Decomposing Memory Performance: Data Structures and Phase

Kartik K. Agaram

Stephen W. Keckler

CalvinLin Kathryn S. Mickey

Department of Computer Sciences, University of Texas atiAus

Abstract

The memory hierarchy continues to have a substantial effect
application performance. This paper explores the poteritisigh-
level application understanding in improving the perfonce of
modern memory hierarchies, decomposing the often-chaatic
dress stream of an application into multiple more regulegasts.
We present two orthogonal methodologies. The first is a Byste
called DTrack that decomposes the dynamic reference stofam
a C program by tagging each reference with its global vagiaiol
heap call-site name. The second is a technique to deterimée t
correct granularity at which to study the global phase bigihanf
applications. Applying these twin analysis methods to weeC
SPEC2000 benchmarks, we demonstrate that they reveakdata s
ture interactions that remain obscured with traditiongragation-
based analysis methods. Such a characterization creatdsma-
file of an application’s memory behavior that highlights thest
memory-intensive data structures and program phases, and w
lustrate how this profile can lead system and applicatioigdess

to a deeper understanding of the applications they study.

Categories and Subject Descriptors B.8 [Performance and Re-
liability]: Performance Analysis and Design Aids; CReffor-
mance of SystehdMeasurement techniques

General Terms Design, Experimentation, Measurement
Keywords Simulation, Data structure, Phase, SPEC, CPU2000,
DTrack

1. Introduction
As a result of application and computer system design trehes

memory system continues to exert a dominant influence on pro-

that the diverse patterns of behavior in realistic applicest are
represented. In this study we explore the benefits of program
derstanding along two orthogonal dimensions - data strecod
program phase - and show how such insights can be combined to
yield a rich picture of application behavior.

Analyzing memory behavior is a well-trodden field; this pape
makes three novel contributions to it. First, we developoacalled
DTrack to decompose the performance of the memory hierarchy
by high-level data structure for C programs. DTrack usesta-C-
compiler to instrument variable allocations, therebywifg each
memory reference to be mapped to a specific global variable or
heap call-site. Second, we fill a gap in recent studies onepbhes
havior: selecting the correct profiling interval for an apation, the
granularity at which behavior statistics are aggregatelil&\¢tud-
ies on phase behavior so far use a single, arbitrarily-chpsefil-
ing interval for all applications, we show that the profilimjerval
is best selected on an application-specific basis. Finallyapply
our methodologies to twelve of the fifteen C benchmarks in the
SPEC2000 benchmark suite, and present a detailed chazatter
of their memory behavior. Our results highlight the wideietyr of
behaviors exhibited by applications in the distributiomogses by
data structure, as well as in the number and interleavingfefent
phase regimes. Several case studies demonstrate thenessfolf
these results in helping the computer architect make stqtisd
design decisions.

The remainder of this paper is organized as follows. Se&@ion
distinguishes our work from prior memory system analysislists
and tools. Section 3 describes DTrack and demonstratesilts a
ity to decompose the aggregate behavior of applicationsabg d
structure. This Section also describes two case studietlitistrate
the uses of DTrack in framing and rapidly answering soptastd
questions in designing new systems. Section 4 takes ouysamal

gram performance. The importance of memory system behavior further, decomposing the address streams of applicatiprith

will continue to grow as the gap between memory speeds anrd pro
cessor speeds increases. In addition, applications ateaing to
grow in complexity, which places additional burden on themogy
system due to large or irregularly accessed data structureter-
standing how applications use the memory system is impiotoan
at least three groups: (1) system designers who can appghtas
into memory system usage to improve hardware and softwame me
ory optimization techniques, (2) application writers wiamainder-
stand how their program uses the memory system and optimize f
better locality, and (3) benchmark developers who want suen

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’06 June 10-11, 2006, Ottawa, Ontario, Canada.
Copyright(© 2006 ACM 1-59593-221-6/06/0006. . . $5.00.

data structure and time. A major contribution here is a new wa
to determine the right granularity at which to sample phesia,d
and we show that this granularity varies from applicatioraps
plication. Finally, Section 5 provides conclusions andutttts on
future work.

2. Related work

Conventional methodology for characterizing applicagiowolves
either cache or timing simulation [1, 9, 22, 3]. These teghas
operate at the level of the application executable witheaburse

to the high-level structure of the program. As a result,rthetput is
limited to aggregate statistics about hardware execusiach as the
mean number of instructions executed per clock cycle, naitss at

the various cache hierarchies, and similardwareevents. In this
paper we decompose these aggregate statistics by datastracd

by program phase. We now review the prior work in each of these
areas.

struct foo bar ;
void main () {

struct foo bar ;

c-breeze asm (‘mop") ;

void main () {
f2 = malloc (struct foo) ; NAME = "f2" :

} PTR=12;

SIZE = sizeof (struct foo)

asm ("mop") ;

FILE.print ("bar", &bar, sizeof (bar)) ;

f2 = malloc (sizeof (struct foo)) ;

sim-alpha

CcC

if (inst == mop) {
addLayout () ;
}

Figure 1. DTrack, a tool for observing data structures in programs

2.1 Decomposing memory behavior by data structure

Tools have been created in the past to decompose applicadon
ory performance by data structure, but they have thus fan bee
restricted to studying arrays. The original such tool is Nsgay
by Martonosi et al. [13] which operated on loop nests in Fortr
programs. Similarly, Lebeck et al. [12] present data stmecand
procedure level aggregate miss information and classifses as
compulsory, capacity and conflict. While these tools presen-
eral software optimizations for improving cache perforagrthey
examine the behavior of an array within the context of a sipgb-
cedure. As a result, they do not perform cross data struetuaty/-
sis. For example, they do not consider the question of wheldt@a
structures interfere with themselves or with others.

McKinley and Temam analyze the complementary dimension
of inter-nest and intra-nest loop locality [14], but agaonsider
only arrays and aggregate information between loop nesisll S
and Zorn [18] use a technique similar to ours to partitiontteap
into segments based on object lifetimes, without perfognrtine
more fine-grained analysis to separate the behavior of @bBc
data structure that we do.

2.2 Analyzing time-varying behavior and detecting phases

Several tools have studied time-varying behavior. The €atsu-
alization Tool [25] demonstrates the time-varying behawvibar-
rays as they march through the cache. This level of detapatp
analyzing a single loop nest at a time, whereas we analyze dat
structure phase behavior across much longer periods.n@tiikt

al. [4, 17] analyze compressed program traces, decompese th
into hot data streamsand use these hot data streams to drive lay-
out and prefetching optimizations. This approach of seagcfor
access patterns across the different data structures imgagpn is
complementary to ours, which attempts to decompose apiplica
access patterns by data structure. We believe our appreacbre
effective at providing intuitions about application betmthat are
useful to humans in different roles.

More recently, several studies have used some form of cgele si
nature to detect phase boundaries. Basic Block Vectors €3Bxe
currently the most accurate method to generate code sigisaand
several studies explore their uses in clustering phasedetedting
phase transitions in an offline [20, 19] and online [21] settiOne
alternative to BBVs is the use of program counter or Exterided
struction Pointer Vectors (EIPVSs) [2], whose merits haverbde-
bated by Lau et al. [10]. Another alternative consists ofertagh-
level metrics based on code structure, such as registeracsers
or loop vectors [11]. All these studies, however, selectrhitrary
sampling period and use it for all the applications theyestd. In
this study we provide a more rigorous method to separatabrde
mine the correct sampling period for each application.

Perhaps the most similar work to ours is the online phasedete
tor of Nagpurkar et al. [15]. Their system maintains a curiein-

dow of object references within a JVM and assesses the sityila
of the recent references in it to those in an older trailingdeiv.
Like our study they evaluate the effect of window size (sangpl
interval) on phase detection. While our study looks for gisas
fine-grained behavioral statistics of an application, ttegly phase
behavior in the functional list of object references touthy an
application. The two approaches are complementary.

3. Decomposing behavior by data structure

This section describes DTrack and our methodology for analy
ing applications, and performs a detailed analysis of the stauc-
tures of twelve applications. DTrack maps addresses tostiate-
tures by automatically inserting instrumentation in thelegation

to communicate the address range corresponding to eacbhari
to the simulator. The challenge here is to keep the overhead d
to the instrumentation low and to minimize the perturbarmcthé
application. Figure 1 shows a schematic of our tool. Firgt anto-
matically instrument benchmark sources using an exterisitime
C-Breeze [7] C-to-C compiler. We then simulate them on a mod-
ified version of the sim-alpha [6] timing simulator that siiambes
the configuration shown in Figure 2, including a Rambus mgmor
model. For each variable in the program, the compiler-gerdr
instrumentation stores the variable’s name and addresslegig-
nated location in memory and interrupts the simulator bymaesd

a special opcode (“mop” in Figure 1). On executing this instion

at runtime, the simulator imports the information from ttisig-
nated location in simulated memory. Since the simulatonaite
extent of each variable in the application at any time, it sntqe
address of each cache access to a specific variable. Ciagsifyd
assigning each load and store to a specific variable slowsirte
lator down by 60% on average and 100% in the worst case.

We track both heap allocations and deallocations becawse th
same raw address could be allocated to different data stescat
different times in a program’s execution. Since we clashkifap
allocations according to their static location in the seuwrode, we
cannot distinguish between instances of a data structuoh, as
two linked lists whose nodes are allocated at the same litleein
source. This issue is not a concern in studying the C SPEC2000
benchmarks because the major data structures do not hatiplenul
instances. Other languages and benchmarks may requirestabre
orate heuristics. Global variables are handled diffeyerRiather
than communicate them individually to the simulator by thewe
method, the instrumentation writes the names and extenédl of
global variables to a designated file on program initiaicat
Though the set of file writes is expensive, it is a one-timetgpa
cost. Finally, stack variables are not instrumented bectheshigh
frequency of scope changes would raise the instrumentatiert
head too much. Instead, we treat the stack as a single dattuse
and coalesce all accesses to it by a simple range test. Qutsres
below show that misses to the stack are generally negligibke

| Feature | Size/Value |

Data caches

DL1 cache 64 KB, blocksize 64 bytes, 2-way,
3 cycles

L2 cache 512 KB, blocksize 64 bytes,
direct-mapped, 12 cycles

TLBs 128 entries

Main memory

Peak bandwidth 1.6Gbhytes/s

64 banks * 512 rows * 2KB/row
32 PRER + 24 ACT + 48 RD/WR
+ queuing

Rambus geometry
Access latency (cycles

Out-of-order Processor
Pipeline width 4

Int ALUs, multipliers 4,4

FP ALUs, multipliers | 1,1

Branch predictor Tournament, 1 KB x 1 KB local,
4 KB global, 4 KB choice

Figure 2. Details of the simulated Alpha 21264-like processor and
memory hierarchy

Benchmark | IPC DL1 L2

Miss-rate | Miss-rate
164.gzip 1.39 2.3 3.9
175.vpr 0.67 3.0 35.3
176.gcc 1.15 3.2 10.4
177.mesa 1.06 0.9 23.4
179.art 0.23 14.8 74.9
181.mcf 0.14 24.1 60.5
183.equake | 0.58 14.1 29.4
186.crafty 1.21 13 4.3
188.ammp | 0.57 10.0 45.0
197 .parser 0.97 3.6 21.5
256.bzip2 1.16 2.1 32.6
300.twolf 0.51 9.5 26.9

Figure 3.

hierarchy behavior

verify that our instrumentation does not perturb applaratiehav-
ior; dynamic instruction counts increase by less than 0.686s3
all benchmarks except far64.gzip, where the instrumentation is
3.7% of the total instruction count because of frequent lzdlapa-
tions in the inner loops.

3.1 Benchmarks, inputs and simulation periods

We now describe our methodology for performing detailed-ana
yses of applications from a memory system perspectivet wies
describe techniques to map addresses to data structuresmihi
imizing the degree to which we perturb underlying apploatbe-
havior. We then move to phase analysis and describe ouritpehn
for selecting the profile period for each of our applicatidfisally,
we describe the machine configuration we simulate in our-char
acterization, the simulation periods we choose, and thecgate
statistics for our benchmarks that can be gleaned from coiorel
tools.

This paper presents a characterization of twelve of thesfife
benchmarks in the SPEC2000 benchmark suite. Figure 3diste s
aggregate properties of the benchmarks we study, incluaieg
age instructions per cycle (IPC) and miss-rates at the-tewlta
(DL1) and level-2 (L2) caches. Our benchmarks range frora-reg

lar ones such akr9.art to highly irregular ones such &880.twolf,
from compute-bound164.gzip) to memory-bound181.mcf). We
are unable to study the remaining 3 C benchmarks in the SPEIC20
suite due to methodological difficultie®53.perlbmk no longer
builds on our Alpha platform with the latest version of litas)d
254.gap and255.vortex run incorrectly on our native Alpha plat-
form because of unaligned addresses generated by theontust
memory-managers. While these unaligned addresses cofiletie
by modifying the benchmark sources, we estimate that adtieg
necessary padding could significantly perturb benchmahliaver.

All our simulations use the designated ref input set for thie ¢
responding benchmark. We demarcate the end of initiatimdtiy
a special opcode using the techniques outlined above, afatimpe
fast functional simulation until we reach this opcode. Hadter
we perform detailed timing simulation for 500 million insttions.
These simulation periods are representative of each apiplits
runtime, as determined in the course of our study of globakph
behavior later in this paper.

3.2 Data profiles and distributions

Having described DTrack and our experimental methodology,
now present a detailed characterization of the above SPEChbe
marks using DTrack. We begin by studying basic data profiées g
erated by DTrack, and then explore two ways that this newhihpa
ity to visualize the behavior of different data structuras be used
to help answer sophisticated architectural questions.

DTrack generates data profiles. Figure 4 breaks down the ag-
gregate memory behavior of our applications — accesses @&@sd m
rates at the DL1 and L2 — by the three data structures thae¢has
most DL1 misses (DS1, DS2, DS3), the stack, and everythsg el
Figure 4.a shows that the breakdown of accesses to the DIdL (an
therefore the rest of the memory hierarchy) varies greattpss
our applications. While79.art and 181.mcf have skewed distri-
butions, with 80% of all accesses coming from 2 data strestur
176.gcc and186.crafty have extremely balanced distributions; no
data structure contributes more than 2% of accesses. Qipkca
tions lie between these extremes.

While accesses are often spread out, Figure 4.b shows that
misses tend to cluster. The top 5 data structures usuallyilcote

The benchmarks we use and their aggregate memory mere than 90% of all DL1 misses. The exceptions Hré.gcc,

186.crafty, and197.parser with a long tail of minor data structures
that respectively end up accounting for 84%, 67% and 78% of
all cache misses. Among the other applications, the majta da
structures end up partitioning cache misses among theessaiv

a variety of ways; the top data structure can contribute &eyes
between 20 and 80% of total cache misses.

Comparing Figures 4.a and 4.b, we see that cache misses and
accesses are poorly correlated. A few applications sudfi@sart
and181.mcf reveal a simple underlying organization with only a
few data structures, and misses tracking the distributiaccesses.
However, the majority of applications show a well-undeostpat-
tern where a data structure receives more accesses thaeayet
accounts for fewer misses. In particular, the stack acsoforta
significant fraction of accesses without ever presentirigraficant
problem to the DL1. The sole exception186.crafty where the
stack collectively contributes more misses than any sigipbal
data structure. As we have seen, howet8f.crafty has a very
balanced distribution, and the stack still accounts foy dril% of
DL1 misses.

3.3 Access pattern variety

So far we have looked at differences in miss distributiomssthe
major data structures in the different SPEC benchmarksevitidl-
ing details about the individual data structures behindatheny-
mous names DS1, DS2 and DS3. Figure 5 now summarizes the

a. DL1 Accesses (Normalized) b. DL1 Misses (Normalized)

100 100
80 8 DS1 80 8 DS1
60 8 DS2 60 1 DS2
1 DS3 1 DS3
40 Stack 40 Stack
20 Other 20 Other
0 © " 0 o "
. o ~ 3 > “
§SSEFLIFEEFS SSEEFLTFEEFS
SNSRI S SR < P o &N S S Q
y¥NANOA >y < > T R > > N ANOA > <& > T > >
O N 5 A YD © o AT K S O N 5 A YD O @ AT K8
K YT S Se v K YT E TS e ¥
c. DL1 Miss-Rate (%) d. L2 Miss-Rate (%)
100 100
80 = DS1 8 = DS1
60 ® DS2 60 1 DS2
40 = DS3 40 = DS3
20 Stack 20 Stack
0 ® Y 0 @ = >
. <) o 1N . <) e 1N
SSfSEFLIEELFS FSSEFLIEELFS
P o §OX S < 2o o &K S S <
¥ NN A > & 7RSS AUNIINEN Y T & % AR SO
O N N A N QY v © @ A () O N N A N QY ¢ © @ A ©
X M X A

Figure 4. Decomposition of DL1 and L2 behavior by data structure. Bumtal lines in the miss-rate graphs indicate the aggregaerate
for each benchmark across all data structures. L2 missessihular trends to DL1 misses.

high-level details of these data structures. For each lmadh we
show the name of these data structures as used in the soudlee co
along with a brief summary of the type of the data structure (a
ray or recursive), whether it is predominantly accessedr@galar
fashion with spatial locality or in an irregular fashion wibw spa-

tial locality. Finally, we provide the size of each objectlimese data
structures and their total sizes in the application.

Figure 5 shows that the major data structures are predothinan
array-based in the applications we study. However, thetsestiaic-
tures are often used to emulate complex graphs using eiglaér r
pointers {81.mcf:nodes, 175.vprirr_node) or integers that in-
dex into other arrays266.bzip2:quadrant, 300.twolf:rows). The
wide variety of uses indicate that data structures are aféetared
to be arrays solely to simplify memory management. Most ef th
major data structures are dynamically allocated on the .hEag@
major exceptions ar&86.crafty that causes a significant fraction
of misses to the global segment, artb.gcc which allocates most
of its variables on the stack usimgloca.

While 179.art and 183.equake have regular access patterns,
the others interleave spatial and pointer access in convpgs.
This interleaving may happen either because of stridedsacce
through an array while dereferencing pointer fields fromheac
element fncfinodes, 188.ammp:atoms), or because of strided
access that uses the elements of one array to index intoeanoth
(bzip2:quadrant, 300.twolf:rows) in a form of pointer traversal
that current pointer prefetching schemes [16, 5] often oadetect,
or finally because the program accesses the elements of stata
ture in irregular order, but each object spans multiple edbcks
that are accessed sequentiallynfnp:nodelist, twolfinetptr)
due to large object size or irregular object alignment indhehe.
Such complex interleavings are a challenge to both spatidl a
pointer-based prefetch systems.

Having used the basic capabilities of DTrack to characteyiz
applications, we now explore novel uses of DTrack in asking a
answering sophisticated questions on architecture design

3.4 Case study: Data structure criticality

Our first case study concerns criticality of memory refeeer8ev-
eral recent studies have shown that not all cache missesjaa#ye
important as measured in the amount of latency that theysexpo
to the processor [24]. In this context, does it make sensirtply
use miss counts to select the data structures on which te fmau
attentions? To answer this question we augment DTrack &ctet
cycles when no instructions are retired, and assign reggtitySor
each suclstall cycleto the data structure referenced by the load or
store at the head of the reorder buffer [23]. Our results ghawfor

our applications the data structures that cause the mosemie
almost always also the ones responsible for the most stelégy
There are two exceptions to this trend. The first i479.art; the
arraytds causes only 2.1% of all cache misses, but is responsible
for 16.6% of all stall cycles. This data structure is critibacause

of the following loop that accumulates a subset of its elelsien

for (tj=0;tj<numf2s;tj++) {
if ((tj == winner)&&(Y[tjl.y > 0))
tsum += tds[til [tj] * d;
}

This combination of data-dependent branches and computati
serialized bytsum causes the infrequent cache misses in this loop
to almost invariably stall the pipeline. Our conclusion tiesgth-
ened by a study of the source cod&9.art is a neural network sim-
ulator where learning occurs by iteratively modifying twoays
of top-down and bottom-up weightstds andbus respectively.
While these two arrays are largely accessed in very simifsw
the above loop is the only major access pattern not sharédwst
The second data structure that we observe causing a disporpo
ate number of stalls is the variabdearch in the chess-playing
benchmarkl86.crafty, which is responsible for 10.5% of all stall
cycles in spite of causing just 0.2% of all cache misses. gloisal
data structure contains the chess position being currantjyzed,
and is used to display the board on screen. With the excepfion

[Benchmark | DS1 | DS2 | DS3 |
164.gzip window prev fd
array — regular array — regular array — regular
64 KB in 2-byte objects 64 KB in 2-byte objects 184320 KB in 1-byte objects
175.vpr rr_node heap rr_node_route_inf
array — irregular array — irregular array — irregular
10638 KB in 40-byte objects 6717 KB in 24-byte objects 2653 KB in 16-byte objects
176.gcc reg_last_sets reg_last_uses qty_const_insn
array — irregular array — irregular array — irregular
0.5 KB in 8-byte objects 0.5 KB in 8-byte objects 4 KB in 8-byte objects
177.mesa Image Buffer Depth Buffer Vertex Buffer
array — regular array — regular array — regular
2560 KB in 2-byte objects 5120 KB in 4-byte objects 920 KB in 1 object
179.art fi1_layer bus tds
array — regular array — regular array — regular
625 KB in 64-byte objects 859 KB in 8-byte objects 859 KB in 8-byte objects
181.mcf nodes arcs dummy_arcs
array — regular & irregular array — irregular array — irregular
7071 KB in 120-byte objects 188416 KB in 64-byte objects 3771 KB in 64-byte objects
183.equake K disp M
3D array — regular 3D array — regular 2D array — regular
22399 KB in 8-byte objects 2828 KB in 8-byte objects 943 KB in 8-byte objects
186.crafty rook_attacks_r190 last_ones first_ones
array — irregular array — irregular array — irregular
128 KB in 8-byte objects 64 KB in 1-byte objects 64 KB in 1-byte objects
188.ammp atoms nodelist atomlist
pointer — regular & irregular array — regular array — regular
41322 KB in 2208-byte objects 76 KB in 232-byte objects 4372 KB in 232-byte objects
197.parser Connector Disjunct table
various — irregular various — irregular various — irregular
variable allocation in 24-byte objects variable allocation in 40-byte objects variable allocation in 40-byte objects
255.bzip2 block quadrant zptr
array — irregular array — irregular array — irregular
900 KB in 1-byte objects 1800 KB in 2-byte objects 3600 KB in 4-byte objects
300.twolf net_array[] —netptr tmp_rows rows
pointer — irregular array — irregular array — irregular
253 KB in 48-byte objects 34 KB in 1-byte objects 34 KB in 1-byte objects

Figure 5. Descriptions of the major data structures in Figure 4. imfation on each benchmark for each major data structureaicent
type, access pattern, container and element size.

these two data structures, the correlation between migst cowl Evictions of useful data (Normalized)

stall cycle count shows that data-structure criticalitypidimited

usefulness in the predominantly irregular programs thastwey.
A related idealization experiment that provides indiremfir- 50

mation of this result explores the effect of selectivelyvidong

different data structures perfect single-cycle accessemany. To 0

model this ideal behavior we simulate cache misses to spéeifa

structures in a single cycle, but continue to move data isiséruc-

100

.) ¥
tures through the memory hierarchy so as to not give othex dat N 5

structures an unrealistically generous view of cache dgpate

find that selectively eliminating cache misses in even thstrim-

portant data structure in an application has limited immercbot-
tomline performance in a majority of our applications. Véhihere
are a few exceptions, namelg8.ammp, 183.equake, it usually re-

Figure 6. Breakdown of premature evictions. Useful data is only
infrequently evicted by a different (diff) data structure.

quires perfect memory for 2-5 major data structures to bperdor-
mance close to ideal. This result shows that future ardhitacand
compiler enhancements will often need to optimize multigdea 3.5 Case study: Competition for caches

structures in different ways to significantly improve oueparfor-
mance in memory-bound applications. It also shows that EKTra
is indeed highlighting bottlenecks in the memory systemmite

ranks data structures by miss frequency.

Where Figures 4.a and 4.b show the distribution of accessiet
DL1 and L2, Figures 4.c and 4.d show the corresponding naiesr
at each level of the memory hierarchy. A common pattern isg¢he
figures is for a data structure with fewer cache misses to have
higher miss-rate. This pattern occurs as the major datatetes

> total

5 atoms -------

= 16 nodelist

E

2 12

n 8

2

E 4

3 o0 |
8 o 60

Time (billions of cycles)

Figure 7. Just tracking total misses can miss interesting effects.
DL1 cache misses in aggregate and by data structur@8nmmp

compete with each other for limited cache capacity, so tidsta
structure that misses more often ends up with a larger nacif
the cache. While this is qualitatively a desirable resppsseh
competition may cause suboptimal performance if differdaiia
structures repeatedly evict each other. If this behavioevieund
to be common, a computer architect may consider creatirig spl
caches [8] with static mapping policies assigning each siate-
ture to a specific cache partition. Figure 6 shows how oftefulis
data in the cache is prematurely evicted by a different date-s
ture as opposed to the same one. With the excepti@s@bzip2
the majority of premature evictions are caused by conflithiwia
data structure, rendering a split cache by data structureagssary
for these applications. This and the previous experimengaod
examples of the ways that DTrack can help the computer aathit
with design decisions where traditional tools are unablgotso.

4. Analyzing data structure phase behavior

The previous Section demonstrated that aggregate statisfi
memory performance can hide new interactions between ttata s
tures. We now study the global time-varying behavior of ¢hes
statistics for nine of our twelve applications. Studyingagé be-
havior by data structure is important; looking at the tinagying
behavior of aggregate misses alone can be misleading aed hid
important data structure interactions. Figure 7 illugtsathis: the
data structurestoms andnodelist in 188.ammp are consistently
anti-correlated. As one increases the other decreasesanebvsa.
Studying just the curve for total cache misses would missitter-
action and also underestimate the degree to which the afiplis
behavior is changing under the surface. This pattern is moom-
mon; six of our nine applications exhibit significant ditfaces in
data structure miss distribution in different phases.

Our analysis demonstrates two broad properties of the phase

behavior in our applications. First, observable phase \behds
dependent on the granularity of our observations, so ttaiadl
trends are often most salient at a very narrow windowasfipling
periods particular to an application. A bad choice of sampling
period can underemphasize important global phase transitr

The curve at a
specific sampling
period

Ranking points by
volatility, selecting
a percentile

Corresponding
volatilities at each
point

Sampling period: 10 million cycles

n
o

Volatility

DL1 misses (thousands)
Volatility

0 J
0 Percentile (%) 100

0
0 Time (billions) 2 0 Time (billions) 2
a. b. c.

Sampling period: 180 million cycles

12 1 1r
@
g [l
g z 2
2 B 3
%] (=] o
g > >
3
° il £
o——— 0 0 !
0 Time (billions) 2 O Time (villions) ° 0 percentile (%) 100
d. e. f
Sampling period: 500 million cycles
3r 1r 1r
Wm
@
S
g 2 z
g g g
o o
g > >
3
a
ol 0 M——&—AL 0

0 Time (villons) 2 0 Time (billions) 2 0 percentile (%)

9. h. 1.

Figure 8. The curves corresponding to a stream at different sam-
pling periods, and their volatilities183.equake)

to damp out details of fine-grained phase behavior withonrpdiag

hide them entirely. Second, the phase behavior in most of our gjopal transitions.

applications, when observed at their optimal samplinggos:;i has
a regular structure consisting either of dramatic phasesitians or
gradual trends with a well-defined period. We now define reargs
terminology, then describe our novel technique for sabgcgood
sampling periods, and finally describe these observatiomsare
detail.

4.1 Process and terminology

Studying phase behavior is an exercise in abstraction. Wi tea
mask out irregularities in the data and focus on the undeglyeg-
ularities. However, no single sampling period can highliglhthe
regularities in the data. As Figures,d,g show, the sampling pe-
riod profoundly affects the nature of observable phaseieha
the data. In this study we focus on global phase behavionsihg

Our process for studying phase behavior is as follows: We-mod
ify DTrack to emit time-varyingstreamsof miss counts and rates
by data structure at a basampling period In this study all our
streams have sampling periods of 1 million cycles. Finengjia-
ities than that generate impractical quantities of dataterlarge
simulation periods we simulate, and we postpone a study ef fin
grained local phase behavior at different points in progexa-
cution. The streams we generate can be aggregated to smulat
curvesof different sampling periods, generating curves like Fig-
ures &,d,g. At a specific sampling period, we define and compute
a measure ofolatility at each point on the curve, thus transform-
ing the curve to a corresponding volatility curve as showfim
ures &,e,h. We now define the volatility of the curve in terms of
these point volatilities by ranking all the points and seéferthe

DL1 misses
DL1 misses

Time Time

Figure 9. Two example curves that have the same volatility. Our
volatility metric is oblivious to coarse-grained phaserues.

volatility of the point at a specific percentile. This progés il-
lustrated in Figures@f,:. Plotting the volatility of curves corre-
sponding to the same stream at different sampling periadds/the
volatility profile of the stream, and we show how to use the volatil-
ity profile to select a sampling period that damps out finénge
‘noise’ but not coarse-grained phase transitions. We aeable to
most clearly observe the global phase behavior of our agjsics.

4.2 Quantifying the volatility of a stream

Volatility is intuively a measure of the change in magnituafe
sampled data at adjacent points. We formalize this notitmtime
following volatility metric at a given time step. Given a eam
X1, X2, X3 ..., the volatility at each time step is defined as:

CLbS(Xt — Xt71) (1)
max(Xe, Xe—1)

g is similar to the conventional notion of ‘growth’, exceptth
it is symmetric: g: is 0.5 whetherX; has doubled (“grown by
100%") or halved (“shrunk by 50%") since the last time stepisT
symmetry ensures that the volatility between two valuesasame
regardless of whether the curve grows or shrinks betwean.the
Computingg: at each time step of a curve, we can transform it
to yield a curve showing the volatity at each point, as shown i
Figures & andb.

We now compute the volatility of a curve by ranking the vdiati
ity of its points and selecting the volatility at a specifiagmntile
(Figure &). As Figure 9 illustrates, this metric has the useful prop-
erty that it is affected by the volatity of high-frequencyoise’
without taking low-frequency phase transitions into cdasation.
What constitutes a low-frequency phase transition is degenon
the percentile we use, and we empirically find the 90th peileen
to be a reasonable boundary to distinguish between outtiugui
notions of phase boundary and noise. That a curve has Vylafil
thus means that 90% of the points on the curve have volasildf
V orless.

gt =

4.3 Volatility profiles and selecting a good sampling period

Given the above volatility metric, we can now study the pHaese
havior of our applications, and also how this phase behawides
with sampling period. We summarize the effects of sampliergoul

on phase changes at all granularities by generatingatility pro-

file for each application. The volatility profile for a streamtglthe
volatility of the curves generated from it at various samglperi-
ods. Across the applications we study, we find that the DL1L#hd
miss counts for different data structures largely exhiloitatility
profiles with the same trends, and with minima at the same sam-
pling periods. Figure 10 therefore shows the volatilityfipeofor

the DL1 miss stream of a single major data structure in our ap-

a. £d in 164.gzip

. 50 million cycles

o Volatiity

;

DL1 misses (millions)

0 s
o Time (billions of cycles)

0 500

Sampling period (millions)

b. rr_node in 175.vpr
500 million cycles

4.5

f

o Volatiity =
DL1 misses (millions)

o

Sampling period (millions) 500

o

Time (billions of cycles) 70

c. Depth Buffer in 177.mesa

0 230 million cycles

7
g
z g
s 4
0 w £y .
Sampling period (millions) 500 a o Time (billions of cycles) 36
d.busin 179.art »
2 w0 140 million cycles
' g
£ £
s s
-
£
0 S o s
o Sampling period (millions) 500 a 0 Time (bilions of cycles) 98
e.nodes in 181.mcf
. 2 s 40 million cycles
z E
> 9
-~ £
0) 9 0)
O Sampling period (milions) 5% ® o Time (billions of cycles) 200
f.dispin 183.equake
. % 15 180 million cycles
r 2
z E
] 8
s 38
£
0 ! = o LL J
o Sampling period (millions) 500 a 0 Time (billons of cycles) 72
g. atomlist in 188.ammp
. 1 million cycles.
1r <
E e
® g
0) E
2
=}

o

0 6000

Sampling period (millions) 60

o

Time (billions of cycles)

p2

h. zptr in 256.bzi
7 400 million cycles

12

o Volatiity
|
DL1 misses (millions)

o

0 500

Sampling period (millions) 32

o

Time (billions of cycles)

i. tmp_rows in 300.twolf

. 1 million cycles

o

500

o Volatlity ~

DL1 misses (thousand:

o LTI

(LTI

Time (billions of cycles)

i

60

o Sampling period (millions)

Figure 10. \olatility profiles of some major data structures in our
applications (left), and the corresponding phase behatiane
low-volatility sampling period in the profile (right).

al
o

o
o
I
i

DL1 misses (thousapgs)

Time (billions of cycles) 36

Figure 11. The phase behavior df77.mesa at 10 million cycles.
Compare with Figure 10

plications, along with the curve corresponding to a lowatiity
sampling period in each.

While two applications in Figure 10181.mcf and300.twolf —
show consistently low profiles so that an arbitrary seledtdikely
to highlight global phase behavior, the volatility profileshe oth-
ers show that the sampling period must be selected careTiily
graphs on the left-hand side in Figure 10 can be partitionedwo
broad classes of applications: those with monotonicalbrefsing
volatilities as sampling periods increase, and those whelail-
ity sometimes increases. A monotonically decreasing Vioygiro-
file is easily explained by the natural damping effects ofragg-
tion to ever-increasing sampling periods. Selecting sargpderi-
ods in these cases is as simple as setting a threshold oilityolat
Cases where volatility sometimes increases with samplergpg
are more interesting.

At a high level an application consists of nests of loops #uat
cess different data structures in different ways. The acpaiern
of a given data structure in a given loop may contribute a aemp
nent with a certain approximate period to the phase beha¥itwe
data structure. Combining all the interacting periodic poments
corresponding to a data structure yields the overall phasews
ior of that data structure. If all the components for a datacstire
have relatively low time periods and high frequencies, weeexk
aggregation at high sampling periods to smooth out thepadiate
periodic effects. If a stream contains a component with atsurs
tial time period, however, we observe a steeply oscillatiigtility
profile, with troughs at factors and multiples of that timeipe.

Such streams with coarse-grained periods make it more diffi-
cult to select a sampling period, requiring volatility megsnents
at a large number of values in order to find good candidates. Fo
example, if a stream is dominated by a a period of 7 million cy-
cles, taking measurements at sampling period incremenig-of
million could fail to identify a good sampling period. By thiene
we find low volatility (at a sampling period of 70 million cyed)
we may have damped out all phase behavior. Understandirig suc
interactions in application phase behavior is a challeongduture
research. In the context of this study, finding a low-voigtsam-
pling period required gradually refining volatility measments for
177.mesa and188.ammp. As a concrete example of this, Figure 11
shows the phase behavior seenfepth Buffer in 177.mesa at
a sampling rate of 10 million cycles. Comparing this curvehwi
that in Figure 10 shows how widely dissimilar different a stream
can look at different sampling periods, and how selectingad b
sampling period can occlude gradual periodic patterns.gitieal
phase behavior seen in Figurecli® only observable in a narrow
window of sampling periods, from 200 to 300 million cycles.

4.4 Types of phase behavior at a good sampling period

Having studied the volatility profiles on the left of Figur®,1
we now study the phase transitions of data structures irethes
applications. Across all our applications, different dsttaictures
share common phase transition points. As a result, we aeetabl

181.mcf
2 4
S
E
[%2]
(]
[}
0
g
—
a 0
0 Time (billions of cycles) 200
164.gzip
w
c
S
E
[%]
(]
9]
0
g
—
-}
[a)

175.vpr

DL1 misses (millions)

70

Time (billions of cycles)

Figure 12. Applications with inversion: a different data structure
contributes the most misses in each phase.

focus on a single data structure for each application in feig®
(right column). These phase graphs are of three types:

1. No phase behavior past initializatioh79.art, 183.equake,
300.twolf show this pattern.

2. Simple phase behavior between a well defined set of phases
with easily-discerned boundaries. Examples of such behavi
arel64.gzip, 181.mcf and188.ammp.

3. More complex curves with poorly defined phases and fuzzy
phase boundaries. Our exemplars &ré.vpr, 177.mesa and
256.bzip2.

Categories 2 and 3 both contain applications with phasesiomes,
where a different data structure contributes the most ceikses

in each phase. Figure 12 shows the phase behavior of the major
data structures in those of our applications with such siees —
164.gzip, 175.vpr and 181.mcf. Identifying such phase behavior
can be useful in several areas, such as adaptively varyoaegr

sor issue width or cache capacity [21, 2]. Combining theger pr
implementations with data structure decomposition anatineect
sampling period can provide a more rigorous framework foreno
sophisticated decisions.

5. Conclusions and future work

In optimizing the performance of the memory hierarchy, aecits
and compiler writers have traditionally had very differgigws of
application programs. Architects have usually treatedajhyaica-
tion as a black box and focussed on regularities in the dvadal
dress stream, while compiler writers and application paogners
have focussed on identifying fine-grained optimization apymi-
ties without access to detailed runtime information. Irs thaper,

we combine the advantages of the two approaches by gathering

runtime information and correlating it with program feasir data
structures and program phases - in a semi-automated way.

Our first contribution is a novel methodology for decompgsin
the address stream into multiple streams. Our methodolagtsy
more detailed characterizations of applications thatigeoa richer
view than the aggregate statistics of conventional metlogies.
Applying it to twelve of the C SPEC2000 benchmarks is sudaéss
at highlighting and quantifying the variability in miss tfibutions

and access patterns in the SPEC benchmark suite. It is also ab

to focus on the specific data structures that show uniquevieha
such as a disproportionate number of memory stall cycles.

A second contribution of this study is a new framework to man-

age and understand application phase behavior at the night g
ularity. We show that data structure decomposition and fiagp
period selection are both important steps in studying artiapp
tion’s phase behavior, with significant impact on the finaitynie
of the application that emerges. Understanding how samué:
riod influences phase behavior is complementary to recernk wo
in detecting phase boundaries using code signatures [211,0]11
One straightforward way to integrate it with online signatbased
phase-detection techniques is by extending them to useblari
sampling periods, determining the sampling period of arlicgp
tion offline and providing this information as a hint to haate.

While this study focusses on C programs, our methodology and

algorithms are applicable to other programming languagesed.
In particular, they need only minor modifications to be aggdbie
to garbage-collected runtimes — instrumentation in theage col-
lector instead of the manual deallocation routine. Our wddtogy
for selecting the right sampling period is loosely based pecs
tral analysis, and forms a general and rigorous approactutty s

phase behavior and consistently compare global phase ibehav

patterns across applications with seemingly differeniopiities.

of the 10th international conference on Architectural sogdor
programming languages and operating systepages 279-290, New
York, NY, USA, 2002. ACM Press.

[6] R. Desikan, D. Burger, and S. W. Keckler. Measuring ekpental
error in microprocessor simulation. Rroceedings of the 28th Annual
International Symposium on Computer Architectyrages 266277,
July 2001.

[7] S. Z. Guyer, D. A. Jiménez, and C. Lin. The C-Breeze cdenpi
infrastructure. Technical Report TR 01-43, Dept. of Coreput
Sciences, University of Texas at Austin, November 2001.

[8] I. J. Haikala and P. H. Kutvonen. Split cache organizatio In
Performance '84: Proceedings of the Tenth InternationahBgsium
on Computer Performance Modelling, Measurement and Evtalua
pages 459-472. North-Holland, 1985.

[9] M. D. Hill. A case for direct-mapped cachedEEE Computer
21(12):25-40, Dec. 1988.

[10] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. €alflee
strong correlation between code signatures and perforenaiht
Proceedings of the IEEE International Symposium on Peréoica
Analysis of Systems and Softwdvarch 2005.

[11] J. Lau, S. Schoenmackers, and B. Calder. Structureptiase
classification. IrProceedings of the IEEE International Symposium
on Performance Analysis of Systems and Softwdegch 2004.

[12] A. R. Lebeck and D. A. Wood. Cache profiling and the SPEC
benchmarks: A case studfEE Computerpages 15—-26, Oct. 1994.

[13] M. Martonosi, A. Gupta, and T. E. Anderson. MemSpy: Auzatg
memory system bottlenecks in programsPhoceedings of the ACM
SIGMETRICS Conference on Measurement & Modeling Computer
Systemgspages 1-12, Newport, RI, June 1992.

[14] K. S. McKinley and O. Temam. A quantitative analysis a@bp nest
locality. In Proceedings of the Seventh International Conference on
Architectural Support for Programming Languages and Ofiata
Systemspages 94-104, Cambridge, MA, Oct. 1996.

[15] P. Nagpurkar, M. Hind, C. Krintz, P. Sweeney, and V. Raj®nline
phase detection algorithms. Rroceedings of the 4th annual
international symposium on code generation and optimepaarch
2006.

One open problem is to improve this method to more gracefully [16] A- Roth and G. Sohi. Effective jump-pointer prefetdhifor linked

identify sampling periods for applications with coarseiged pe-
riodic behavior, and we believe more advanced ideas fronni€&iou
analysis will be useful.

Acknowledgments

The design of DTrack was influenced by discussions with stu-
dents in the CART and Speedway research groups. We also thank
Michael Hind, Peter Sweeney and Kemal Ebcioglu for useful

discussions about the relationship between sampling Gratyu
and phase behavior. This research is based on work suppunyrted

the Defense Advanced Research Projects Agency under contra

F33615-01-C-4106, and by the NSF under instrumentationtgra
EIA-0303609 and grant CCR-0311829.

References

[1] S. G. Abraham, R. A. Sugumar, D. Windheiser, B. R. Rau, and

R. Gupta. Predictability of load/store instruction latesc InPro-

ceedings of the 28th International Symposium on Microaectiire

Austin, TX, Dec. 1993.

M. Annavaram, R. Rakvic, M. Polito, J.-Y. Bouguet, R. Hars,

and B. Davies. The fuzzy correlation between code and peeoce

predictability. InProceedings of the 37th Annual International

Symposium on Microarchitectyrpages 93-104, 2004.

[3] D. Burger and T. M. Austin. The simplescalar tool set i@ns2.0.
Technical Report 1342, Department of Computer Scienceisgtsity
of Wisconsin-Madison, June 1997.

[4] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream pe&thing

for general-purpose programs. Bmoceeding of the ACM SIGPLAN

2002 Conference on Programming language design and impieme

tion, 2002.

R. Cooksey, S. Jourdan, and D. Grunwald. A statelessteabn

directed data prefetching mechanism. ASPLOS-X: Proceedings

2

—

5

—_

data structures. IRroceedings of the 26th International Symposium
on Computer Architecturétlanta, GA, May 1999.

[17] S. Rubin, R. Bodik, and T. M. Chilimbi. An efficient pragdanalysis
framework for data-layout optimizations. Rroceedings of the 29th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages2002.

[18] M. L. Seidl and B. G. Zorn. Segregating heap objects ligremce
behavior and lifetime. IfProceedings of the Eighth International
Conference on Architectural Support for Programming Leaggs
and Operating Systempages 12—-23, San Jose, CA, Oct. 1998.

[19] T. Sherwood, E. Perelman, and B. Calder. Basic blockiligion
analysis to find periodic behavior and simulation pointspplea-
tions. InProceedings of the International Conference on Parallel
Architectures and Compilation Techniguemges 3—-14, September
2001.

[20] T. Sherwood, E. Perelman, G. Hamerly, and B. Calderofatically
characterizing large scale program behavior. Iiternational
Conference on Architectural Support for Programming Leaggs
and Operating Systempages 45-57, Oct. 2002.

[21] T. Sherwood, S. Sair, and B. Calder. Phase tracking aadigiion.

In Proceedings of the 30th International Symposium of Compute
Architecture pages 336-347, June 2003.

[22] A. J. Smith. Second bibliography on cache memori€amputer
Architecture Newsl19(4):154-182, June 1991.

[23] J. E. Smith and A. R. Pleszkun. Implementing precisermipts in
pipelined processorsEEE Trans. Comput37(5):562-573, 1988.

[24] S. Srinivasan, R. Ju, A. R. Lebeck, and C. Wilkerson. dlibg vs.
criticality. In Proceedings of the 28th International Symposium on
Computer Architecturgpages 132-144, June 2001.

[25] E. van der Deijl, G. Kanbier, O. Temam, and E. Granstoncaghe
visualization tool.IEEE Computerpages 71-78, July 1997.

