IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO.9, SEPTEMBER 1999

903

Concurrent Event Handling
through Multithreading

Stephen W. Keckler, Member, IEEE, Andrew Chang, Student Member, IEEE,
Whay S. Lee, Sandeep Chatterjee, Member, IEEE, and William J. Dally, Member, IEEE

Abstract—Exceptions have traditionally been used to handle infrequently occurring and unpredictable events during normal program
execution. Current trends in microprocessor and operating systems design continue to increase the cost of event handling. Because of
the deep pipelines and wide out-of-order superscalar architectures of contemporary microprocessors, an event may need to nullify a
large number of in-flight instructions. Large register files require existing software systems to save and restore a substantial amount of
process state before executing an exception handler. At the same time, processors are executing in environments that supply higher
event frequencies and demand higher performance. We have developed an alternative architecture, Concurrent Event Handling, that
incorporates multithreading into event handling architectures. Instead of handling the event in the faulting thread’s architectural and
pipeline registers, the fault handler is forked into its own thread slot and executes concurrently with the faulting thread.
Microbenchmark programs show a factor of 3 speedup for concurrent event handling over a traditional architecture on code that takes
frequent exceptions. We also demonstrate substantial speedups on two event-based applications. Concurrent Event Handling is

implemented in the MIT Multi-ALU Processor (MAP) chip.

Index Terms—Exceptions, interrupts, multithreading, context switching.

1 INTRODUCTION

ODERN microprocessors use exception or event hard-
ware to handle infrequently occurring and unpre-
dictable events. Events may be classified as internal, caused
by the program executing on the processor, or external,
caused by actions outside of the processor. Internal events
may include arithmetic faults, memory protection viola-
tions, page faults requiring software to modify the TLB or
fetch a new page of data from disk, or even user initiated
system calls that trap into the operating system. Traditional
examples of external events include watchdog timer
interrupts and I/O interrupts caused by the disk drive or
a keyboard controller. Regardless of event type, the purpose
of the event detection hardware is to prevent a program
from being penalized in the absence of events. Without
hardware for exception detection, programs would be
required to continually check for exceptional conditions.
Two trends in modern computer systems conspire
against traditional exception architectures [28]. First, the
cost of exception handling is increasing relative to the
performance of microprocessors. The increasing width and
depth of out-of-order superscalar pipelines accentuate the
cost of event handling since the pipeline must be drained in

o S.W. Keckler is with the Department of Computer Sciences, University of
Texas at Austin, Taylor Hall, 2.124, Austin, TX 78712.
E-mail: skeckler@cs.utexas.edu.

o A. Chang and W.]. Dally are with the Computer Systems Laboratory,
Stanford University, Gates CS Building, Stanford, CA 94305.
E-mail: achang@coa.stanford.edu, billd@csl.stanford.edu.

o W.S. Lee is with Sun Microsystems, Inc., 8200 Central Avenue, MS: NWK
02-101, Newark, CA 94560. E-mail: whay.lee@sun.com.

o S. Chatterjee is with the Laboratory for Computer Science, Massachusetts
Institute of Technology, 545 Technology Square, Cambridge, MA 02139.
E-mail: sandeep@Ics.mit.edu.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 110268.

response to an exception or event. In a 6-wide 10-deep
pipeline, this results in as many as 60 wasted issue slots.
Exception handling is further slowed by software that must
frequently modify the pipeline state, vector to trap
handlers, and manipulate the machine visible registers [4],
[24]. The second trend is the increase in novel uses of event
handling that are no longer “exceptional.” These include
support for garbage collection [5], software managed
distributed virtual memory [21], and profiling [32]. Further-
more, for processors in embedded environments, perfor-
mance can be limited by the ability to respond to a variety
of external events, such as sensor inputs or packets in a
network router.

The advent of hardware support for multithreading in
microprocessors can alleviate both the latency and hard-
ware complexity of event handling. When the hardware
detects an event in a traditional single-threaded processor,
an expensive sequence of actions must take place even
before any of the event handling code is executed. The
pipeline must be halted and drained, the stalled thread’s
registers and protection domain must be saved to memory,
and the event handler’s state and protection domain must
be restored. Once the event handler has completed, this
process must be reversed. Instead, with the appropriate
mechanisms, a multithreaded processor can avoid most of
this overhead by forking the event handler into a separate
hardware context. Multithreading also provides the oppor-
tunity to execute applications and event handlers simulta-
neously, further reducing the overhead of events.

This paper introduces a general framework and nomen-
clature for Concurrent Event Handling and presents the
resulting architecture, as well as an example implementa-
tion in the MIT Multi-ALU processor (MAP) chip. The MAP
chip provides hardware support for concurrent execution of

0018-9340/99/$10.00 © 1999 IEEE

904 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO.9, SEPTEMBER 1999

both internal and external events. It incorporates three on-
chip processors, each of which includes six thread slots for
interleaving multiple threads of execution. In each proces-
sor, three thread slots are available for user level programs,
while additional slots are reserved for exception and event
handling, including TLB misses, synchronization failures,
cache faults, and asynchronously arriving messages from
other MAP chips in a multiprocessor system.

Using multithreading for event handling has two
advantages. First, it reduces the overhead to invoke and
return from an exception since the faulting thread is not
removed from the pipeline. Second, event handling can
proceed in parallel with the application, enabling faster
event execution for both internal and external events.
Hardware support for concurrent event handling allows
the traditional requirements for sequentially precise inter-
rupts in microprocessors to be relaxed, improving perfor-
mance without sacrificing correctness.

In our experiments, we show that concurrent event
handling outperforms event architectures that swap or stall
the faulting thread. If a hardware thread slot is available for
event handling, the latency of a null event drops from 100
cycles to 14 cycles. The null event handler’s occupancy in a
thread slot also drops to less than 10 cycles, reducing the
contention between multiple threads for the execution
resources. Applications that exhibit a high event rate show
substantial performance improvements when using con-
current event handling. Eliminating swapping improves
application performance by 19 percent, while running event
handlers in parallel with application code provides an
additional improvement of 26-43 percent.

The rest of this paper is structured as follows: Section 2
describes modern exception handing in further detail,
highlighting the sources of overhead. The necessary
architectural support for a concurrent event system and
the implementation of concurrent event mechanisms in the
MAP are detailed in Section 3. Section 4 explores the
benefits of concurrent event handling through both
microbenchmarks and two applications. Section 5 examines
related work in multithreading and optimizations for fast
event handling. Finally, we summarize the architecture and
results in Section 6.

2 EVENTS

As described in the introduction, an event is a condition that
requires the services of the processor to handle. Events may
be caused by an executing program (an internal event) or by
an outside agent (an external event). Internal events are
triggered by a running program and may result from
software errors, such as a protection violation, or from
normal execution, such as a page fault. External events are
created by sources outside the current program’s execution
and may include I/O events, such as a disk request, timer
generated events, or even a message arrival in a message-
passing multiprocessor system.

The response of a processor to an event may be precise or
imprecise and may be concurrent or sequential. The response
to an event is precise if proper handler execution ensures
correct program behavior. Precise event handling is
guaranteed if the particular instruction that caused the

event (the faulting instruction) is identified and any
instructions that need the result of the faulting instruction
are not issued until the handler has generated this result.

This definition of precise event handling enables us to
use multithreading to implement concurrent event hand-
ling; the event handler and the faulting program run
concurrently in different thread contexts. This is in contrast
to sequential event handling in which an event interrupts
the faulting program, brings it to a sequentially consistent
state, runs the handler to completion, and resumes the
faulting program. Concurrent and sequential event hand-
ling take different approaches to achieve the same result;
ultimately, both guarantee that the correct input operands
are delivered to each instruction.

We introduce this nonstandard event nomenclature for
two reasons: to avoid confusing the origin of an event
(internal or external) with the response of the processor
(whether it is interrupted or not) and to avoid confusing the
intent of a precise event (correct program behavior) with the
method of achieving this intent (sequential or concurrent
execution).

The nomenclature used in the literature tends to mix the
concepts of origin, intent, and implementation together. In
[11], internal and external events are called synchronous
and asynchronous events, respectively, terminology that
tends to suggest a method of handling the event. Many
sources, including [27], call internal events exceptions and
external events interrupts. The term interrupt, in particular,
suggests a method of handling the event rather than
identifying the source of the event. The term exception is
neutral on location, as exceptional conditions may be raised
by internal or external sources. At the same time, an internal
event may occur during normal operation, such as for a
system call, and not correspond to what is normally
considered an exceptional condition.

Both intent and implementation are combined in the
common interpretation of a precise interrupt. As defined in
[27], this type of event guarantees correct behavior (precise),
and achieves this by strictly ordering the execution of
faulting program and handler instructions (sequential).
Specifically, a sequentially precise interrupt satisfies the
following conditions:

e All instructions preceding the faulting instruction
have been executed and have modified process state
correctly.

e Allinstructions following the faulting instruction are
unexecuted and have not modified the process state.

e If the event is caused by an instruction in the
program (the faulting instruction), the program
counter points to that instruction. The faulting
instruction must either have completed or not have
started execution.

Sequential precise interrupts are convenient in single-
threaded processors since they limit the software complex-
ity of halting and restarting the faulting program. The
program counter captures the entire state of the pipeline.
Regardless of the actual instruction execution order, the
processor appears to have executed all of the instructions
sequentially.

KECKLER ET AL.:

trigger
exception

CONCURRENT EVENT HANDLING THROUGH MULTITHREADING

905

HW overhead

user

| []

program

exception
handler

resume

| |
~" N

restore overhead

call overhead

Fig. 1. The user program is interrupted by an exception which incurs both hardware and software overhead before the exception handler can begin

executing.

In a single-threaded, unpipelined processor, all events
are handled in a sequential fashion, as shown in Fig. 1.
When an event is detected, the program halts and an event
handler is loaded and run. When the handler completes, the
original program is reloaded and restarted at the faulting
instruction. In addition to the execution time of the event
handler, the diagram also depicts both the hardware and
software overheads associated with invoking and returning
from an event handler. In a multithreaded processor, or one
that is heavily pipelined, it is advantageous to handle
events concurrently, without halting the user’s program;
both the event handler and the user program can run
simultaneously. The remainder of this section explores the
different overheads associated with event handling and
describes how these overheads can be reduced by handling
events concurrently.

2.1 Hardware Overhead

Much of the complexity in sequential event handling stems
from stopping and restarting a thread that causes an event.
In a purely sequential model of instruction execution, an
instruction is issued and runs to completion before the next
instruction is issued. In this case, event handling is trivial
since the instruction after the one that caused the event has
not yet been issued. The hardware needs only to squash the
faulting instruction and can later resume by reexecuting
either it or the subsequent instruction. High-performance
processor implementations violate this model by executing
multiple instructions simultaneously, through both pipelin-
ing and parallel issue. The state of the program may be
modified in an order different from the sequential execution
of the instructions. In order to allow a process to continue
correctly after an interrupt, the process state must be saved
in a consistent form.

Smith and Pleszkun describe several methods for
implementing sequential precise interrupts in pipelined
processors, with the more complex methods logging the
process state during execution so that the correct order can
be restored at the time of an interrupt [27]. One method uses
a history buffer to track the sequential completion order of
instructions. Instructions are issued in order and placed in
the history buffer along with the original value contained in
each instruction’s destination register, prior to execution of
the instruction. When the instruction that caused the event
has reached the head of the history buffer, instruction issue

is halted until the pipeline, including the memory system,
has drained. The history buffer is then emptied in reverse
order, which restores the original values back into the
register file. The Motorola MC88110 can issue two instruc-
tions per cycle and uses a history buffer to keep track of out-
of-order instruction completion [31]. When an instruction
triggers an event, it must first wait for all previous
instructions to complete, which, in the worst case, includes
long latency instructions, such as cache misses and floating-
point arithmetic operations, and requires as many as
57 cycles. The replay of the history buffer may take as
many as six cycles and the transfer of control to the event
handler requires three cycles. Thus, for a relatively simple,
2-way in-order issue superscalar processor, as many as 66
cycles may be required before any of the event code is run.

A second method of implementing sequential precise
interrupts holds both the speculative and nonspeculative
state in register files. One strategy uses a separate
speculative register file, called the Future File, to hold
register updates before instructions commit. When an event
occurs, the contents of the architectural register file are
copied to the future file. The MIPS R10000 implements a
similar strategy by using the register renaming logic to save
the nonspeculative state until instructions commit [35].
When an event occurs, the prematurely renamed registers
are unmapped. To handle the case where a logical register
was remapped twice, the logic unmaps up to four
instructions per cycle, in reverse order from the active
instruction queue.

Regardless of the method of recording speculative state
modifications, substantial overhead can result when an
interrupt occurs. In recent wide out-of-order issue super-
scalar processors, the number of uncommitted instructions
can be large, leading to a significant penalty to restore the
sequential precise state of the faulting instruction. Further-
more, a great deal of useful work can be lost when an event
occurs. All of the already issued instructions after the one
that causes an event must be reexecuted, even if they are
independent of the event.

The hardware required to implement sequential precise
interrupts can also be quite complex. In fact, Digital’s Alpha
21064 processor implements only a bare-minimum of
precise interrupts. If the software requires precise interrupts
on an arithmetic operation, it must execute the TRAPB (trap

906 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO.9, SEPTEMBER 1999

TABLE 1
Latency for Null System Call and Return
| Machine time (useconds) | Cycles
Motorola 8800 [4] (20MHz) 11.8 236
MIPS R2000 [4] (16.6MHz) 9 149
MIPS R3000 [4] (25MHz) 4.1 103
Sparc Ultra I (167MHz) 29| 484
HP PA-8000 (180MHz) 09 162
Pentium Pro (200MHz) 1.9 380
Sparc Ultra IT (300MHz) 1.6 474

barrier) instruction which serializes instruction issue by
preventing further instructions from executing until all
previous instructions have been guaranteed not to cause an
event. While this dramatically simplifies the hardware,
these events are no longer precise unless TRAPB instruc-
tions are inserted between every pair of instructions.
Consequently, handling these events in software becomes
more difficult. A variety of additional design choices for
hardware event processing are detailed in [33].

2.2 Software Overhead

Even after the software event handler has been invoked, a
substantial number of instructions may need to execute
before any useful work can be done. As observed by
Anderson et al. [4], trap handling has become even more
costly in modern microprocessors. Before any instructions
from the specified event handler can execute, the software
at the trap entry point must change the addressing
environment for the operating system, manipulate any
machine state necessary to service the outstanding event or
events, save or restore any registers that must be preserved
during the operating system call, and vector to the specific
event handler. Changing the addressing environment can
even entail swapping TLB entries and flushing the cache. If
the hardware itself does not implement sequential precise
interrupts, the trap handler must examine the machine’s
pipeline state, store what is necessary, and determine which
of the executing instructions has outstanding events. Since
the operating system uses the same pipeline and registers as
the program that caused the event, all of the architectural
state must be saved to memory. Finally, if the hardware
does not automatically provide the address of a fault-

Sequential

Concurrent

specific handler, the software must examine the processor
state to determine the type of fault that occurred before
jumping to the appropriate code.

Table 1 shows the latency for a null system call and
return (using a trap into the operating system). The first
three rows are results from Anderson et al. [4], while the
remaining rows are from more modern systems measured
using Imbench [23]. The combination of the hardware and
software overheads results in substantial latencies to handle
a trap. The number of cycles required to handle a trap has
already increased with the deeper pipelines and greater
processor state of modern architectures. This trend is likely
to continue in the future.

2.3 Concurrent Event Handling

Nearly all of the overhead associated with event handling is
due to starting and stopping the event handler and faulting
program. A multithreaded processor need not incur this
overhead of sequential fault handling. Instead, it can handle
the fault concurrently, running the handler thread in
parallel with the faulting program thread. As shown in
Fig. 2, when an event occurs in this model, the event
handler is forked into a waiting thread slot. If the event
must be handled before the user thread proceeds, the user
thread stalls while the event handler is run. Otherwise, the
user thread can continue to execute until it reaches a point
where it needs the result from the event handler.

Consider, for example, a load instruction that causes a
TLB miss that must be handled in software. The program
that issued the load need not stall until it actually requires
the data. When the TLB miss occurs, the memory system
hardware sends the address that caused the miss, along
with other control information, including the ultimate
destination of the load result, to an event handler waiting
in an idle thread slot. The event handler then executes
concurrently with the user thread. After the handler
replaces the TLB entry, it can reexecute the load in its
own thread slot and deliver the data to the original
destination register. A register scoreboard can stall the user
thread when it reaches an instruction that needs the result
from the TLB handler.

These events do not satisfy the definition of sequential
precise interrupts, in part since the faulting program is not
interrupted and may continue to issue and retire instruc-
tions. However, they do maintain precise event semantics.

| |:| user code

|:| overhead

event handler

Fig. 2. The sequential event handler is run in the same thread slot as the user code. Concurrent event handlers run simultaneously in a different
thread slot, reducing the hardware and software overheads associated with switching between threads.

KECKLER ET AL.: CONCURRENT EVENT HANDLING THROUGH MULTITHREADING 907

When the event handler is invoked, it knows exactly which
instruction caused the event and has enough information to
complete the execution of the instruction. Correct program
behavior is guaranteed as the program that caused the
event is prohibited from executing any instructions which
use a result that subsequently will be produced by the event
handler.

External events can be handled in the same fashion, but
are simpler since they need not interact with the executing
program. By combining multithreading with event hand-
ling, we eliminate the hardware and software overhead
associated with swapping between user and event threads.
These same mechanisms can provide additional benefit by
exploiting parallelism between the user code and the
operating system.

3 ARCHITECTURAL SUPPORT FOR CONCURRENT
EVENT HANDLING

Modern microprocessor architectures are highly tuned for
execution of sequential programs and the features required
to implement concurrent event handling do not come
without cost. While many implementations are possible, the
necessary mechanisms for concurrent event handling
include:

1. Spare execution resources: The architecture must
support concurrent execution from multiple threads
of control. Architectures that include multithread-
ing, multiple processors on a single chip, or a
combination of both are all viable alternatives.

2. Hardware thread invocation: The chip must have the
ability to invoke an event handler without causing
any other running threads to stall. Any software
overhead between event detection and event handler
invocation would defeat the purpose and efficiency
of concurrent handling.

3. Synchronization: A thread that causes a fault must
be able to proceed until it reaches a point where it
needs the result that is to be generated by the event
handler. This synchronization should have little, if
any, overhead, not block the faulting thread indis-
criminately, and not require the application to be
modified (e.g., spin loops are not acceptable).

4. Protection: Multiple threads from different protec-
tion domains, such as a user’s application and the
operating system, must be able to coexist and
execute simultaneously without risk of any protec-
tion violations. Furthermore, the event handler
program must be able to communicate results back
to the thread that caused the event without requiring
an expensive interprocess communication.

Omitting any of these features will result in a system that
will not execute concurrent events efficiently. The remain-
der of this section describes these mechanisms in more
detail and how they are implemented in the Multi-ALU
Processor chip. At the end of this section is a discussion of
some important design considerations for concurrent events
that are applicable to other processors.

External
Memory

Memory Interface Bus

Cache e Cache
Bank 0 Interface Bank 1
TLB

Cluster 0 Cluster 1 Cluster 2

MAP chip

Network

Fig. 3. Block diagram of the MAP chip, containing three clusters
(processors), each with a dedicated event or message queue.

3.1 The Multi-ALU Processor

The Multi-ALU Processor (MAP) is a sample implementa-
tion of our architecture that provides hardware support for
concurrent event handling The MAP includes three
processor clusters that execute independently but can
communicate and synchronize directly through processor
registers [10], [15], [13]. In addition, each cluster is multi-
threaded to enable multiple programs to share the execu-
tion resources in an interleaved fashion. Hardware support
allows internal and external events to execute concurrently
with each other and with the user-level programs. This
section describes the architecture and implementation of the
MAP chip including both the mechanisms for multithread-
ing and concurrent event handling.

Fig. 3 shows a block diagram of the MAP chip’s features
for concurrent event handling. Each of the three MAP
clusters is a 64-bit, three-issue, pipelined processor consist-
ing of two integer ALUs, a floating-point ALU, associated
register files, and a 4 KB instruction cache. The memory
system includes two on-chip cache banks and an external
memory interface which interfaces to the off chip synchro-
nous DRAM. These components are connected through two
crossbar switches (the memory and cluster switches), which
enables a cluster to communicate with the cache banks and
with other clusters. An on-chip multiprocessor network
interface and two-dimensional router allow a message to be
transmitted from a cluster’s register file into the network.
The event queue and the network queues hold events from

908 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO.9, SEPTEMBER 1999

the memory system and the network until they can be
processed by the specified clusters.

3.2 Multithreading Support on the MAP

Multithreading on the MAP chip is implemented by
interleaving instructions from different threads over the
execution resources of each cluster on a cycle-by-cycle basis.
Unlike block multithreading [1], [34], which switches
threads on long latency operations, such as cache misses,
and round-robin thread scheduling [2], [26], which forces a
thread switch every cycle, the MAP chip makes its thread
selections based upon the availability of an instruction’s
register operands. If an instruction’s input data is not
available, the instruction will not execute. Scheduling
threads based on data availability enables the processor to
tolerate long memory latencies, as well as short instruction
latencies, for a particular thread, filling in the otherwise idle
execution units with instructions from other threads. This is
ideal for concurrent event handling as the thread that
caused the event, as well as other executing threads, can
continue to execute by issuing into the event handler’s
unused instruction slots. Single thread efficiency is main-
tained because, even if only one thread is active, it may
issue an instruction every cycle as long as the operands for
its instructions are ready. The two main features of the
MAP that provide tremendous flexibility in executing
multiple threads are the thread scheduler and the memory
protection mechanisms that allow threads from different
protection domains to execute simultaneously.

3.2.1 Thread scheduling

In each cluster, the MAP chip dedicates a pipeline stage (the
synchronization or SZ stage) to thread scheduling. One 3-
wide instruction waits in the SZ stage’s reservation station
until the instruction is ready to issue [29]. The SZ stage
maintains valid bits from the register scoreboard for the
input operands of all instructions waiting in the reservation
stations. The scoreboard tracks which registers are valid
and which are waiting for data to arrive. Once all of the
operands are available, instructions from different threads
compete for use of the execution units based on policies of
priority and nonstarvation. The thread slots are divided into
two categories, system and user, and each thread has two
priority levels. A simple three state priority scheme is used
to determine which threads can compete for the issue slots.
High priority system threads are the most important and
can monopolize the execution resources when necessary.
Low priority system threads and high priority user threads
are at the same level and have equal access to the execution
units. At the bottom of the hierarchy are low priority user
threads. This priority scheme enables critical threads,
including those dedicated for event handling, to use a
higher fraction of the execution resources than user-level
threads. The synchronization stage also implements a
preempt state (that includes idle cycle counters and limit
registers) to guarantee that a ready instruction can only be
stalled for up to 255 cycles, depending on the parameter
stored in the limit register. This strategy ensures that, even
if one thread is creating a tremendous number of events,

other threads will be able to continue making forward
progress. Further details on the design and implementation
of the MAP’s pipeline can be found in [13].

3.2.2 Protection

Since the event handler may execute code or access data
that is privileged, concurrent event handling must allow
multiple threads from different protection domains to
execute simultaneously. Furthermore, an event handler
must be able to communicate with the threads that invoked
it so that it can read the state of the faulting thread and pass
results back when the event handler completes. While low
overhead protection has been incorporated into virtual
memory systems to reduce the overhead of context switch-
ing [16], [19], these systems do not allow data to be easily
passed between protection domains. The MAP chip
separates protection from virtual memory by using
Guarded Pointers, which enable threads from different
protection domains to reside within the same virtual
address space and be loaded simultaneously on the
processor [7]. Guarded pointers implement a light-weight
capability system that organizes the global address space
into segments which must be accessed with unforgeable
tagged pointers. The pointer tag is represented by a 65th bit
attached to each 64 bit word in datapaths, registers, and
memory. Segmentation checks are performed in the cluster
during address calculation. When a memory operation
executes, the permission of the pointer is examined to
determine if the operation is legal. If the check determines
that a memory operation is illegal, a cluster’s memory unit
triggers an internal event. Data is controlled on a segment-
by-segment basis, which can prevent protected data from
being read and read-only segments from being written. In
addition to enabling threads from different protection
domains to execute simultaneously, guarded pointers allow
fast memory communication between threads through
shared objects and simple kernel level access to user data
structures. The MAP also allows a system level thread to
write directly into the registers of a user level thread, which
is necessary when reenabling a user thread when the event
handler terminates.

3.3 MAP Event Handling Mechanisms

The MAP chip uses multithreading to handle both internal
and external events. Internal events are divided into those
that are handled sequentially and those that are handled
concurrently. Sequential events occur within the pipeline’s
execution units and can be detected at the beginning of the
execute stage. Examples include protection violations and
speculative exception detection. Concurrent events are
detected outside of the pipeline and include TLB misses,
synchronization failure, and cache status failures. Table 2
shows the allocation of thread slots to each event type. The
sequential events are handled in thread slot 3 of each
cluster, while the TLB and general events are handled in
different thread slots on cluster 0. The general event handler
executes synchronization and memory coherence events
using all of the clusters in slot 4 if necessary. External events
are executed in dedicated message handler threads on
clusters 1 and 2. The key hardware components for
handling any of these types of events quickly include the

KECKLER ET AL.: CONCURRENT EVENT HANDLING THROUGH MULTITHREADING 909

TABLE 2
The Six Threads Are Partitioned into Three User Slots, One Sequential Event Slot and Two Concurrent Event Slots
Cluster 0 Cluster 1 Cluster 2
slot O | user user user
slot 1 | user user user
slot 2 | user user user
slot 3 | sequential event | sequential event sequential event
slot 4 | general events | system system
slot 5 | TLB events priority O messages | priority 1 messages

generation of event records, synchronization to indicate to
the handler when an event has occurred, and memory
mapped access to thread registers so that the handler can
return data to a waiting user thread.

3.3.1 Sequential Internal Events

The MAP chip minimizes the downtime of threads due to
events by reducing the overhead for each event and
providing mechanisms to eliminate as many events as
possible. On each cluster, slot 3 is reserved for handling
local events that can be detected within the cluster during
the first half of the execution unit clock cycle. These
sequential internal events include executing a privileged
instruction while in user mode, storing to an illegal pointer,
and sending to an illegal address. When the execution unit
detects an event, it stalls the pipeline and writes the
information associated with the event into the registers of
thread slot 3. Since the event is executed in its own thread
slot, the thread that caused the event merely waits until the
event is complete. No user registers need to be saved and
restored and the pipeline does not need to be restarted. As a
result, a null event handler can start and complete in less
than 14 cycles.

The event record includes the address of the instruction
that faulted and the reason for the event. When an event
handler is running, all user threads are prohibited from
executing instructions so that a second event cannot occur
while this event handler is busy. When the event handler is
complete, it reenables the user threads. A sequential
internal event caused by the event handler or by a system
level event handler is a system software error and results in
an unrecoverable catastrophic event.

In order to enable speculative execution of instructions,
the MAP provides a mechanism for deferring events.
Deferred events can result from the creation of an illegal
pointer or loading from an illegal address. When a
deferrable event is detected, a special pointer called an
ERRVAL (error value) is written into the result register. The
ERRVAL is a tagged guarded pointer that encodes the
address of the instruction that created it and the reason for
its creation. ERRVALs can propagate through subsequent
arithmetic instructions, allowing a stream of speculative
instructions to occur without the risk of an unwanted event.
Instructions that have no result (such as a store) and
comparison operations that write into a single-bit condition
code register cannot propagate an ERRVAL and must
invoke a sequential internal event handler.

3.3.2 Concurrent Internal Events

Events that are caused by an executing program but are
detected outside the MAP cluster where the thread is
running are termed concurrent internal events and are
handled asynchronously by generating an event record and
placing it in a hardware event queue. Local TLB misses,
block status faults, and memory synchronization faults are
events that are handled without blocking execution of any
user level program. These events are precise since the
faulting operation and its operands are specifically identi-
fied in the event record.

For example, when the TLB thread is idle, it stalls
waiting for a particular register to be written by the event
detection hardware. When a TLB miss occurs, the external
memory interface hardware formats an event record, shown
in Fig. 4, containing information about the cause of the fault:
the address that faulted, any data that was associated with a
faulting store, a memory mapped pointer to the destination
register in case of a load, and a memory mapped pointer to
the physical location in the TLB in which to put the new
entry. The event record is written directly into the integer
register file of the TLB thread in slot 5 on cluster 0. When
the event record has been received in the register file, the
specified registers are marked full, which wakes up the TLB
thread to handle the event. The software TLB miss handler
reads the record, places the requested page table entry in
the TLB, and restarts the memory reference. The thread that
issued the reference does not block until it needs the data
from the reference that caused the miss.

For general events, such as memory synchronization
failures or cache status faults, the event record is written
into a hardware event queue. A general event record is nearly
identical to a TLB record, except that it does not need the
pointer to the TLB entry. A software handler reads event
records from the queue and processes them sequentially.
Integer registers are mapped to the queue so that a read

i6 <event type, opcode, destination, etc.>
17 Faulting Address
i8 Data Payload
19 Destination Register Pointer
110 TLB Entry Pointer

Fig. 4. Format of a TLB miss event entry written directly into the integer
registers of the TLB miss handler on cluster 0.

910 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO.9, SEPTEMBER 1999

from register 115 will dequeue the word at the head of the
queue and a read from register 114 will pop the current
event record from the queue and return the first word from
the next record. If there are no records in the queue, the
event handler will stall trying to read the queue head.

Handling events concurrently obviates the need to cancel
all of the issued operations following the faulting operation,
a significant penalty in a wide machine with deep pipelines.
Dedicating thread slots to this purpose accelerates event
handling by eliminating saving and restoring of thread state
and allowing concurrent (interleaved) execution of user
threads and event handlers. However, concurrent event
handling does require sufficient queue space to handle the
case where every outstanding instruction generates an
event. If insufficient space exists in the event queue, user
threads must be stalled to prevent additional events from
overflowing the queue. As many as 13 memory instructions
can be outstanding in the MAP chip’s memory system
pipeline. As each instruction could require a four word
event record, the minimal size of the event queue is 52
words. To provide the elasticity necessary to prevent
premature stalling of threads on a saturated event system,
the MAP implements a larger 128 word event queue.

3.3.3 External Events

External (asynchronous) events are executed using the
dedicated message handling threads without requiring any
user threads to be interrupted. Like the general concurrent
event handling mechanism described above, arriving
messages are placed in an incoming message queue. The
handler thread reads the message contents, processes
messages sequentially, and automatically stalls when the
queue is empty. The message format is different from the
general event format. By convention, the first word is an
instruction pointer to which the handler jumps for fast
event vectoring. The subsequent words are the payload of
the message and can serve as arguments to the procedure
specified in the instruction pointer. In addition to servicing
messages in a multiprocessor environment [20], the
message handlers can also process other types of events,
including external timers or data delivery from a disk.

3.4 Design Considerations

Architectures for concurrent event handling must pay
specific attention to managing the resources that can be
accessed concurrently from different threads of control. For
example, what happens when a second event occurs while a
previous one is already in progress? This situation can arise
if multiple threads can cause events independently or even
if the thread that created an event is allowed to create
another before the first one has been handled. Preventing all
other threads from executing when any single thread has
caused an event is far too restrictive. The Multi-ALU
Processor partitions the events into different categories and
events of a particular category are queued together and
handled one at time. Another architecture might use any
available coprocessor or thread slot to handle multiple
events, but an event must not be lost if all of the thread slots
are already busy.

Another complication can arise if event handlers are
allowed to cause events, for example a page fault taken by a

memory synchronization event handler. The design of the
event system must prevent circular dependences between
event handlers in order to avoid deadlock. The MAP chip
achieves this through the event type partitioning described
above and by creating a hierarchy of event handlers:
Memory synchronization and status fault events can cause
a TLB miss event, but the TLB miss handler cannot cause
any faults. Resorting to a synchronous exception and
running the event handler in the thread slot that caused
the event can also be used to help break circular resource
dependences.

A third consideration is the order in which events should
be processed. Depending on the programming model, it
may be necessary to execute all events from a particular
thread in order or to execute all events of a particular class
in temporal order. The event queue in the MAP enforces
one ordering, but it may not be appropriate in other
applications. In our experience, defining the event ordering
and concurrency protocols was nearly as difficult as
implementing them (including all of the special cases) in
hardware.

4 EVALUATION OF MECHANISMS

This section examines the performance benefits of using a
dedicated thread to reduce overhead and execute events
concurrently with the faulting thread. The evaluation
includes microbenchmarks to examine specific aspects of
event handling, as well as two applications that use
frequent events as a part of their execution. Since no
current microprocessor provides fast event handling,
finding applications that use events as an integral part of
their execution is challenging. We selected and implemen-
ted two application kernels that take events frequently:
1) Software Shared Memory in which events are auto-
matically generated to fetch remote data on memory
operations and 2) Dynamic Profiling which nonintrusively
samples the program counter of a running program based
on an externally triggered event.

The microbenchmarks were written in MAP assembly
code and run on MSIM, the functional simulator of the
MAP. MSIM executes 400-1,000 MAP cycles per second,
depending on how many clusters are active, and has been
validated to be cycle-accurate using the register transfer
level (RTL) model of the chip. The applications are
compiled using MMCC, the MAP C compiler, which is a
derivative of the Multiflow C compiler [22].

4.1 Baseline Mechanisms

As described in Section 3, the MAP’s event handling
mechanisms can eliminate nearly all of the overhead
associated with switching between the user and event
handling threads. Since the event handler runs in its own
context, the pipeline need not be drained and no context
switching or address environment modifications are re-
quired. Fig. 5 shows the null event handler that is used to
examine the speed of the MAP’s event handling. The event
handler stalls on integer register 114 waiting for an event to
be triggered. When the event record is written into the event
queue, the handler removes all four words, returns a
meaningless value to the thread that caused the event, and

KECKLER ET AL.: CONCURRENT EVENT HANDLING THROUGH MULTITHREADING 911

EVENT WATT:

instr ialu i6;

i7;

mov il4,

instr ialu mov il5,

instr ialu

instr ialu mov il5, i8;
mov ilh, i9;

st i2, 19;

instr ialu

instr memu

br EVENT WAIT;--

-— get next event header

-- word #2

branch back + 3 delay slots
-- word #3

-- word #4

-—- return data to user

Fig. 5. A null event handler waits until a new event arrives, pulls the entire event record from the event queue, and returns a word to the faulting

thread.

loops back to wait for the next event to occur. The fourth
word in the event, loaded into 19, contains the memory
mapped address of the destination register from the
instruction that caused the fault. The store to 19 writes
the value of i2 into the original destination register. If the
faulting thread reaches an instruction that needs the result
of the faulting instruction, it stalls until the event handler
delivers the data.

Fig. 6 shows the time required to resolve an event both
by forking to another thread and by context switching in the
existing thread slot. The test program causes an event by
performing a synchronizing load that fails in the cache.
The faulting thread immediately uses the result of the
faulting load in the subsequent instruction. As shown in
the Fork timeline, three cycles elapse from the time the 1oad
issues until the first word of the event record reaches the
event thread. Eight cycles are spent in the event handler
(Fig. 5) and three more cycles are required to deliver the
dummy word back to the faulting thread. If the event is
handled in the original slot, the state of the faulting thread
must be saved to memory. The Swap timeline in Fig. 6
shows the additional overhead required to drain the
pipeline and save/restore 38 architectural registers to
memory (15 integer, 15 floating-point, and 8 condition code
registers). Combining the 43 cycle swap overhead with the
previous 14 cycles results in a total event latency of
100 cycles, a factor of 7 more than Fork. While this cycle
count is perhaps pessimistic in the amount of user thread
state that needs to be saved, it does not take into account
backing up pipelines or changing addressing environments.
Note that even the swap overhead shown in Fig. 6 is
substantially lower than the null event latency from the
modern microprocessors shown in Section 2, which ranges
from 162-474 cycles. Of course, the latency benefits of

I detect swap |:| handle |:| resume

Fork

Swap W V///////A

0 20 40 60 80 100
Cycles

Fig. 6. Event handling latency using multithreading (Fork) and thread
swapping (Swap).

forking the event handler will be less significant if the event
handler runs for a long time before returning to the user
program.

In addition to lowering the overall overhead of events,
the MAP’s event mechanisms can reduce the impact of
events by concurrently executing the event handler and the
thread that caused the fault. Events that have slack between
the instruction that causes an event and the instruction that
needs the result can benefit from concurrent event hand-
ling. For example, if a prefetching instruction that causes a
software handled TLB miss is pushed up in the instruction
stream, it may have enough time to complete before the
resulting data is loaded downstream. The microbenchmark
that illustrates this executes a tight loop that causes a
synchronous event and immediately uses the result. The
number of instructions between the event source and sink
(i-e., the slack) is varied from 0 to 30 cycles. The results for
four different event handling mechanisms are shown in
Fig. 7. The Swap line corresponds to the case where the
faulting thread is swapped out in favor of the event
handler. Stall assumes that a shadow register set is
available so that the thread swap overhead is not incurred,
but the faulting thread is still halted. MT is the base
multithreaded case where the fault handler and the user
thread share the execution resources of a single MAP
processor cluster. Co_Proc executes the event handler and
the faulting thread concurrently on different clusters. All of
the results are normalized to the thread swapping case with
no slack cycles.

As shown in the figure, eliminating the thread swap is
the most important consideration, as it reduces the over-
head by more than a factor of two. Executing the event
handler concurrently with the faulting thread (MT) is only

1.0 -o—e * . * *
—e— Swap
—>— Stall
- - MT
—o— Co_Proc
0.5
s

Normalized Execution Time

0.0 T T T T T 1

Slack (instructions)

Fig. 7. Effect of context switching and concurrency in event handling.

912 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO.9, SEPTEMBER 1999

154

1.0

[]
L]
[]

0.5+

Normalized Execution Time

0 t——T 7T T T 1T T T T T "]

Queue Size (words)

Fig. 8. Effect of elasticity in event handling due to queuing in the event
system.

slightly faster than stalling the user thread (Stall). Since the
null event handler runs for only a few cycles and does not
stall during execution, the benefit of interleaving instruc-
tions from one thread into the stalled issue slots of another
is somewhat mitigated. However, if the event handler and
faulting thread can run without conflicting for issue slots,
the benchmark runs approximately 20 percent faster. No
further improvement is seen for MT or Co_Proc when the
slack exceeds the number of cycles required to execute the
event handler.

A critical microarchitecture parameter that determines
the performance of a concurrent event system is the length
of the event queue. Since any thread that can cause events
must be halted if the event queue is full, a long event queue
allows applications to execute even if many events are
pending. When running an application with multiple
threads, continuing to execute application code during
event handling is necessary for good performance. For
example, a software shared memory application will be able
to overlap computation with repeated invocations to an
event handler that fetches cache lines from a remote
processor. The following experiment measures the sensi-
tivity of an application’s performance to queue length. A
simple microbenchmark executes a loop that causes
20 events, followed by equivalent computation time that
causes no events. This sequence is repeated twice. Fig. 8
shows the execution time of this program when the queue
size is varied from 0 to 36 words (nine event records),
normalized to the execution time using an infinite queue. If
the queue becomes full, the thread that causes the events is
stalled so that the queue does not overflow. The figure
shows that the elasticity of the queue enables event
processing to be spread out into those periods of the
program in which events are infrequent. When queuing is
removed from concurrent event handling, the faulting
thread must be stalled more frequently. Fig. 9 shows the
average length of the event queue when a new event occurs.
The fraction of its size that is full decreases until the queue
length reaches 36 words, at which point the queue is, on
average, half full. In this experiment, an event queue of 36
words is large enough to capture all of the outstanding
events without requiring any stalling. Since this experiment

20 4

Average Queue Length (words)

0 e e e e e e e e e e |
0 5 10 15 20 25 30 35 40 45 50

Queue Size (words)
Fig. 9. Average event queue length.

generates a new event every eight instructions, a queue size
of 36 words can be considered an upper bound for single-
threaded applications or uniprocessor jobs. However, more
queue entries may be needed if multiple threads are
generating events simultaneously.

4.2 Software Shared Memory

Fine-grained software shared memory can be implemented
on the M-Machine using a combination of the event
handling mechanisms and tag bits in the cache. Two block
status bits are associated with each cache line and
implement four states in a cache coherence protocol. If a
read/write to an invalid cache line or a write to a read-only
cache line is detected in the memory system, an event
record is written into the event queue. The event handling
thread sends a message (using the MAP’s send instruction)
to the home processor of the address. At the home
processor, the request is handled by the priority 0 message
thread and a result is sent back to the originator. The
response message is handled as an external event by the
priority 1 message thread and the data is returned to the
original faulting thread. The full details of using the MAP’s
mechanisms to implement software shared memory can be
found in [6].

The sample shared-memory benchmark is a solution to a
3D Poisson partial differential equation and is based on the
multigrid kernel from the NAS parallel benchmarks and
SPEC95. The input data set consists of a 3D matrix of 512
elements and each of the four MAP chips computes a subset
of the three-dimensional data space. The different computa-
tion phases are separated by barriers. Three different event
architectures are modeled. MAP uses the MAP’s concurrent
event handling. Stall stalls the main program thread on the
faulting processor during any event execution, emulating a
dedicated event register file. Swap stalls the main program
thread and incurs a thread swap overhead of 86 cycles for
each event.

Table 3 shows the event latencies and frequencies
averaged across all of the processors for each event
architecture. The time to handle each of the event types is
fairly short (115-237 cycles) and each of the event types
occurs frequently. When the individual event frequencies

KECKLER ET AL.: CONCURRENT EVENT HANDLING THROUGH MULTITHREADING 913

TABLE 3
Event Latencies and Frequencies

Execution Time | Frequency (Cycles)

Event Type (Cycles) MAP Stall Swap
Cache Status 237 | 1872 | 1973 | 2605
Request Message 175 693 | 768 988
Response Message 115 656 | 729 941
Total 285 | 314 | 407

are combined, the overall frequency ranges from 285-
407 cycles. The architectures that incur more event over-
head (Stall and Swap) have lower event frequencies, since
their running time is extended by slow event handling.

With high event frequencies, long event overheads can
contribute substantially to the overall runtime of the
program. Table 4 shows the execution time for the multigrid
computation using the three different event architectures.
Stalling the program thread on every event results in a 40
percent penalty in execution time, while including the
additional overhead of swapping the state out increases the
execution time by 70 percent. The low overhead and
concurrent execution of internal memory events and
external message events provided by the multithreading
of the MAP enables faster execution of programs with high
event rates.

4.3 Dynamic Profiling

Hardware support for on-line profiling of programs
running on out-of-order processors has recently been
examined by Dean et al. [9]. Their system periodically tags
an instruction, collects statistics about its execution beha-
vior (time in different pipeline stages, etc.) in hardware
counters, and causes an event to log the information. A
similar study used random sampling to reduce the event
overhead and showed only a 1-5 percent performance
penalty when the periods between sample points is at least
60,000 cycles [3]. Concurrent event handling offers a
method of improving both the performance and the
sampling rate by tabulating the statistics simultaneously
with the running program.

The Dynamic Profiling benchmark described in this
section captures the essentials of on-line performance
monitoring through concurrent events. One MAP processor
runs the application to be profiled and periodically receives
external events. For simplicity, the external event just reads
and logs the program counter of the executing application.
The program counter is read through a memory mapped
access to thread registers and does not require the sampled

TABLE 4
Effect of Events on Application Execution Time

| Event Model | Execution Time (Cycles) |

MAP 2.8M
Stall 4 0M
Swap 4 9M

program to be halted. For simulation purposes, the external
events are generated by messages sent by a program
running on a separate MAP processor. Four event archi-
tectures are examined: Swap stalls the application and
incurs an 86 cycle thread swap penalty, Stall stalls the
application and uses a spare register set for the event
handler, MT interleaves execution of the event handler and
the application, and Co_Proc runs the application and event
handler concurrently on different MAP clusters. The
application used for profiling is a 10 x 10 matrix multi-
plication.

Fig. 10 shows the execution time for these four event
implementations normalized to the execution time of the
unsampled application. The x-axis displays the time
between samples and is on a logarithmic scale. The handler
that samples the events executes in 30 cycles and the time
between samples is varied from 30 to 6,600 cycles.
Executing the handler completely concurrently (Co_Proc)
has no impact on the running time of the application, but
the other three event models are far more intrusive. In fact,
at the highest rates (lowest time between events), the
application cannot make forward progress. As the time
between events increases, the sampling becomes less
intrusive. Using a metric of 3 percent as the tolerable
sampling overhead, MT can sample every 500 cycles, Stall
can sample every 1,000 cycles, and Swap can sample every
3,600 cycles. As in the previous experiments, these results
show that the most important aspect of concurrent event
handling is to reduce the event overhead. Furthermore, to

w
]

—e— Swap
—>— Stall

- -+- MT
—o— Co_Proc

Normalized Execution Time

o]

100 1000
Time Between Events (cycles)

Fig. 10. Impact on the execution time of an application during dynamic
profiling.

914 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO.9, SEPTEMBER 1999

achieve high sampling rates with minimal impact on the
runtime of the application requires the event and the
application to execute in parallel.

4.4 Summary

The experimental results in this section show the benefits of
concurrent event handling in microbenchmarks and in
applications that have high event frequencies. The first
component of concurrent event handling is the elimination
of the high software overhead associated with stopping the
application and replacing it with the event handler. In the
software shared memory example, this improved the
application’s performance by 19 percent. With a rate of
one sample every 500 cycles in the Dynamic Profiler,
performance also improves by 19 percent. Executing events
concurrently with application is also critical, with shared
memory improving an additional 30 percent and the
profiler improving 4 percent. Future computer systems that
intend to support event rates on par with those shown in
the experiments (30-500 cycles between events) will need to
rely on concurrent event mechanisms to reduce event
overhead.

5 RELATED WORK

In addition to the block [1] and round-robin multithreading
[2], [26], two other multithreaded architectures are of note.
Like the MAP, Interleaving schedules multiple threads over
a single processor without requiring a thread switch on
every cycle [18]. Since pipeline registers are not replicated,
events that require a thread to stall, such as a cache miss,
must squash instructions that have already been issued into
the pipeline. Simultaneous Multithreading extends an out-
of-order superscalar architecture to execute instructions
from multiple threads at the same time [30]. SMT uses a
traditional exception model and does not execute interrupts
at the same time as user threads. However, the extensions
described in this paper can be incorporated into a
dynamically scheduled multithreaded architecture in a
straightforward manner.

Other architectures and machines have provided hard-
ware support for asynchronous event handling, typically in
the framework of a message-passing multiprocessor. The J-
Machine’s Message Driven Processor (MDP) implements
one hardware context for background tasks and two
contexts for message handling [8]. When a message arrives,
the task running in the background context suspends
(stalls) and the incoming message invokes a thread to
handle the contents of the message. The *T architecture [25]
and the FLASH multiprocessor [17] use coprocessors to
process incoming messages and to communicate with the
master computation processors.

Thekkath and Levy observed that many exceptions need
to be handled in user code and that standard event
architectures impose a large overhead jumping into and
out of the kernel [28]. Consequently, they proposed a
hardware mechanism for vectoring events directly to user
level code without entering the kernel. In the absence of
hardware support, they also examined methods which limit
the kernel overhead by detecting a user level event and
vectoring directly to it. As a result, they were able to reduce

the latency of a null user-handled event from 1,225 to 125
cycles on a 25 MHz R3000 workstation running Ultrix. An
even more lightweight form of user-level events is Inform-
ing Memory Operations [12]. This event architecture can
trigger a fast user specified and user handled trap on a
cache miss. The executing program determines which
memory operations are enabled for traps. When a cache
miss occurs, the trap is handled in the faulting program’s
register set. The hardware trap handling can be folded into
existing branch or event hardware in an out-of-order
superscalar microprocessor. While this eliminates full
context switching (values in registers can be saved by the
trap handler as necessary), it may still incur the hardware
execution overhead required by precise interrupts.

6 CONCLUSION

In this paper, we introduce concurrent event handling, an
architecture that increases event performance through
multithreading. When an event occurs, the handler is
forked into the dedicated thread slot and can execute
simultaneously with other programs that are already
running. Concurrent event handling has three advantages
over traditional event handling. First, dedicating a thread
slot in a multithreaded processor to an event handler
eliminates the need to stop the faulting thread. The faulting
thread state remains in the pipeline registers and none of
the nonfaulting instructions need to be nullified. Second,
replicating register files for multiple threads eliminates the
software overhead that normally is required to remove and
restart a faulting thread. Finally, greater thread level
parallelism can be achieved by running the event handler
concurrently with the faulting threads and other event
handlers. As microprocessors are able to issue more
instructions per cycle, the number of wasted issue slots
(due to a lack of sufficient instruction level parallelism) is
increasing. Interleaving execution of event handlers and an
application will help improve program throughput and
reduce overall execution time.

Many modern microprocessors implement sequentially
precise interrupts to enforce a strict order of instructions in
a faulting thread when it is halted and replaced by the event
handler [27]. However, in multithreaded processors, this
conservative approach can unnecessarily hinder perfor-
mance. Instead, concurrent event handling with precise
events maintains consistency while improving perfor-
mance, as the original thread continues to execute until it
reaches a true dependency on the result from the faulted
instruction. While the faulting thread proceeds, all neces-
sary information required to resolve the fault is captured
and provided to the event handler.

Using a combination of microbenchmarks and applica-
tions with high event rates, we demonstrate the advantages
of concurrent event handling over more traditional event
architectures. Without the software overhead of replacing
the faulting thread with the event thread, the latency of a
null internal event drops from 100 cycles to 14 cycles. Our
sample applications, software shared memory and dynamic
profiling, have events that occur on average every 30-
500 cycles. In this environment, the reduction in event
overhead improves application performance by 19 percent.

KECKLER ET AL.: CONCURRENT EVENT HANDLING THROUGH MULTITHREADING

The additional advantage of running event handlers in
parallel with application code provides a total execution
time reduction of 26-43 percent.

Concurrent event handling has been incorporated into
the MIT Multi-ALU Processor, a 5 million transistor custom
VLSI chip [14]. The MAP chip implements multithreading
by replicating pipeline resources across the on-chip pro-
cessor clusters to improve latency tolerance, function unit
utilization, and overall performance. Incorporating concur-
rent event handling requires only a small amount of
additional real estate for the message and event queues,
less than 6 percent of the total chip area. While the MAP
chip issues instructions in-order, concurrent event handling
and the precise event model are applicable as well in out-of-
order processors and can simplify the hardware required to
maintain consistent state during synchronous and asyn-
chronous events.

ACKNOWLEDGMENTS

The research described in this paper was supported by the
U.S. Defense Advanced Research Projects Agency under
ARPA order 8272 and monitored by the U.S. Air Force
Electronic Systems Division under contract F19628-92-C-
0045. Thanks also to Nick Carter for providing the
infrastructure to run the software-based shared memory
benchmark application.

REFERENCES

[1] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz, “APRIL: A
Processor Architecture for Multiprocessing,” Proc. 17th Ann. Int’l
Symp. Computer Architecture, pp. 104-114, 1990.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter-
field, and B. Smith, “The Tera Computer System,” Proc. Int’l Conf.
Supercomputing, pp. 1-6, June 1990.

[3] J.M. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S.-
T.A. Leung, D. Sites, M. Vandevoorde, C. Waldspurger, and W_.E.
Weihl, “Continuous Profiling: Where Have All the Cycles Gone?”
Proc. 16th Symp. Operating Systems Principles, pp. 1-14, Oct. 1997.

[4] T.E. Anderson, HM. Levy, B.N. Bershad, and E.D. Lazowska,
“The Interaction of Architecture and Operating System Design,”
Proc. Fourth Int'l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS-1V), pp. 108-120, Apr.
1991.

[5] A.Appell,]. Ellis, and K. Li, “Real-Time Concurrent Collection on
Stock Multiprocessors,” Proc. 1988 SIGPLAN Conf. Programming
Languages Design and Implementation, pp. 11-20, June 1988.

[6] N.P. Carter, “Processor Mechanisms for Software Shared Mem-
ory,” PhD thesis, Massachusetts Inst. of Technology, Dept. of
Electrical Eng. and Computer Science, 1999.

[71 N.P. Carter, SSW. Keckler, and W.]J. Dally, “Hardware Support for
Fast Capability-Based Addressing,” Proc. Sixth Int’l Conf. Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS VI), pp. 319-327, Oct. 1994.

[8] W.J. Dally, J.S. Fiske,].S. Keen, R.A. Lethin, M.D. Noakes, P.R.
Nuth, RE. Davison, and G.A. Fyler, “The Message-Driven
Processor: A Multicomputer Processing Node with Efficient
Mechanisms,” IEEE Micro, vol. 12, no. 2, pp. 23-39, Apr. 1992.

[9] J. Dean, J.E. Hicks, C.A. Waldspurger, W.E. Weihl, and G.

Chrysos, “Profileme: Hardware Support for Instruction-Level

Profiling on Out-of-Order Processors,” Proc. 30th Int’l Symp.

Microarchitecture, pp. 292-302, Dec. 1997.

M. Fillo, SW. Keckler, W]. Dally, N.P. Carter, A. Chang, Y.

Gurevich, and W.S. Lee, “The M-Machine Multicomputer,” Proc.

28th Int’l Symp. Microarchitecture, pp. 146-156, Dec. 1995.

J.L. Hennessy and D.A. Patterson, Computer Architecture a

Quantitative Approach. San Mateo, Calif.: Morgan Kaufmann, 1990.

(10]

(1]

(12]

(13]

(14]

[15]

[16]

(171

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(23]

[20]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

915

M. Horowitz, M. Martonosi, T.C. Mowry, and M.D. Smith,
“Informing Memory Operations: Providing Memory Performance
Feedback in Modern Processors,” Proc. 23th Int'l Symp. Computer
Architecture, pp. 260-270, May 1996.

S.W. Keckler, “Fast Thread Communication and Synchronization
Mechanisms for a Scalable Single Chip Multiprocessor,” PhD
thesis, Massachusetts Inst. of Technology, Dept. of Electrical Eng.
and Computer Science, 1998.

S.W. Keckler, W]J. Dally, A. Chang, N.P. Carter, and W.S. Lee,
“The MIT Multi-ALU Processor,” Proc. Hot Chips IX, pp. 1-8, Aug.
1997.

S.W. Keckler, WJ. Dally, D. Maskit, N.P. Carter, A. Chang, and
WS.S. Lee, “Exploiting Fine-Grain Thread Level Parallelism on the
MIT Multi-ALU Processor,” Proc. 25th Int’l Symp. Computer
Architecture, pp. 306-317, June 1998.

E.J. Koldinger, J.S. Chase, and S.J. Eggers, “Architectural Support
for a Single Address Space Operating System,” Proc. Fourth Int’l
Conf. Architectural Support for Programming Languages and Operating
Systems (ASPLOS-1V), pp. 175-186, Oct. 1992.

J. Kuskin et al., “The Stanford FLASH Multiprocessor,” Proc. 21st
Int’l Symp. Computer Architecture, pp. 302-313, Apr. 1994.

J. Laudon, A. Gupta, and M. Horowitz, “Interleaving: A Multi-
threading Technique Targeting Multiprocessors and Worksta-
tions,” Proc. Sixth Int’l Conf.n Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VI), pp. 308-318, Oct.
1994.

R. Lee, “Precision Architecture,” Computer, vol. 21, no. 1, pp. 78-91,
Jan. 1989.

W.S. Lee, W.J. Dally, SW. Keckler, N.P. Carter, and A. Chang,
“Efficient, Protected Message Interface in the MIT M-Machine,”
Computer, vol. 31, no. 11, pp. 69-75, Nov. 1998.

K. Li and P. Hudak, “Memory Coherence in Shared Virtual
Memory Systems,” ACM Trans. Computer Systems, vol. 7, no. 4,
pp. 321-359, Nov. 1989.

P.G. Lowney, S.G. Freudenberger, T.J. Karzes, W.D. Lichtenstein,
R.P. Nix, J.5S. O’Donnell, and]J.C. Ruttenberg, “The Multiflow
Trace Scheduling Compiler,” The]. Supercomputing, vol. 7, nos. 1-2,
pp- 51-142, May 1993.

L. McVoy and C. Staelin, “Imbench: Portable Tools for Perfor-
mance Analysis,” Proc. USENIX 1996 Ann. Technical Conf., pp. 279-
294, Jan. 1996.

J.K. Ousterhout, “Why Aren’t Operating Systems Getting Faster as
Fast as Hardware?” Proc. Summer 1990 USENIX Conf., pp. 247-256,
June 1990.

G.M. Papadopoulos, G.A. Boughton, R. Grainer, and M.J.
Beckerle, “*T: Integrated Building Blocks for Paralle] Computing,”
Proc. Supercomputing 1993, pp. 624-635, 1993.

B.J. Smith, “Architecture and Applications of the HEP Multi-
processor Computer System,” SPIE Vol. 298 Real-Time Signal
Processing IV, pp. 241-248. Aurora, Colo.: Denelcor, Inc., 1981.
J.E. Smith and A.R. Pleszkun, “Implementation of Precise
Interrupts in Pipelined Processors,” Proc. 12th Int’l Symp. Computer
Architecture, pp. 36-44, June 1985.

C.A. Thekkath and H.M. Levy, “Hardware and Software Support
for Efficient Exception Handling,” Proc. Sixth Int’l Conf. Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS-VI), pp. 110-119, Oct. 1994.

R. Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM J., vol. 11, pp. 25-33, Jan. 1967.

D.M. Tullsen, S.J. Eggers, and H.M. Levy, “Simultaneous Multi-
threading: Maximizing On-Chip Parallelism,” Proc. 22nd Int’l
Symp. Computer Architecture, pp. 392-403, May 1995.

N. Ullah and M. Holle, “The mc88110 Implementation of Precise
Exceptions in a Superscalar Architecture,” Computer, vol. 21, no. 1,
pp- 15-25, Jan. 1989.

R. Wahbe, “Efficient Data Breakpoints,” Proc. Fourth Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS-1V), pp. 200-212, Oct. 1992.

W. Walker and H.G. Cragon, “Interrupt Processing in Concurrent
Processors,” Computer, vol. 28, no. 6, pp. 36-46, June 1995.

W.-D. Weber and A. Gupta, “Exploring the Benefits of Multiple
Hardware Contexts in a Multiprocessor Architecture: Preliminary
Results,” Proc. 16th Ann. Int’al Symp. Computer Architecture, pp.
273-280, 1989.

K.C. Yeager, “The mips r10000 Superscalar Microprocessor,” IEEE
Micro, vol. 16, no. 2, pp. 28-40, Apr. 1996.

916 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO.9, SEPTEMBER 1999

Stephen W. Keckler received the BS degree
in electrical engineering from Stanford Univer-
sity in 1990, and both the MS and PhD
degrees in computer science from the Massa-
chusetts Institute of Technology in 1992 and
1998, respectively. From 1989 to 1990, he
worked at Intel designing circuits for the 386SL
microprocessor. He is currently an assistant
professor of computer science at the University
of Texas at Austin. His research interests
include computer architecture, parallel and embedded processors,
VLS| design, and the relationship between VLSI technology and
computer architectures. He is a member of Phi Beta Kappa, Tau Beta
Pi, Sigma Xi, the IEEE, and the ACM.

-

gl |
A
h,

-

Andrew Chang received the SB degree in 1988
and the SM degree in 1998, both in electrical
engineering, from the Massachusetts Institute of
Technology. As an engineering group leader at
Loral Fairchild Imaging Sensors from 1989 to
1990 and the principal electrical engineer at AOI
Systems from 1990 to 1992, he designed CCD
imaging systems for automated optical inspec-
’ tion. He is currently a PhD student in the

o : Concurrent VLSI Architecture Group at Stanford
University. His research interests include CAD, computer architecture,
and VLSI circuit design. He is a student member of both the IEEE and
the ACM.

[e
8 Whay S. Lee received the MS degree in 1994
and the PhD degree in 1999, both in computer
science from the Massachusetts Institute of
Technology. He is working on architectures for
enterprise storage solutions as a member of the
Network Storage Division at Sun Microsystems.
His research interests include computer archi-
tecture, multicomputer networks, and fault-toler-
ant computing.

Sandeep Chatterjee received the BS degree in
electrical engineering and computer science
from the University of California at Berkeley in
1995 and the MS degree in electrical engineer-
ing and computer science from the Massachu-
setts Institute of Technology in 1997. He is
currently a doctoral candidate at MIT’s Labora-
tory for Computer Science. His research inter-
ests include computer architecture, low-power
design, and intelligent systems. He is a member
of Eta Kappa Nu, Tau Beta Pi, the IEEE, and the ACM.

William J. Dally received the BS degree in
electrical engineering from Virginia Polytechnic
Institute, the MS degree in electrical engineering
from Stanford University, and the PhD degree in
computer science from the California Institute of
Technology. Dr. Dally and his group have
developed system architecture, network archi-
tecture, signaling, routing, and synchronization
technology that can be found in most large
parallel computers today. While at Bell Tele-
phone Laboratories, he contributed to the design of the BELLMAC32
microprocessor and designed the MARS hardware accelerator. He was
a research assistant and then a research fellow at Caltech, where he
designed the MOSSIM Simulation Engine and the Torus Routing Chip
which pioneered wormhole routing and virtual-channel flow control.
While a professor of electrical engineering and computer science at the
Massachusetts Institute of Technology, he and his group built the J-
Machine and the M-Machine, experimental parallel computer systems
that pioneered the separation of mechanisms from programming models
and demonstrated very low overhead mechanisms for synchronization
and communication. He has worked with Cray Research and Intel to
incorporate many of these innovations in commercial parallel computers
and with Avici Systems to incorporate this technology into Internet
routers. Dr. Dally is currently a professor of electrical engineering and
computer science at Stanford University, where he leads projects on
high-speed signaling, multiprocessor architecture, and graphics archi-
tecture. He has published more than 80 papers in these areas and is an
author of the textbook, Digital Systems Engineering.

