each DT and RT receives ald tadputs. The commit protocol
updates the data caches and register file with the speculative state of tke ThecGT uses its next block
predictor (branch predictor) to begin fetching and executing the nerkhbidnile previous blocks are still
executing. The prototype can simultaneously execute up to eight 128¢itistrblocks (one non-speculative,
seven speculative) giving it a maximum window size of 1024 instructions.

At 130 nm, each TRIPS processor occupies approximately.82 of a total chip area of 330um?. If
scaled down to 65 nm, a TRIPS core would be approximately28, similar to the 29nm? of a Core 2
processor. A direct comparison is difficult because TRIPS uses # #&8hnology and lacks some hardware
needed for an operating system. Nonetheless, TRIPS has a greaiéy dearithmetic units in a similar area
and the architecture provides greater issue width and instruction windoingc

TRIPS Compiler: The TRIPS compiler first performs conventional optimizations such as inlining
rolling, common subexpression elimination, scalar replacement, and TRESis optimizations such as
tree-height reduction to expose parallelism. The compiler next translatesdbedo the TRIPS Intermediate
Language (TIL), a RISC-like IR, and progressively transforms ifilo blocks that conform to the TRIPS
block constraints: up to 128 instructions, up to 32 register read/writes witgh Bank, and up to 32 load/store
identifiers [22]. The compiler aggregates basic blocks from multiple copttils into optimized TRIPS
blocks using predication, tail duplication, and loop optimizations [23, 12]s plocess is similar to hyper-
block formation, but more challenging because of the additional blockmeonis that simplify the hardware.
The compiler iteratively merges and optimizes blocks until they are as full ssilpe and then performs
register allocation. This phase produces completed TIL with correctudiydspecified blocks, as in Figure 1.

The compiler’s scheduler then transforms TIL to TRIPS assembly landiiAga), which includes a map-
ping of instructions to execution tiles. The scheduler seeks a mapping fhagesxinstruction concurrency
and minimizes communication overheads (distance and contention) [3]. Thingayptimizes performance
without restricting functional portability as the hardware can remap an EDiG&y to different hardware

topologies (number of tiles) without recompilation or changes to the binary.
3 Evaluation Methodology

We evaluate the TRIPS system and compare its performance with converaiohaéctures using perfor-
mance counters on the TRIPS hardware and on commercial platforms. Set@ma 5 present TRIPS and
Alpha simulation results to gain insights into the relative strengths and weas@SERIPS. All performance

measurements in Section 6 are from actual hardware.

5

Issue| Proc | Mem |Proc/Mem L1 Cap.| L2 |Mem
System |Width| Speed Speed Ratio (D) | Cap.| Cap.
(MHz) | (MHz) (KB) |(MB)|(GB)
TRIPS 16| 366/ 200 1.83 32/80 1 2
Core 2 4| 1600 800/ 2.00 32/32 2 2
Pentium 4 4| 3600] 533 6.75 |16/150 2 2
Pentium IlI 3| 450, 100/ 4.50 16/16| 0.5/0.256

Table 1: Reference platforms.

The TRIPS System: A TRIPS chip consists of two processors that share a 1 MB L2 static NUCA
cache [10] and 2 GB of DDR Memory; we use one processor for akmixgents in this study. Each pro-
cessor has a private 32 KB L1 data cache and a private 80 KB L1 itistnuxache. We run the processor
core at 366 MHz and the DRAM with 100/200 MHz DDR clocks. TRIPS systaifts interrupt program
execution, halt the processor, and execute off-chip on a commero@gsor running Linux. Because the
TRIPS cycle counters increment only when the processor is not halegrdgram performance measure-
ments ignore the time to process system calls. The tools we use to measurdcirdasommercial systems
also exclude operating system execution time, thus providing a fair compariso

Simulators: We use functional and cycle-level TRIPS simulators to gather statisticsvailale from
the hardware [25]. Validation of the TRIPS cycle counters against tHeFRimulators indicates statistical
differences of less than 5%. We use a customized version of the M5 similatorproduces statistics that
measure loads, stores, and register accesseggtowompiled Alpha-Linux binaries.

Reference Platforms: We compare TRIPS performance to three reference platforms from tilexB6
product family (Pentium 1ll, Pentium 4, and Core 2). Table 1 shows thiopha configurations including
processor and DDR DRAM clock speed and the memory hierarchy caga@@eause each machine is im-
plemented in a different process technology, we compare cycle couatis@th from performance counters,
using PAPI on the Intel processors [16]. Cycle count is an imperfetrigriEecause some architectures, par-
ticularly the Pentium 4, emphasize clock rate over cycle count. Howevesxpect that the TRIPS microar-
chitecture, with its partitioned design and no global wires, could be implementedatk rate equivalent to
the Core 2, given a custom design and the same process technolodlyeApitfall is that the relatively slow
clock rate of TRIPS may make memory accesses less expensive relatigg todtk-rate processors. To
counter this effect, we under-clock the Core 2 from 1.8 GHz to 1.6 GHz tertrekprocessor/memory speed
more similar to that of TRIPS. Because the benchmarks are largely L2 cesident, the relative memory
speed has little effect on application execution time.

Benchmarks: Table 2 shows our benchmarks, ranging from simple kernels to complesoaegsor work-

loads, compiled with the TRIPS C and Fortran compiler [22]. The suite latsiteplerefers to applications

[Suite [Count] Benchmarks |

Kernels 4 transpose (ct), convolution (conv), vectpr-
add (vadd), matrix multiply (matrix)
VersaBench| 3 of 10 | bit and stream (fmradio, 802.11a, 8b10h)
EEMBC 28 of 30| Embedded benchmarks
Simple 15 |Hand-optimized versions of Kernels,
VersaBench, and 8 EEMBC benchmarks
SPEC 2K In{ 9 of 12 [All but gap, vortex and C++ benchmarks
SPEC 2K FR 9 of 14 | All but sixtrack and 4 Fortran 90 bench-
marks

Table 2: Benchmark suites.

with hand-optimizations: 4 application kernels, 3 stream and bit operatiarhlbrearks from the VersaBench
suite [17], and 8 medium-sized benchmarks from the EEMBC benchmgrk®b hand-optimized bench-
marks to guide compiler efforts and explore the potential of the system. \igapexd hand-optimization on
the compiler-generated TIL code and scheduled the result with the conigdst.of the hand-optimizations
are mechanical, but not yet implemented in the compiler. We more extensivelydpdimized four scientific
kernels on TRIPS: matrix transposa)(convolution €ony), vector addadd, and matrix multiply (natrix);
further, we hand-scheduledatrix andvadd

The most complex benchmarks come from SPEC2000 and include 10 intef8rflpating-point bench-
marks [24]. Three SPEC programs that currently fail to build correctly withtoolchain are omitted. We
use a consistent set of compiler flags for all benchmarks rather thamgttivérflags for performance on a
per-benchmark basis. We use SimPoint simulation regions for our simula&edkevaluation of the SPEC

benchmarks [21].
4 ISA Evaluation

This section uses simulation to examine how well programs map to the TRIPSH&mcterizing block size,

instruction overheads, and code size. We compare TRIPS and RISCAISKa) statistics to quantify the

relative overheads of the TRIPS ISA. We present details for the simplehbearks and means for EEMBC,
SPEC INT, and SPEC FP.

4.1 TRIPS Block Size and Composition

A key parameter for a block-atomic EDGE ISA is the block size. Early expeeielemonstrated that creating
programs with average block sizes of 20+ instructions was not difficultstéthdard compiler transformation
and that larger blocks would increase the instruction window, better ambltizk overheads, and have the
potential for better performance. Seeking this performance, we chgqagstothe compiler technology by

selecting 128-instruction block sizes.

Section 5 omitammpandparseras they do not execute correctly on the TRIPS microarchitecture simulator

7

20| O Fetched Not Executed
O W Executed Not Used
0o R [o] = T L L Moves

|| M Tests
— O Control Flow

80 g] e = B e I EEEEE R --1 l Memor
- ii | B DArithme)Eic

oo -ml-l Bl e | 1 |-E30 iii Tl e
o NI B0 SR Mgt fa gy H ffffff
O
&

Average Block Compositior

at DEVBRED DBt .

Or O 0OroOorO0r O0or Orxr O0Or O 0T 0T Ox 0T 0T 0T O O O
@ O & RN & & A N P € A Qo D L O LK
& F LSS R SES VRSN EERE OREC N D) Q¢
P K TF F S 47 % & & & £ & N (S
" < & > O S & <€ e Q/Q/éZQ/%Q
O
Average

Figure 3: TRIPS block size and composition for compiled (C) and hand-omth{ld) benchmarks.

O Fetched Not Executed
s B Executed Not Used
= B0 e O Moves |
) W Tests
D LO0] - O Control Flow |-+
IS E Memory
8 80l O Arithmetic | |
X
8 B0 | e T b R R e SR
m
o 40¢----1 B R TR N B R
o
:% 20}---- E e N RN T R
0
IV S & N A &L L
0@/ Q@ Ke &\Q $ F& S QQ\ q&% & &Q\;— (&e @q«\é 9@6\ g Q&q
o N

N

NalRe

Figure 4: TRIPS block size and composition for compiled SPEC benchmarks.

Figure 3 shows the average block size weighted by execution freqaaddyroken down by the number of
arithmetic instructions, memory instructions, branch/jump/call/return instructiesisinstructions (used for
branches and predication), andve instructions (used to fan out intermediate operands). The figure does
not include the register read/write instructions, which reside in the blocttemesnd not in the 128 instruc-
tions. Fetched Not Executedstructions in a block are never executed either because they did edtaec
matching predicate or because they did not receive all of their opedared® predicated instructions earlier
in the block’s dataflow graphExecuted Not Usemhstructions were fetched and executed speculatively but
their values were unused due to predication later in the dependence graph

For some programs, sucha2time mispredicated instructions account for a third of the instructions within
a block. A2timecontains several nestéd / t hen/ el se statements. To fill blocks and minimize executed
blocks, the compiler produces code that speculatively executes hetih andel se clauses simultaneously
within one block and predicates to select the correct outputs. Aggeepsadication can improve system

8

performance by eliminating branch mispredictions and increasing fronte¢etdbandwidth.

The remainder of the instruction types, tests, control flow, memory, andretitty are required for correct
execution. The number of useful instructions (excludimy e and mispredicated instructions) varies. Some
programs with complex control have only 10 instructions per block while stivh more regular control
have as many as 80 instructions per block. To implement dataflow executidsionla the TRIPS ISA uses
nove instructions. Because TRIPS instructions have fixed width (32 bits), afiitheeed load instructions
can target at most two consumers. The compiler therefore ingekte and speciahove3 andnove4
instructions to fanout values consumed by more than two instructions. Riedierge points may require
predicatedrove instructions. The result is thabv e instructions account for nearly 20% of all instructions,
more than anticipated at the start of the design. Support for wider famog instructions (multicast) would
substantially reduce this overhead.

Compiled code has an average block utilization of 70 instructions, but withvagance, ranging from
35 to over 110 instructions. Hand-optimizations execute fewer blocks bgasmg block utilization. For
example, the hand-optimized versionaspfhas blocks two times larger than its compiled versions. Hand-
optimizations include eliminating unnecessary instructions and then mergingeatgmnaller blocks or in-
creasing unrolling factors to fill blocks. Higher block utilization is correlatéith higher performance.
Routelookumndautocoractually have smaller block size when hand-optimized but a similar numberfaf use
instructions. These programs are memory and control bound; largdsstdocnot improve performance due
to the predication overhead. Both hand-optimized and compiled code utilizggnesaive 128-instruction
block size to achieve average block sizes ranging from 20 to 128.

Figure 4 shows the block composition for each of the SPEC benchmarksse®Véhat on average the
integer benchmarks both have smaller blocks and rely more heavily on g@tiedithan the floating point
benchmarks. This is a due to the control intensive nature of the integehto@nks which makes forming

large hyperblocks a challenge.
4.2 TRIPS ISA versus Alpha

To quantify the differences between the TRIPS ISA and a RISC ISApwgare to the Alpha. Figure 5 shows
fetched instruction counts on TRIPS normalized to Alpha, with TRIPS includéiidper register read/write
instructions from the block header nOPs in underfull blocks. For both TRIPS and Alpha, the instruction
count omits incorrectly fetched instructions due to branch mispredictions.

The number of useful instructions varies widely by benchmark suite whiaHiuaction of the state of the
TRIPS compiler and the gcc Alpha compiler. Figure 6 compares instructidtneée TRIPS and Alpha for

the SEPC benchmarks. Overall, TRIPS executes half as many usefuttitis on the simple benchmarks,

9

al O Fetched but not executed

B Executed but not useful
BB g Moves |
B Useful

<
=3
<
L
o
23 e
<
D 2Ol L
O ol
2
IS5 S) R S R e EE ERREEE [ARREE AREEEREEEREERREEES o (EEE [RRRRREREEEEREEEPEEREEEREEE SR IERREE
o 1y e EE T S mm Ll wm s el " el
gog = - =gz BRR
c
- Ug: Og: O OCT O O O O O O O O O O OT OQI ULiO
F L XSS A N O KNS O R
(br)’/\.\é\ &@QQ er \Oél- &00 00& @fb’ & Qq/'\, QBQ\'Q \'b'b\ @,O’SS\ A’b'éé 00(\ 006\2 "O‘Q Q/@Q?Q/O\QQ/OQ
& ° & F S Ey

Geometric Mean

Figure 5: TRIPS instructions normalized to Alpha for compiled (C) and haptitrized (H) benchmarks.

rrr e @ Fetched but not execute
m Executed but not useful
O Moves
rrr m Useful

Instructions Relative to Alpha
OFR NWRKOUIO N OO '5

Figure 6: TRIPS instructions normalized to Alpha for compiled SPEC bendsmar

an equal number on SPEC INT, and twice as many on SPEC FP. On compiledTd®IPS tends to exe-
cute more instructions due to prototype simplifications, which introduce ineftigis in constant generation
and sign extension unrelated to its execution model. For hand-optimizedrbarid) TRIPS executes fewer
instructions because its larger register set (128 registers) eliminatefostdngairs and because more aggres-
sive unrolling exposes more opportunities for instruction reduction. Theber of fetched but mispredicated
instructions varies across the benchmarks, depending on the degmegliohtion. Overall, TRIPS may need
to fetch as many as 2—4 times more instructions than the Alpha on the simple bekelam&f2—9 times more

instructions on the SPEC benchmarks, due to aggressive predication.
4.3 Register and Memory Access

TRIPS inter-block communication uses registers and memory while intra-btsukncinication is direct be-

tween instructions, reducing the number of accesses to registers and melIBS has a total of 128

10

O B 1l O Stores Committed|
o5 - B Loads Executed
D g LB L m ET_ET Operands | g
B o LA O Writes Committed | - - -
L | B Reads Fetched |
g § L g g
g 0.8l R il g
S E
N s

£

O - | — - | =
orororororororororororororororozxT (@] O (@]
& O & N QA 2> Q & K
. Q O N N L O Q o O <
'9}\ 3 @Qe quéo& \\}Oo & » ‘&Q'I/' (80'\’0 \‘bb\ 000 & (Q\&\ A’bbo@ 2 ({}@ CJ\é <</O
& 7 ° N od & LR

Geometric Mean

Figure 7: Storage accesses normalized to Alpha for compiled (C) anddmtimtized (H) benchmarks.

3.5

O Stores Committe
rrr B Loads Executed |
B ET_ET Operands
Bh e O Writes Committed
B Reads Fetched

N
[$2S)

=
[

[EY

Storage Accesses
(Normalized to Alpha)
N

o
)

o

Figure 8: Storage accesses normalized to Alpha for compiled SPEC batkshma

registers spanning four register banks (32 registers per bankh liEatk has one read and one write port.
The large register file reduces load on the memory system since the compilexgister allocate more of
a program’s variables [14]. Compared to a conventional architecti®HR S replaces memory instructions
with less expensive register reads and writes, and replaces regaderared writes with less expensive direct
communication between producing and consuming instructions.

The left bar stack of each pair in Figure 7 shows the number of loadstares on TRIPS normalized to
loads and stores on the Alpha. TRIPS executes about half as many mestongtions as the Alpha and
as few as 10%, due to its larger register file and direct instruction commumicaieveral hand-optimized
benchmarks have significantly fewer memory accesses than the comp#&zhgdvecause they register allo-
cate fields in structures and small arrays, whereas the compiler curreeyndt. The right bar stack shows
the number of register reads, writes, and operand network communicatioFRIPS normalized to register

reads and writes on the Alpha. Because of direct operand communicBRdAS accesses the register file

11

80-90% less often than the Alpha. The top bar shows direct operand cuoation that replaces register
accesses on TRIPS.

Compared to their compiled counterparts, hand-optimized benchmarksatjginave fewer register ac-
cesses, OPN communications, and memory accesses. The hand-optimszenkv@ggressively register allo-
cate more memory accesses by using programmer knowledge about pl@siegamuch of which may be
automated. They also eliminate instructions, such as unnecessary sigsiad¢ewhich could be automated
with aggressive peephole optimizations. On average, the sum of regatk; writes, and direct communica-
tions approximates the number of Alpha register reads and writes. Figli@& shat on some benchmarks
(SPEC INT), direct communication is large because of the distribution dfigates and communication of
useless values by mispredicated instructions. On SPEC FP the large ndrabeesses is a result of TRIPS
executing many more instructions than Alpha. In a conventional architethg&eegister file broadcasts an
instruction’s result to other instructions. In TRIPS, fanout may require@ ofmove instructions, which

increases communication and the number of instructions.
4.4 Code Size

The TRIPS ISA significantly increases dynamic code size over Alphah Bleck has 128 32-bit instruc-
tions, a 128-bit header, 32 22-bit read instructions, and 32 six-bit \wr#teuctions. The compiler inserts
NOPs when a block has fewer than 32 reads/writes or fewer than 128 instrsidtiORs consume space in the
L1 I-cache but are not executed. We compared dynamic code sizelBSTtR Alpha by counting the number
of unique instructions that are fetched. Figures 9 and 10 show the énicraynamic code size across all of
the benchmarks. On average the dynamic code size of TRIPS, includingdtteeads from the block header,
read and write instructions, and nops, averages about 11 times langéinéhalpha, but with a wide variance.
In general we see the largest increase in the memory footprint on the shetlehmarks especialipatrix
andvadd This is due to the aggresive optimizations done on the TRIPS platform thatveperformance
at the expense of code size. For exampleyaadthe Alpha code is a single tight loop with just a few instruc-
tions in the loop body, while on the TRIPS code the loop was unrolled 64 times ttifyiagdress calculation
and reduce the network congestion experienced by cache accébtesut the block header, read and write
instructions, and the nop overheads, the number of unique instructiofRIBS is 5 times that of Alpha,
while the number of unique useful instructions for TRIPS (discounting teeuations that are fetched but
not needed) is 2—3 times greater than Alpha. Thus instruction replicatiotoditReIPS block optimizations
accounts for about half of the code bloat.

Experiments generally show a low instruction cache miss rate on small and m&dearbenchmarks, but

some SPEC benchmarks have miss rates in the range of 20—-40%, indicatiogcta pressure is a problem

12

102 197165

50

Instruction Nop
Instructions
Write NOpS | --ooooo e L e
Read Nops
Writes
Reads
Header

401

EECECOED

30¢}-

71| SRR A N N N N Ha B R

i10] SRR A B EE N “EREE B . - B -

Increase in Memory Footprint
(Normalized to Alpha)

& L S & & e SR I N A
N & ogQ oo\{- &O OOQA @,’0 L % & N < Q

Figure 9: Increase in dynamic memory footprint for compiled (C) and hagtitrized (H) benchmarks.

18 @ Instruction Nops
M Instructions

] L OWrite NOPS | oo o]

B Read Nops

LAk OWrites |

) R S B Reads

10/ N I o e

Increase in Memory Footprint
(Normalized to Alpha)

Figure 10: Increase in dynamic memory footprint for compiled SPEC bemisma

for some real applications. The TRIPS prototype can compress utidestauction blocks in memory and
in the L2 cache down to 32, 64, or 96 instructions, depending on bloacaspwhich reduces the expansion
factor over Alpha from 11 to 6. Block compression in the instruction cacheunduly slow down instruction
fetch or require more complex instruction routing from the instruction caahksto the execution tiles. The
results indicate that the benefits of variable block sizes warrant this coitypiexfuture designs. Further-
more, increasing the instruction cache size in distributed architecturestigalyl@asy and will also mitigate

cache pressure.
5 Microarchitecture Evaluation
5.1 Filling a 1K Instruction Window

With up to 128 instructions per block and eight concurrently executing BIOGERIPS has a maximum dy-

namic instruction window size of 1024 instructions. Figure 11 shows theageemumber of TRIPS in-
13

L 1 O Fetched but not executed| |
2 om = [B Executed but not useful
S OO0 -] B I EN = R & Moves
g II I _ i | Useful
ﬁ g 600 1 I ,,,,,,, - ,,, I ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
S y g - _
5] _ =
2> 400 I . EEiN | B L R
£ I | i, 50 E el b
N b= —m={i= u u
OrOororoOoroOorOoxr Or O O O O O O VT 0T ooooLooLooLLOOLOLOOLOLOOLOLOOLOO 000
¢ & & K & & (R Q & D QRS AP S RS LNE DD Q. @ L& K
S ST LS E &R VI FE L& & RSSO RLF X EIEE IS (&
B F T &S 9 & &S ¢ P Y TR TR T FEI N N &
)) o@o ® & ¥ & < J & NSRS é,;;((/o 032((,
<&
Average

Figure 11: Average number of in-flight instructions for compiled (C) aandioptimized (H) benchmarks.

structions in the window. This metric multiplies the average number of blocks irt flggreculative and
non-speculative) and the average number of instructions per blockpia codes have on average 400 total
instructions of which more than 170 are useful. The hand-optimized pregwath larger blocks achieve a
mean of 630 instructions, more than 380 of which are useful. Compared witl vg8indows of 64 to 80 on
modern superscalar processors, TRIPS exposes more conguatghe cost of more communication due to
the distributed window.

The principal speculation mechanisms in TRIPS are predication, loaddgpendence prediction, and
next-block prediction. When the load/store queue detects that a speeudstdl is incorrect, it flushes the
block pipeline and enters the load into the dependence predictor’s padditioae-wait table. The predictor
is effective in part because the compiler reduces the number of loadsaed (as discussed in Section 4.3).
For the SPEC benchmarks, TRIPS flushes fewer than one block pemu2etul instructions, without overly
constraining speculative load issue.

The TRIPS next-block predictor selects the next speculative block [L&pnsists of a 5 KB local/global
tournament exit predictor that predicts the exit branch (one of up to digim) the block and a 5 KB multi-
component target predictor that predicts the target address of this igxite.2 shows the prediction break-
down for four different configurationsAj shows an Alpha 21264-like conventional tournament branch pre-
dictor (10 KB) predicting TRIPS-compilelasic blocks(B) shows the TRIPS block predictor (10 KB) pre-
dicting basic blocks;H) shows the TRIPS block predictor (10 KB) predicting optimized TRIPS kdpakd
(1) shows a “lessons learned” block predictor (14 KB) that scales up thettaredictor component sizes to
9 KB. Each bar is normalized to the total number of predictions made for blgikdto measure accuracy
and reductions in predictions due to TRIPS blocks. The average MPisp¢®dictions Per 1000 Instructions,
omitting move and mispredicated instructions) observed for these four aaaiighs on SPEC INT are 14.9,

15.1, 8.6 and 7.3 respectively. SPEC FP applications have an MPKI df.Z,6,.5 and 1.3 respectively.

14

100 T T T T T T T T T T TT T TT TT TT T

[Correct predictions
B Mispredictions -

Normalized Breakdown of Predictions

[-

ABHI ABHI ABHI ABHI ABHI ABHI ABHI ABHI ABHI ABHI ABHI ABHI ABHI ABHI ABHI ABHI ABHI ABHI ABHI ABHI

: Q
S o R 5 & NS < <\\Q N\ I SN . St S Y 2 & <
Q (O ¢ o & & K L Q >® & & Q § & N ¢
SONFCEE S S I S S & 2 & & &S ¢ &L
< v g
Average

Figure 12: Block-predictor mispredictions normalized to total predictions rfadmasic blocks.

80%
70%
60%
L1 D-Cachg L2toLl1 | Memory £ som
to Processar to L2 3
Peak Ops/ 4 - 8byte[3.2 - 16 bytd 1 - 64 bytd i
cycle requests requests reques £ 30%
Peak BW 10.9 17.5 5.6 E 20%
(GBytes/sec) 10%
Achieved BW| 10.5 17.2 3.2
(GBytes/sec) 0%
% of Peak 96.5% 98.5% 57.8%
EEMBC-mean SPEC-gcc vadd-hand matrix-hand
(1.46 hops) (1.57 hops) (1.86 hops) (1.12hops)
Benchmark Type

Figure 13: TRIPS bandwidths at 366MHz and operand network (ORMi)ewith average hops per packet

The accuracy of predicting predicated blocks is neither strictly bettertriotiys worse than that of pre-
dicting basic blocks. Predication within TRIPS blocks may improve accurgagimoving hard-to-predict
branches, but may also degrade accuracy by obscuring correlainghes in the history. Although the
TRIPS predictor i) has a higher misprediction rate (18% higher) than a conventional pre@gtat has a
lower MPKI because it makes fewer predictions—59% fewer on SPECaiNIT35% fewer on SPEC FP. The
improved TRIPS predictod) reduces SPEC INT MPKI by 15.8% and SPEC FP MPKI by 14.2%. Lower
prediction accuracy has a significant effect on the instruction windowatiitiz and has a strong correlation
with performance. However, more aggressive next-block predictoysatilafall short of modern branch
prediction accuracies. Increasing the size of the branch target bcdletarget buffer, and history register
does improve accuracy. Advanced multi-component long-history presifp20] will likely also improve
exit and target accuracy and consequently performance.

15

5.2 Feeds and Speeds

In this section, we explore the performance of the banked memory systeaparand network, two defining
features of the distributed TRIPS implementation. For the memory system, wiepkes&ernels that saturate
the bandwidth of each of the banks, providing insight into the types of optiibizarequired for memory-
bound programs. For the operand network, we measure traffic loaddodee how well the compiler’s
placement algorithm minimizes the distance between communicating instructions.

Memory System: The TRIPS prototype employs an address-partitioned memory systemitloketsdine
L1 data cache into four 8-KB, single-ported data banks and the L2 d¢attheixteen 64-KB, single-ported
memory banks. The table in Figure 13 shows the achieved memory bandwitiié loardware at a core speed
of 366 MHz for a hand-optimized vector addadd) kernel. With careful instruction placementiddcan
attain nearly 100% of the core’s peak of four memory operations per (4@I6 GB/sec), indicating effective
use of the partitioned L1 data cache. By adjusting the vector sizadtf we constructed a microbenchmark
with an access pattern to maximize the consumption of the L2 cache and main meandryidith. This
program nearly reached the theoretical peak of the L2 and a majority nfalrememory bandwidth provided
by the dual DDR memory controllers. While the benchmark achieves only 5@t8# maximum interface
bandwidth, the vast majority of the loss is due to the memory controller protadai@t to the TRIPS design
itself. Similar techniques and principles were used to hand-optimize dense ketnils [4] and lessons
learned from these case studies were used to improve the compiler’s fiostplacement algorithms.

Operand Network: The Operand Network (OPN) connects the TRIPS processor tiles amsinits
operands between execution tiles (ETs), the register file (RTs), andathecdche (DTs) [7]. The TRIPS
scheduler optimizes instruction placement on the tile topology to exploit carayrrand minimize the dis-
tance between dependent instructions along the program’s critical paghgraph in Figure 13 displays the
breakdown of the hop count for OPN traffic. On average, aboutdfi@perands are bypassed locally within
an ET. Of the traffic that must traverse the OPN, about 80% require rmmeodops, resulting in an overall
operand hop count of 0.9. Ideally, all operand communication would pagsed locally (O hops), but the in-
herent tradeoff between locality and concurrency combined with limited gtgirustorage per tile demands
that many communicating instructions reside on different tiles. About 60%edDfPN messages stems from
ET-ET operand traffic, with the remaining messages about evenly spliebet&T-DT and ET-RT traffic.
On the SPEC benchmarks two-thirds of the ET-DT traffic and one half &@Th&T traffic requires three or
more hops because the DTs and RTs lie along the edge of the ET array. tiinsufasults show that conges-
tion contributes only a 12% performance overhead as the latency duesecbopt is more significant. These

results indicate opportunities for on-chip network design innovations to megeerformance of distributed

16

10

m O Fetched Not Executed

I I B Executed Not Used
""""""""""""""""""""""""""""""""""""""" o 0 Moves
m Useful

IPC

OFRNWKMUUITONOOOO
]
]
[
]
1
[
[T
-—
[
]
[1
—
[1
[

OTOIOIOIOTOTOTIOIOIOIOIOIOIOIOIOI 0OOLVOVLOLVOLLOLLLVL OO
¢ D &R & & o > © . 4 . € UQAECRERALSEINLIIRE G & R
FF ST LN P P & & DL ISP ER R REEINY e ¥
PR PP @@ & & T TR PIRYX
? < &Q} ‘b\> 00 Q Q)Q q}Q‘\é\\ ((\ N @e’b' < $\> @Q/QQ/ Q/
Geometric Mean

Q OQ’OQ
Figure 14: Instructions per clock (IPC) on compiled (C) and hand-optiin(izg benchmarks.

BO -l M |deal Machine — Dispatch Cost 0 --- - |
O Ideal Machine
W Hardware

A0 - g e | | R LR

IPC

30f s gl AN

20}-------1 B B BN B R . 1 | 1 3327 .8]
8372 38 29 24 10443

10

N , ! , , . , ul ~frprpyese oy 61f R R Q179 |
..II_IIIIII III-IIII.IIII LIN L II 576 111 147

|

(.)Q‘IogO:KE%O:EUJ;.OIOIU%O%O%:UIO}OEU§O(I} O
A Y X X R <

N2 W &QA 6\@. 5&,(1/5'\10,»0 (b'b\ [¢ 00(\ Ib,sg\ 4’0'6 Q,’\\'\(\ 42

P& N T &KL °

O
> OQ'@

Geometric Mean

Figure 15: IPC for TRIPS and benefits for two idealized EDGE designs.

architectures.
5.3 ILP Evaluation

TRIPS executes up to 16 instructions per cycle, but can only sustairatbatnnder ideal conditions: 8 blocks
full of executed instructions, perfect next-block prediction, and ntrueion stalls due to long-latency in-
structions. Actual IPC is limited to 1/8 of the block size because of block fetendg. Since the average

block size of our hand-optimized benchmarks is 80 instructions, we conidwecat most an average IPC

of 10 on them. Figure 14 shows the sustained IPC that TRIPS achiewess déloce benchmarks. While some

applications are intrinsically serial (e.goutelookuptraverses a tree data structure serially for an IPC near

1), others reach 6 to 10 IPC, showing that the processor exploits mBramIthese programs. The hand op-

timized codes have an IPC 25% greater on average than their compiledrpautstemostly due to executing

fewer more densely packed blocks. The SPEC benchmarks have P@srboth because they have smaller

17

average block sizes and more flushes due to branch mispredictions acitei+nisses.

To understand the theoretical ILP capability of EDGE architectures, wdumted a limit study using an
idealized EDGE machine with perfect prediction, perfect predicatiorfepiecaches, infinite execution re-
sources, and a zero-cycle delay between tiles. Like TRIPS, we usevaridow size and limit dispatch
and fetch to one new block every eight cycles. Figure 15 shows thavemage this ideal machine only
outperforms the prototype by roughly a factor of 2.5, indicating only made@om for improvement due
to low inherent application ILP, dispatch cost, and limited window size. Simulatisgdbal machine with
a zero-cycle dispatch cost increases the IPC on average by a faétar.oHowever, eliminating only the
dispatch delay on TRIPS improves performance by only 10%, which ingitlaa¢ dispatch is not the primary
bottleneck on the hardware. We annotate the top of the SPEC bars with tHerlB@ ideal machine with
a 128K instruction window and a dispatch cost of zero cycles. The SREEhmarks have a wide range of
available ILP, with most benchmarks around 50 IPC but some FP benchimavlng IPCs in the hundreds.
The simple benchmarks have a similar range of IPCs. Several, su8bRaklaand 8b10h are inherently
serial and do not exceed 15. Others, suchaddandfmradio, are quite concurrent with IPCs of 1000 and
500 respectively on the ideal machine with a 128K window, but are resdumited on the hardware. This
study reveals that the amount of ILP currently available to TRIPS is limited atdittyer window machines

have the potential to further exploit ILP.
6 TRIPS versus Commercial Platforms

This section compares TRIPS to conventional processors using cyatdscfsom performance counters,
which normalizes for different clock rates. We use hand-optimized beadts for TRIPS to show the po-
tential of the system and compiled benchmarks to show the current stateT®® & compiler. We compare
to the GNU C compiler (gcc) and the native Intel compiler (icc) on the reterenachines to identify the
effect of platform-specific optimizations. The quality of scalar optimization io igcmore similar to the
TRIPS compiler, since the TRIPS compiler is an academic research compileseuently, we normalized
performance to the Core 2 using the gcc compiler.

Simple Benchmarks: Figure 16 shows relative performance (computed as a ratio of cycleatexerela-
tive to the Core 2 using gcc) for TRIPS hand-optimized code, TRIPS cothpilde, icc-compiled code for
the Intel Core 2, and gcc-compiled code for the Intel Core 2, Pentiumd4Pantium Ill. The TRIPS compiler
achieves equivalent performance to the Core 2 on average, with betferrpance on nine benchmarks and
worse performance on six. Benchmarks with smaller speedspsdd employ sequential algorithms that do
not benefit from increased execution bandwidth or deep speculatlsmb@nchmarks that show the largest

speedupsnfatrix and8b10H typically have substantial parallelism exposed by the large window onSRIP

18

w .| ®mPentium 3

Q OPentium 4

S | mCore2-icc

o .| BTRIPS Compiley
o (OTRIPS Hand_|
3

[

[

joR

n

<
Benchmark
Figure 16: Speedup of TRIPS relative to the Core 2 on simple benchmarks.
3.5

Bl m B Pentium 3

8 O Pentium 4

B 2Bl N R m Core2-icc |
> B TRIPS Compile
R 72 S | O
s

S L5 el el
o

o 1% ®--® B w " B w®w B L =¥ B ® 8B 8 8B /B ® "8 8B L
n

OS5l TH R =0 ol vl vt BB aimln o Rl 0 - Nl 30wl =
0

QR F R OE L NS RQRY O R P S E o &KL
& & N & S R S F S FE L Q7
NI Q@«@ S &£ & 2 L & ® o)x@* &%‘5’\9&0
Benchmark GG)
eomean

Figure 17: Speedup of TRIPS relative to the Core 2 on SPEC benchmarks

The TRIPS hand-optimized code always outperforms the Core 2, witheaaga/2.9x cycle count reduction.

The performance differences between TRIPS compiled and hand-opdinude are primarily due to more
aggressive block formation, unrolling, and scalar replacement. Fongra8b10bbenefits from unrolling
the innermost loop of the kernel to create a full 128-instruction block e fegister allocating a small
lookup table. Infmradio, the hand-optimized code fuses loops that operate on the same vectasend
profile information to exclude infrequently taken paths through the kernel.

To show the ability of the TRIPS architecture to exploit a large number oftiiwmal units, we compare
a TRIPS hand-optimized and hand-scheduled matrix multiply [4] to the stateeedrt hand-optimized as-
sembly versions of GotoBLAS Streaming Matrix Multiply Libraries on Intel platie [6]. We use the best
published results from library implementations for conventional platformosthie results in Figure 17). The
performance across platforms, measured in terms of FLOPS Per Cy¢lg, (@RAges from 1.87 FPC on the
Pentium 4 to 3.58 FPC on the Core 2 using SSE. The TRIPS version acBi@@eBPC without the benefit
of SSE, which is 40% better than the best Core 2 result.

SPEC CPU2000:Figure 17 compares performance on SPEC2000 using referencestiatd RIPS per-

19

Per 1000 useful instructions

Core 2 | TRIPS | TRIPS|| Core 2| TRIPS| TRIPS|| Average

cond. br cond. br] call/ret|| I-cache| I-cache| load || useful instg

misses| misses | misses| misses| misses| flusheg| in flight
bzip2 1.3 1.6 0.0 0.0 0.0 0.09 342.5
crafty 4.5 3.0 0.5 1.7 17.2| 0.35 151.8
gcc 7.4 7.0 1.8 31 18.5] 0.52 73.0
gzip 4.8 4.3 0.0 0.0 0.0] 0.04 206.1
mcf 14.0 6.3 0.0 0.0 0.0/ 0.13 373.6
parser 2.0 3.2 0.1 0.0 0.6/ 0.04 —
perlbmk 25 0.4 8.3 0.0 13.0f 0.19 106.9
twolf 8.5 4.8 0.1 0.0 8.2| 0.36 275.2
vpr 0.5 1.4 0.5 0.0 3.2 0.40 221.8
ammp 0.2 15 0.1 0.0 1.0 0.05 —
applu 0.0 0.7 0.0 0.0 0.0] 0.01 496.6
apsi 0.0 2.4 0.0 0.0 0.0/ 0.11 249.7
art 0.4 0.0 0.0 0.0 0.0] 0.01 692.2
equake 0.2 0.6 0.0 0.0 0.9] 0.08 337.9
mesa 1.4 1.6 0.0 0.0 3.5 0.04 199.4
mgrid 0.0 0.1 0.0 0.0 0.0 0.00 519.8
swim 0.0 1.0 0.0 0.0 0.0 0.00 416.1
wupwise| 0.0 0.7 0.5 0.0 0.8] 0.04 496.9

Table 3: Performance counter statistics for SPEC.

formance is much lower on the SPEC benchmarks than on the simple benchrivénile floating-point
performance is nearly on par with Core 2-gcc (Core 2-icc achieveskaspekdup over TRIPS), integer per-
formance is less than half that of the Core 2. Table 3 shows severdkdtan have a significant effect on
performance: conditional branch mispredictions, call-return mispredgtlecache misses, and load flushes
for TRIPS, normalized to events per 1000 useful TRIPS instructionso sttewn are the branch mispre-
dictions and I-cache misses for the Core 2, normalized to the same 1006 Tiliruction-baseline to ease
cross-ISA comparison. The rightmost column shows the average UgRIBIS instructions in the window,
from Figure 11.

Several of the SPECINT benchmarks have frequent I-cache mssgsasrafty, gcg perlbmk andtwolf.
These benchmarks are known to stress the instruction cache, and tkébagmd ISA exacerbates the miss
rate because of TRIPS code expansion and the compiler’s inability to fillie-§ize 128-instruction blocks.
Perlbmkalso has an unusually high number of call/return mispredictions, due to dfidiesuly tuned call
and branch target buffer in TRIPS. All of these factors reduce theatiiiz of the instruction window; for
examplegcchas an average of only 73 useful instructions in flight, out of a possitiidased on the average
block size. While the TRIPS call/return flushes and I-cache misses catigassperformance losses, branch
mispredictions are competitive with the Core 2 and load dependence violateigr@aquent. Benchmarks
that have the most useful instructions in the window compare best to Cetel2 asart andmgrid. These
benchmarks are known to contain parallelism, and show good performatickttle compiler or microar-

chitectural tuning.

20

7 Lessons Learned

The prototyping effort’s goals were twofold: to determine the viability of ED@&hnology and to learn the
right (and wrong) ways to build an EDGE machine. This design and evalugffian taught us the following
lessons about how to build this class of architectures.

EDGE ISA: Prototyping has demonstrated that EDGE ISAs can support large-wjmddvef-order exe-
cution with less complexity than an equivalent superscalar processarevdq the TRIPS ISA had several
significant weaknesses. Most serious was the limited fanout aftlve instructions, which results in far
too many overhead instructions for high-fanout operations. The I®8ssupport for limited broadcasts of
high-fanout operands. In addition, the binary overhead of the TRBASs too large. The 128-byte block
header, with the read and write instructions, adds too much per-blockenaakr Future EDGE ISAs should
shrink the block header to no more than 32 bytes and support variablbkdacks in the L1 I-cache to reduce
the NOP bloat, despite the increase in hardware complexity.

Compilation: The TRIPS compiler can generate correct code with reasonable qualithdoTRIPS
ISA, despite the new burdens the ISA places on the compiler. We believanhaidustrial production
compiler could achieve code quality similar to our hand-optimized results bethesnost effective hand-
optimizations are largely mechanical. Because of the challenges presgréstk constraints, we moved
structural optimizations, such as loop unrolling and hyperblock formaticdhgtback end after code genera-
tion. A remaining challenge is how best to form large blocks in control-intereide. For example, frequent
function calls that end blocks too early cannot be solved by inlining withobstaintial re-engineering to
move this optimization from its traditional position in the front end to the back embti#er opportunity is
to allocate more variables in registers, which requires better alias analysstér data structures; the best
hand-generated code replaced store-load pairs with intra-block temporamunications, producing tighter
code and higher performance.

Microarchitecture: A microarchitecture with distributed protocols is feasible; the fully functionaa
indicates that the tiled nature of the architecture aided in both design andtiealigaoductivity. Another
positive result is that the design eliminates distributed block control protdfeath, dispatch, commit, and
flush) from the critical path. However, a number of artifacts in the miclutecture resulted in significant
performance losses. Most important was traffic on the operand netwbi&h averaged just under one hop
per operand. This communication resulted in both OPN contention and comiiomicgcles on the critical
path. Follow-on microarchitectures must map instructions, in coordination watlcdmpiler, so that most
instruction-to-instruction communication occurs on the same tile. The secorndimp®tant lesson was

that performance losses due to the evaluation of predicate arcs wasooedly high, since arcs that could

21

have been predicted as branches are deferred until executione HRGE microarchitectures must support
predicate prediction to evaluate the most predictable predicate arcs eatliergipeline. Third, the primary
memory system must be distributed among all of the execution tiles; the cachegistér bandwidth along

one edge of the execution array was insufficient for many bandwidthdivee codes.
8 Conclusions

At its inception, the TRIPS design and prototyping effort addressed tjuestions: (1) whether a distributed,
tiled, EDGE-based processor was feasible, (2) whether EDGE |SAsdananageable compiler target, and
(3) whether an EDGE-based processor can support improvedalgngpose, single-threaded performance.
This evaluation shows that the TRIPS ISA and microarchitecture are ifiefasible to build, resulting in a
tiled design that exploits out-of-order execution over a window of manylfeds of instructions. Despite
the inter-tile routing latencies, the combination of the large window, dynamic,issuthighly concurrent
memory system permits TRIPS to sustain up to 10 IPC, showing an averagddliteycle count speedup
over a Core 2 processor, if hand-optimized kernels are used.

However, the compiled cycle counts on major benchmarks, such as SFEQINSPECFP, are not com-
petitive with industrial designs, despite the greater computational resopiresent in TRIPS. On compiled
SPEC2000 benchmarks, measuring cycle counts, the TRIPS prototyieeesc60% of the performance of
a Core 2 running SPEC2000 compiled at full optimization with gcc. Despite talfat the TRIPS design
was built by fewer than twenty people in an academic environment, this lepelfifrmance does not support
the hypothesis that EDGE processors could outperform leading indusigins on large, complex applica-
tions. Even doubling the TRIPS performance would likely result in speethgsmall to justify a switch to
a new class of ISAs. These limitations are due partially to inefficiencies in tham8 microarchitecture, but
may also result from mismatches between certain program features anfl EXS. For example, bench-
marks with many indirect jumps, or unusually complex call graphs with many somadtibns, are difficult to
compile into large blocks without a debilitating increase in binary size.

Nevertheless, the TRIPS prototype was a first-generation design, dmimgared to an extremely mature
model, and there is much low-hanging fruit remaining in EDGE designs. Tdtetgping effort taught several
lessons that result in significant improvements in both power and perfeem&nture EDGE designs should
have support for variable-sized blocks, multicast of operandsigattedorediction, a more distributed/scalable
memory system, smaller block headers, and less distributed mappings oftiossuo tiles [18]. Also, since
not all codes have high concurrency, future EDGE-based micribactiires must allow adaptive granularity,
providing efficient small configurations when larger configurationsipeolittle performance benefit [11]. We

project that these improvements will enable EDGE designs to outperformehiditommodity systems on

22

complex integer codes, but not by enough to justify deployment in full-polesktop systems. In the five-to-

ten watt space, however, the performance and potential energyreffi@EEDGE designs may be sufficiently

large to justify adoption in mobile systems or data centers, where high perfoena&low power is essential.

Acknowledgments

This research is supported by a Defense Advanced ResearchtBsgancy contract F33615-01-C-4106
and by NSF CISE Research Infrastructure grant EIA-0303609.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.&di, and S. K. Reinhardt. The M5 Simulator:
Modeling Networked Systems. IEEE Micro, pages 52—60, July/August 2006.

D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. Kahn, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald,
W. Yoder, and the TRIPS Team. Scaling to the End of SilicomlDGE Architectures. IEEE Computer
37(7):44-55, July 2004.

K. Coons, X. Chen, S. Kushwaha, D. Burger, and K. McKinldySpatial Path Scheduling Algorithm for EDGE
Architectures. Innternational Conference on Architectural Support for ramming Languages and Operating
Systemspages 129-140, October 2006.

J. Diamond, B. Robatmili, S. W. Keckler, K. Goto, D. Burgeand R. van de Geijn. High Performance Dense
Linear Algebra on Spatially Partitioned Processors. Symposium on Principles and Practice of Parallel
Programming pages 63—72, February 2008.

http://ww. eenbc. org.

K. Goto and R. A. van de Geijn. Anatomy éfigh-Performance Matrix Multiplication ACM Transactions on
Mathematical Software34(12):4-29, May 2008.

P. Gratz, K. Sankaralingam, H. Hanson, P. ShivakumardviBDonald, S. W. Keckler, and D. Burger. Imple-
mentation and Evaluation of a Dynamically Routed Proce€gmrand Network. Innternational Symposium on
Networks-on-Chippages 7-17, May 2007.

M. D. Hilland M. R. Marty. Amdahl’s Law in the Multicore E. IEEE Computer41(7):33—38, July 2008.

D. Jiménez. Piecewise Linear Branch Prediction.Idternational Symposium on Computer Architecfyrages
382-393, June 2005.

C. Kim, D. Burger, and S. W. Keckler. An Adaptive Non-tmim Cache Structure for Wire-Dominated On-Chip
Caches. Ininternational Conference on Architectural Support for mmming Languages and Operating
Systemgpages 211-222, October 2002.

C. Kim, S. Sethumadhavan, M. Govindan, N. Ranganatbaulati, S. W. Keckler, and D. Burger. Composable
Lightweight Processors. limternational Symposium on Microarchitectupages 281-294, December 2007.

B. Maher, A. Smith, D. Burger, and K. S. McKinley. MergirHead and Tail Duplication for Convergent
Hyperblock Formation. Ihnternational Symposium on Microarchitectupages 65-76, December 2006.

23

[13] S. Melvin and Y. Patt. Enhancing Instruction Schedgylifvith a Block-Structured ISAlnternational Journal on
Parallel Processing23(3):221-243, June 1995.

[14] A. Moshovos and G. S. Sohi. Speculative Memory Cloaking Bypassing.International Journal of Parallel
Programming 27(6):427-456, December 1999.

[15] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W.kkac A Design Space Evaluation of Grid Processor
Architectures. Innternational Symposium on Microarchitectupages 40-51, December 2001.

[16] PAPI: Performance Application Programming Interfabet p: / /i cl . ¢cs. ut k. edu/ papi .

[17] R. M. Rabbah, I. Bratt, K. Asanovic, and A. Agarwal. \Vatiity and VersaBench: A New Metric and a
Benchmark Suite for Flexible Architectures. Technical &¢&prM-646, Laboratory for Computer Science,
Massachusetts Institute of Technology, June 2004.

[18] B. Robatmili, K. E. Coons, D. Burger, and K. S. McKinleyStrategies for Mapping Data Flow Blocks to
Distributed Hardware. linternational Symposium on Microarchitectypages 23—-34, November 2008.

[19] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desika. Drolia, M. S. Govindan, P. Gratz, D. Gulati,
H. Hanson, C. Kim, H. Liu, N. Ranganathan, S. SethumadhaSagharif, P. Shivakumar, S. W. Keckler, and
D. Burger. Distributed Microarchitectural Protocols iefhRIPS Prototype Processor.litiernational Symposium
on Microarchitecture pages 480-491, December 2006.

[20] A. Seznec and P. Michaud. A Case for (Partially) TAggdeb@etric History Length Branch Predictiodournal
of Instruction-Level Parallelisivol. 8, February 2006.

[21] T. Sherwood, E. Perelman, and B. Calder. Basic Blockribistion Analysis to Find Periodic Behavior and
Simulation Points in Applications. Ihnternational Conference on Parallel Architectures andn@ilation
Techniquespages 3—-14, September 2001.

[22] A. Smith, J. Gibson, B. Maher, N. Nethercote, B. YoderHnrger, K. S. McKinley, and J. Burrill. Compiling for
EDGE Architectures. Iinternational Symposium on Code Generation and Optimizapages 185-195, March
2006.

[23] A. Smith, R. Nagarajan, K. Sankaralingam, R. McDondl, Burger, S. W. Keckler, and K. S. McKinley.
Dataflow Predication. linternational Symposium on Microarchitectupages 89—102, December 2006.

[24] http://ww. spec. org.

[25] B. Yoder, J. Burrill, R. McDonald, K. Bush, K. Coons, MeBhart, M. Govindan, B. Maher, R. Nagarajan, B. Ro-
batmili, K. Sankaralingam, S. Sharif, A. Smith, D. BurgerV& Keckler, and K. S. McKinley. Software Infras-
tructure and Tools for the TRIPS Prototype Morkshop on Modeling, Benchmarking and Simulatihme 2007.

24

