
Appears in the 2009 IEEE International Symposium on Performance Analysis of Systems and Software

Analysis of the TRIPS Prototype Block Predictor

Nitya Ranganathan Doug Burger† Stephen W. Keckler

Department of Computer Sciences † Microsoft Research

The University of Texas at Austin One Microsoft Way, Redmond, WA 98052

cart@cs.utexas.edu dburger@microsoft.com

Abstract

This paper analyzes the performance of the TRIPS proto-

type chip’s block predictor. The prototype is the first imple-

mentation of the block-atomic TRIPS architecture, wherein

the unit of execution is a TRIPS hyperblock. The TRIPS pro-

totype predictor uses a two-step prediction process: it first

predicts the exit from the current hyperblock and uses the

predicted exit in conjunction with the current hyperblock’s

address to predict the next hyperblock.

SPECint2000 and SPECfp2000 benchmarks record av-

erage misprediction rates of 11.5% and 4.3%, respectively,

on the prototype chip. Simulation-driven analysis identifies

short history lengths, inadequate offset bits in the branch tar-

get buffers, and aliasing in the exit and target predictors as

the main reasons for the predictor inefficiency. If the above

issues are addressed, block misprediction rates can be re-

duced by 15% for SPECint2000 and 22% for SPECfp2000.

Using a perceptron-based analysis, we show that there is

significant loss in correlation in our current hyperblocks.

We conclude that while carefully tuned block predictors can

achieve relatively lower misprediction rates, new predic-

tor designs and correlation-aware hyperblock formation are

necessary to bridge the gap between block prediction accu-

racies and branch prediction accuracies.

1 Introduction

The TRIPS architecture [19, 20] is a distributed, tile-

based design that evolved in response to increasing wire de-

lays seen in modern process technologies. The distributed

architecture tolerates wire delays through a combination of

block-based, block-atomic execution [5, 16], and compiler-

directed instruction placement and operand communication.

TRIPS is the first architecture that uses an EDGE (Explicit

Dataflow Graph Execution) ISA.

The unit of execution in TRIPS is the TRIPS hyper-

block (termed as “block” in the rest of the paper). A hy-

perblock is a single-entry multiple-exit block of possibly

predicated instructions [14]. Several heuristics aid the block

construction process [13, 27]. Dynamically, the processor

fetches and maps successive blocks on to the execution sub-

strate using control-flow speculation, and executes the in-

structions within each block in a data-flow fashion. The

block-based execution provides high fetch/execute/commit

bandwidth and also amortizes the overheads of speculation,

renaming, register reads, and completion.

Control-flow speculation is necessary for good perfor-

mance in the TRIPS processor. The instruction window in

the TRIPS prototype can hold up to eight blocks or 1024

instructions; hence, the cost of recovering from a misspecu-

lation is high. Each block may have up to 128 useful instruc-

tions. A control-flow misspeculation can cause several such

blocks to be flushed from the pipeline, resulting in a heavy

re-fill penalty. The next-block predictor is at the heart of the

control-flow speculation logic in the TRIPS architecture. A

TRIPS hyperblock can have several exit branches (i.e. con-

trol transfer instructions that steer execution out of the cur-

rent block). The predictor first predicts the exit that will fire

and then predicts the target of this exit, which is the predicted

next block address. Since the block predictor need only make

predictions once per hyperblock, the number of predictions

it must provide is far fewer than traditional branch predic-

tors. However, the cost of misspeculation is high and hence,

a high premium is placed on the accuracy of each prediction.

This paper performs a retrospective analysis of the TRIPS

prototype chip’s block predictor. While exhaustive design-

space exploration studies [18] guided the design of the pro-

totype next-block predictor, area constraints forced the de-

signers to reduce the area allocated for the predictor. We

report block misprediction rates from the TRIPS prototype

chip and analyze the reasons for the large number of block

mispredictions. We describe design improvements that help

achieve 15% reduction in mispredictions for SPECint and

22% reduction for SPECfp benchmarks. Finally, we present

a perceptron-based analysis to show the need for correlation-

aware block formation and highlight the importance of local

predictors. Our results show that using sophisticated exit pre-

diction techniques and carefully tuned target predictors, we

can achieve higher accuracies compared to the prototype pre-

dictor. However, new exit predictor designs and correlation-

aware hyperblock formation are required to match state-of-

the-art branch prediction accuracies.

2 Background

TRIPS [19, 20] is a block-atomic EDGE architecture

that uses large single-entry multiple-exit blocks of possibly-

predicated instructions. Predication is used for control-flow

within a block while branches are used to transfer control out

of the block. A taken branch in the block leads to transfer of

control to another block and is termed as an exit branch, or

simply an exit. A hyperblock can have several exits but ex-

actly one of the exits fires at run time. Every exit branch in

the hyperblock is given a 3-bit identifier that is stored in the

branch instruction. An exit predictor predicts the ID of the

exit that will fire. By predicting an exit number N, the pre-

dictor, in effect, predicts a predicated path through the block

which leads to exit N.

The TRIPS prototype (die photo shown in Figure 1) is a

130nm ASIC design with 170 million transistors and a max-

imum operating frequency of 366MHz. It is a tile-based de-

sign with two 16-wide issue processor cores and 1 MB of L2

NUCA (Non-Uniform Cache Access [11]) cache. Each of

the processor cores contains five major tiles: Global Con-

trol Tile (GT, with predictor), Execution Tile (ET), Data

Tile (DT), Instruction Tile (IT), and Register Tile (RT).

Implementing a block predictor instead of a traditional

branch predictor has two advantages: more time to make

a prediction (predictions made every eight or more cycles)

and less complex implementation of speculative update sup-

port (histories checkpointed every block, not every branch).

Because of these advantages, the prototype predictor uses a

simple blocking 3-cycle design with single-ported structures

and implements speculative updates for all histories.

However, a block predictor also has disadvantages com-

pared to a branch predictor. In a distributed architecture like

TRIPS, blocks of instructions fetched from the instruction

cache banks are dispatched directly to the execution tiles,

where they are decoded and executed. The GT manages the

entire control for a block, namely, predict, fetch, execute,

flush, complete, and retire. The predictor cannot examine

the branches among the instructions dispatched to the ETs.

Snooping the control network quickly for branch instruction

opcodes and other fields is problematic as the GT is phys-

ically separate from the ETs to which instructions are dis-

patched directly from the caches. Hence, when a block is

fetched, the prototype predictor knows only the block ad-

dress and the block size.

3 Next-Block Prediction in TRIPS

In an early version of the TRIPS architecture, a simple

2-level block predictor similar to a 2-level global branch pre-

dictor was used [16]. Subsequently, a systematic design-

space exploration [18] of block predictors was performed

and the best-performing tournament exit predictors were de-

termined. The Trimaran compiler [30] was used to generate

hyperblocks that were mapped on to the TRIPS execution

substrate [16, 19]. The goal was to arrive at a reasonably sim-

ple design for the exit predictor while providing large fetch

bandwidth and high exit prediction accuracy. Our design

space exploration considered local, global, and path histo-

Processor 1

Processor 0

O
n

-C
h

ip
 N

e
tw

o
rk

EEEE

R R R R

D

D

D

D

I

I

I

I

I G

EEEE

EEEE

EEEE

G: Global Control

 (predict/fetch)

R: Register File

 I: Instruction Cache

D: Data Cache

 E: Execution

 (ALU array)

DMA: DMA

 SDC: SDRAM

 C2C: Chip-to-Chip

 EBC: External Bus

TRIPS Tiles

TRIPS Controllers

L2 Cache/Memory

(16 NUCA tiles)

SDC

DMA

EBC

SDC

DMA

C2C

EEEE

EEEE

EEEE

EEEE

R R R R

D

D

D

D

G
I

I

I

I

I

Figure 1: TRIPS prototype chip die photo with two 16-wide cores and 1

MB of L2 NUCA cache.

ries [17]. While a global history captures global branch/exit

correlation information, a path history captures the address

of the branches/blocks along the path leading to the current

branch/block. The local/global tournament predictor was

one of the best performing simple designs. The proposed

design was similar in structure to the Alpha 21264 branch

predictor [10]. More details and comparison with multiple

branch prediction approaches can be found in [18].

The design decisions for the TRIPS prototype predictor

were made based on results from the Trimaran hyperblock-

TRIPS simulator infrastructure. However, for the TRIPS

prototype, the software infrastructure was changed from

the Trimaran compiler to the Scale compiler [27] targeting

TRIPS. A new Instruction Set Architecture (ISA), timing

constraints, and area constraints influenced the predictor de-

sign decisions. The TRIPS prototype predictor includes a

scaled-down version of the local-global tournament exit pre-

dictor described in [18]. It also includes a multi-component

target predictor for predicting various types of branches.

Based on the GT area constraints, we implemented a 5KB

(approx.) version of the tournament exit predictor and a 5KB

(approx.) multi-component target predictor. The prototype

exit and target predictor components with marked sizes are

shown in Figure 2. The predictor configuration is shown in

Table 1.

3.1 Prototype exit predictor

A TRIPS hyperblock contains at least one exit. Though

a block may have several exits, only eight IDs are allowed

(three bits in a branch instruction). The exit predictor needs

to predict a 3-bit ID. The prototype exit predictor is a tourna-

ment predictor with 38Kbits (approx. 5KB) of total storage

containing three components: a local exit predictor, a global

exit predictor, and a choice predictor.

Local exit predictor: The local predictor has a 512-

entry level-1 local (per-block) history table with each entry

containing a 10-bit per-block local exit history (recent five

exits represented using the last two bits of each exit). It also

2

Predictor and size Predictor configuration

proto10K exit, 5KB 10-bit lhist, 512 local-l1, 1K local-l2; 12-bit ghist, 4K global-l2; 12-bit ghist for chooser, 4K choice-l2, 3-bit choice counter

proto32K exit, 16KB 12-bit lhist, 512 local-l1, 4K local-l2; 14-bit ghist, 16K global-l2; 14-bit ghist for chooser, 16K choice-l2, 3-bit choice counter

TAGE exit, 5KB 5-comp TAGE with history lengths 0 (tagless bimodal), 7, 27, 63, 112 & table entries 1K, 128, 512, 512, 1K

TAGE exit, 16KB 4-comp TAGE with history lengths 0 (tagless bimodal), 10, 55, 108 & table entries 4K, 1K, 2K, 4K

Local/TAGE exit, 5KB 8-bit lhist, 256 local-l1, 512 local-l2; 5-comp TAGE with history lengths 0 (tagless bimodal), 9, 18, 63, 108 & 512-entry tables; 2K choice-l2

Local/TAGE exit, 16KB 11-bit lhist, 512 local-l1, 2K local-l2; 3-comp TAGE with history lengths 0 (tagless bimodal), 20, 72 & table entries 4K, 1K, 4K; 8K choice-l2

5KB target, 5KB 4K-entry Btype predictor, 2K-entry BTB, 9-bit branch offset, 128-entry CTB, 9-bit return address offset, 128-entry RAS

5KB impr. target, 5KB 4K-entry Btype predictor, 2K-entry BTB, 11-bit branch offset, 128-entry CTB, 10-bit return address offset, 64-entry RAS

32KB target, 16KB 16K-entry Btype predictor, 4K-entry BTB, 9-bit branch offset, 512-entry CTB, 9-bit return address offset, 128-entry RAS

32KB impr. target, 16KB 16K-entry Btype predictor, 4K-entry BTB, 13-bit branch offset, 512-entry CTB, 10-bit return address offset, 64-entry RAS

Table 1: Predictor configurations of various exit and target predictors evaluated. lhist is local exit history and ghist is global exit history.

has a 1024-entry level-2 exit prediction table with each en-

try containing a 3-bit exit ID and a hysteresis bit used for

replacement. The level-1 history table is indexed using the

lower-order block address bits while the level-2 table is in-

dexed using an XOR of the block address bits and the local

history retrieved from the level-1 table [15].

Global exit predictor: The global predictor uses global

exit history (12 bits containing last four exits represented us-

ing the full 3-bit IDs) to index into the level-2 global predic-

tion table (4096 entries, each 4-bits wide). The global pre-

dictor indexes the level-2 table using an XOR of the block

address and the history.

Predictor

Sequential

Branch

Target

Buffer

(20 Kb)

Target

Buffer

Address
Stack
(8 Kb)

(6 Kb)

Call

Exit Predictor (38 Kbits)

Predicted next
block address

exit

Branch

Type

Predictor

(12 Kb)

Target Predictor (45 Kbits)

2−level

Choice

Predictor

(12 Kb)

2−level

Global

(16 Kb)

2−level

Local

Predictor

(9 Kb)

Block address

Predictor

Return

Predicted

Figure 2: Prototype block predictor components.

Choice predictor: The choice or chooser predictor is

similar to the chooser found in the Alpha 21264 proces-

sor [10]. It uses global histories (12 bits containing the last

six 2-bit truncated exits) and a second level table (4096 en-

tries, each 3-bits wide) of saturating counters. The indexing

is similar to the global predictor indexing. The counters pre-

dict global or local depending on the most significant bit.

Speculative updates and recovery: The prototype pre-

dictor implements speculative updates of the local, global,

and choice histories. Since the instruction window can hold

only a maximum of eight blocks, the speculative state that

has to be maintained is much lesser than in conventional

instruction-atomic superscalar architectures. For the local

predictor, an 8-entry CAM structure is used to maintain the

latest histories while the global and choice history registers

are backed-up in 8-entry history files [26]. On a misspec-

ulation leading to a pipeline flush, the correct histories are

restored accurately.

3.2 Prototype Target Predictor

The prototype target predictor predicts the next block ad-

dress using the current block address and the predicted exit

from the exit predictor. Since exit branches can be of many

types, support to predict various types of targets like branch

target, call target, and return target is necessary. Typically,

modern target predictors have multiple components, each

tuned to predicting the target for one type of branch. The

prototype target predictor has four components for predict-

ing four types of branches, and a branch type predictor. We

describe each component below:

Branch type predictor (Btype): Due to the prototype’s

distributed design, the block predictor does not have access

to the branch instruction fields at prediction time. This lim-

itation necessitates predicting the branch type for the pre-

dicted exit. The type of the branch can be learned by the

predictor at completion time when the branch resolves. The

4096-entry Btype predictor predicts one of four types: se-

quential branch, branch, call, and return. The sequential

branch type is learned internally to prevent sequential ex-

its (“fall-through” branches whose target is the the next hy-

perblock in program order) from occupying BTB entries.

Each Btype entry stores a 2-bit type and a 1-bit hysteresis.

Sequential branch target predictor: In block-based ar-

chitectures, the sequential exit branch target has to be com-

puted, unlike in conventional processors where the program

counter is automatically incremented to point to the next se-

quential instruction after every fetch. Using an adder logic,

the sequential target is computed from the current block ad-

dress and the current block size.

Branch Target Buffer (BTB): The direct-mapped tag-

less BTB has 2048 entries with each entry containing a 9-

bit signed offset and a 1-bit hysteresis. The branch target is

computed by adding the shifted offset to the current block

address. Since the branch instruction cannot be read at pre-

diction time to retrieve the offset for direct branches, or all

the targets computed and stored in the header due to space

constraints [6], a BTB is necessary to store offsets and pre-

dict branch targets. As indirect branches are not separately

indicated by the Btype predictor, the BTB is used for pre-

dicting indirect branches also.

Call Target Buffer (CTB): The call target is stored as

an absolute address since call targets can be located far away

from the call instructions. Every entry of the 128-entry CTB

has a call target and a return address offset (offset from the

3

calling block) corresponding to the return associated with the

function that is called. Every entry contains two hysteresis

bits, one each associated with the call and return targets.

Call-Return Mechanism and Return Prediction: The

call-return mechanism is different in TRIPS compared to

conventional instruction-atomic architectures. To ensure

block atomicity, function return points must be at the start of

a block because entering a block in the middle (after return-

ing from the call) violates block-atomic constraints. Since a

block may contain many calls and each call may have a dif-

ferent return address (not necessarily the address of the next

block), storing all the return addresses in the block header

is not feasible. Hence, return addresses are learned dynami-

cally using a link stack that learns call-return relationships at

commit time. The learned return addresses are stored in the

CTB. The Return Address Stack (RAS) is used to predict re-

turns. The 128-entry RAS is pushed on a predicted call and

popped on a predicted return at fetch time.

Misprediction recovery: All target prediction structures

except the RAS are updated only at commit time. When a

block is fetched, the top of stack pointer and value are check-

pointed and used later when recovery is initiated. This sim-

ple technique provides almost-perfect recovery [26].

SMT mode: In the TRIPS SMT (Simultaneous Multi-

threading) mode, up to four threads can execute concurrently.

The predictor design includes several optimizations for pre-

diction in the SMT mode: sharing of prediction and target

buffers using the thread address space ID, maintaining sepa-

rate global histories for all threads and partitioning the RAS

into four 32-entry stacks.

Predictor area and timing: The predictor occupies 70%

of the Global Tile area of 2mm2. The predictor has a sim-

ple non-pipelined blocking design. It takes three cycles for

prediction and three cycles for update. Exit prediction and

target prediction are initiated in parallel. The exit prediction

is complete at the beginning of the third cycle, and the final

target selection is complete at the end of the third cycle.

3.3 Predictor Evaluation

The Scale compiler infrastructure [27] was used to gen-

erate hyperblocks for the TRIPS prototype. We use the

highest level of Scale compiler optimization (-Omax) along

with function inlining and loop unrolling. We use the

SPEC2000 benchmark suite for evaluation (ten SPECint and

nine SPECfp benchmarks, the full set of benchmarks that we

were able to compile successfully). Two metrics for predic-

tor evaluation are used: Misprediction Rate and MPKI (Mis-

predictions per Kilo Instructions).

Figure 3 shows the misprediction rates of SPECint and

SPECfp benchmarks. The first bar for each benchmark

shows the misprediction rate from the prototype, the sec-

ond bar shows the misprediction rate from the TRIPS cycle-

accurate performance simulator and the third bar shows the

misprediction rate from the functional branch predictor sim-

ulator. All benchmarks were run to completion (with refer-

ence inputs) on the prototype. Since vortex did not complete

successfully on the prototype, we do not show prototype re-

sults for vortex. For the performance and functional simula-

tors, we show results for Simpoint [24] regions (equivalent to

approximately 100M RISC instructions). The misprediction

rates for SPECint are 11.49%, 13.13%, and 13.01% respec-

tively and the rates for SPECfp are 4.31%, 4.74%, and 4.85%

respectively, for the prototype, performance, and functional

simulators. The mean misprediction rates for the block pre-

dictor are higher than conventional branch predictors (which

achieve integer misprediction rates of 5% or less). The Sim-

point regions provide a good approximation of the entire

benchmark suite for our evaluation based on misprediction

rates except for few benchmarks like gcc, crafty, and apsi.

Furthermore, the difference between cycle-accurate perfor-

mance simulation and functional simulation is negligible, be-

cause speculative updates are implemented for histories and

the RAS which mimics the immediate update of predictor

state in the functional model. In the rest of this paper, we

report results exclusively from the functional simulator.

4 Analysis of block prediction

In this section, we characterize block mispredictions in

the TRIPS prototype predictor, show bottlenecks in the pre-

dictor design, and suggest design modifications to improve

the predictor performance. We examine history types, his-

tory lengths, table types, exit predictor types, and target

component types to arrive at an improved block predictor.

We use the 10KB TRIPS prototype predictor (proto10K) as

well as a scaled-up 32KB version of the prototype predictor

(proto32K) for the experiments. Since the 10KB predictor

is severely size-constrained for some component optimiza-

tions, we also include the 32KB predictor, which is a reason-

able size for future processors.

Figure 4 shows the component-wise misprediction break-

down (MPKI) for proto10K and proto32K. The lower-most

component in each bar represents the MPKI due to the exit

predictor. The next component shows the MPKI from the

branch type predictor when the exit predictor has predicted

correctly (since the branch type prediction depends on the

exit predictor). Similarly, the next three components show

the BTB, CTB, and RAS prediction components and their

contribution to mispredictions when the exit and the branch

type predictions are correct (since target prediction depends

on exit and branch type). For some benchmarks the total

value of the component MPKIs is slightly greater than the

MPKI reported in the previous section. Occasionally, the

target predictor hides the exit predictor inefficiencies i.e., the

predicted target is correct even when the predicted exit is

wrong. The graph shows that for most of the benchmarks,

the major contributor to MPKI is the exit predictor; the exit

MPKI is more than 50% of the total MPKI for both SPECint

and SPECfp programs. The exit predictor MPKI is 4.96 for

proto10K and 4.48 for proto32K. For some benchmarks like

4

prototype

performance simulator

functional simulator

 0

 5

 10

 15

 20

 25

b
zi

p
2

cc
1

cr
af

ty

g
zi

p

m
cf

p
ar

se
r

p
er

lb
m

k

tw
o

lf

v
p

r

v
o

rt
ex

M
ea

n
−

in
t

M
is

p
re

d
ic

ti
o

n
 r

at
e

(i
n

 %
)

(a) SPECint 2000 benchmarks

prototype

performance simulator

functional simulator

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

am
m

p

ap
p

lu

ap
si ar
t

eq
u

ak
e

m
es

a

m
g

ri
d

sw
im

w
u

p
w

is
e

M
ea

n
−

fp

M
is

p
re

d
ic

ti
o

n
 r

at
e

(i
n

 %
)

(b) SPECfp 2000 benchmarks

Figure 3: Prototype predictor misprediction rates for SPECint and SPECfp benchmarks.

RAS

CTB

BTB

btype

exitpred

 0

 5

 10

 15

 20

1
0
K

3
2
K

1
0
K

3
2
K

1
0
K

3
2
K

1
0
K

3
2
K

1
0
K

3
2
K

1
0
K

3
2
K

1
0
K

3
2
K

1
0
K

3
2
K

1
0
K

3
2
K

1
0
K

3
2
K

1
0
K

3
2
K

M
is

p
re

d
ic

ti
o
n
s

p
er

 K
il

o
 I

n
st

ru
ct

io
n
s

(M
P

K
I)

bzip2 crafty gcc gzip mcf parser perlbmk twolf vortex vpr Mean−int

(a) SPECint 2000

RAS

CTB

BTB

btype

exitpred

 0

 0

 1

 2

 2

 2

 3

 4

1
0
K

3
2
K

1
0
K

3
2
K

1
0
K

3
2
K

1
0
K

3
2
K

1
0
K

3
2
K

1
0
K

3
2
K

1
0
K

3
2
K

1
0
K

3
2
K

1
0
K

3
2
K

1
0
K

3
2
K

M
is

p
re

d
ic

ti
o
n
s

p
er

 K
il

o
 I

n
st

ru
ct

io
n
s

(M
P

K
I)

ammp applu apsi art equake mesa mgrid swim wupwise Mean−fp

(b) SPECfp 2000

Figure 4: MPKI breakdown of prototype predictor (10KB) and scaled-up prototype predictor (32KB) by component type.

gcc, perlbmk, and equake, other components like the BTB

and the CTB perform poorly. There is a reduction in both

the exit and the target MPKIs when the larger 32KB predic-

tor is used. The overall MPKI for SPECint benchmarks is

7.76 and 6.49 respectively, for the 10KB and the 32KB con-

figurations. For SPECfp benchmarks, proto10K achieves an

MPKI of 1.63 while proto32K achieves an MPKI of 1.37.

On the whole, the exit predictor, the BTB and the CTB are

the major contributors to block predictor mispredictions.

4.1 Analysis of exit prediction

We now analyze exit predictor mispredictions. Figure 5

shows the breakdown of mean exit MPKI by “mispredic-

tion reason” for proto10K (containing a 5KB predictor)

and proto32K (containing a 16KB predictor). For SPECint

benchmarks, aliasing in the local, global, and choice predic-

tor level-2 tables results in 18.1% (0.9 MPKI) of the exit

mispredictions for proto10K while there is less aliasing in

the proto32K predictor (12.5%, 0.56 MPKI). An imperfect

chooser results in 26.8% (1.33 MPKI) of the exit mispredic-

tions in the prototype predictor while it contributes 29.7%

(1.33 MPKI) of the mispredictions in the scaled-up 32KB

predictor. The remaining mispredictions (contributing more

than half of the total exit mispredictions) are due to predic-

tor design drawbacks such as insufficient history length and

simple prediction algorithm (2-component tournament pre-

dictor instead of a multi-component predictor), and block

construction issues such as placement and predication of cor-

related branches (discussed in Section 5). For the SPECfp

suite, aliasing is negligible, especially in the larger predic-

tor. Chooser inefficiencies contribute to about one-third of

the total exit mispredictions, while the majority of the mis-

predictions (about two-thirds) is due to prediction technique

and predication issues.

 predictor−logic/hyperblocks

 chooser−inefficiency

 aliasing−effects

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1
0
K

3
2
K

1
0
K

3
2
K

M
is

p
re

d
ic

ti
o
n
s

p
er

 K
il

o
 I

n
st

ru
ct

io
n
s

(M
P

K
I)

SPECint mean SPECfp mean

Figure 5: Mean exit MPKI breakdown for SPECint and SPECfp bench-

marks for the 10KB prototype (5KB exit predictor) and the 32KB scaled-up

prototype (16KB exit predictor) predictors.

To understand the reasons for exit prediction misses

due to predictor design issues, we evaluated several types

of history-based exit predictors (address-indexed or bi-

modal, local, global, path) and combinations of history-

based predictors. Due to space constraints, detailed quan-

titative results for our scaling, aliasing, history-length, and

5

component-type variation experiments are not presented. We

summarize the relevant results below and describe one exper-

iment motivating the need for multi-component long-history

predictors.

Single and multi-component exit predictors using differ-

ent prediction component types

In general, for exit prediction using a 1-component predic-

tor, we found that global exit histories are slightly better than

path histories and path histories are better than local exit his-

tories. Global and path history-based predictors scale well

(up to 128KB) when the history length and prediction table

(level-2) size are increased. When considering 1-component

and 2-component predictors of similar size, the local/global

tournament predictor and the bimodal/path tournament pre-

dictors are the best-performing predictors for almost all the

sizes from 1KB to 256KB. The number of bits of each exit

to use in the exit history is the same as for the prototype for a

local/global tournament predictor. Our experiments showed

that the prototype exit predictor configuration gives the best

tournament predictor among such 5KB exit predictors.

Multi-component exit predictors using global and path

history-based components

Recent branch prediction research has shown the potential of

using more than two components with short and long history

lengths to make a branch prediction [12, 21]. Branches may

be correlated with different branches from the past, near-

branches or far-branches. Some branches are predictable

with short histories while some are predictable with long

histories [3, 28]. We explore multi-component predictors

consisting of global history-based components and multi-

component predictors consisting of path history-based com-

ponents. The components can use nine history lengths rang-

ing from zero to 30 bits. If exit IDs are truncated to two bits,

a 30-bit global exit history can hold 15 exits which can rep-

resent anywhere from 15 to 120 branches depending on the

number of exits in each block. However, several branches

that could be represented in a traditional branch history will

not be represented in the exit history due to predication and

exit truncation. For path histories, we use a few lower-order

bits of the address of each block encountered in the execution

path leading to the current block.

To evaluate the potential of multi-component exit predic-

tors, we simulate interference-free predictor components to

remove the aliasing benefits of large-history predictors com-

pared to small-history predictors, while retaining only the

history length benefit for our analysis. We also avoid folding

the histories. In a practical implementation, we may use his-

tory folding, smaller tables that can lead to destructive alias-

ing and fewer component tables to reduce the predictor area.

Finally, we consider an ideal chooser which always chooses

the component that predicts correctly, provided some compo-

nent predicts the correct exit ID. We use integer benchmarks

for our evaluation since they are significantly more difficult

to predict than FP benchmarks. Also, integer benchmarks

have more branches that show variations in correlation.

 0

 2

 4

 6

 8

 10

 12

 14

h00 h04 h08 h12 h16 h20 h24 h28 h30

S
P

E
C

In
t
M

e
a
n
 M

is
p
re

d
ic

ti
o
n
 r

a
te

 (
in

 %
)

History sizes for interference free predictor

Path
Global

Figure 6: Mean misprediction rates for global and path interference-free

predictor components using history lengths from 0 to 30.

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9

S
P

E
C

In
t
M

e
a
n
 M

is
p
re

d
ic

ti
o
n
 r

a
te

 (
in

 %
)

Number of components

Path
Global

Figure 7: Mean misprediction rates for the best N-component predictor

for N ranging from 1 to 9. Both global and path-based multi-component

predictors are shown.

We evaluate all possible multi-component predictors con-

taining one to nine components. Figure 6 shows the mean

misprediction rates for each of the predictor components us-

ing history lengths from 0 to 30 bits. There are two mean

curves, one for global components and one for path com-

ponents. This graph shows how well each of the individual

components perform. The misprediction rate drops steadily

from 13.2% for a 0-bit history to 6.3% for 30-bit global his-

tory and from 13.2% for a 0-bit history to 7.0% for 30-bit

path history.

Figure 7 shows the mean misprediction rates achieved by

the best N-component predictor for N ranging from 1 to 9.

For a given N value, a point on the X-axis corresponds to

the set of all N-component predictors, and the correspond-

ing Y-axis value gives the misprediction rate for the best N-

component predictor in that family of predictors. For both

global and path predictors, the misprediction rates go down

rapidly as more components are included in the hybrid pre-

dictor. Even with just two components, the predictor is sig-

nificantly better than the individual predictors shown in Fig-

ure 6. The best 2-component global predictor has a mis-

prediction rate of 4% while a 2-component path predictor

6

achieves a rate of 4.6%. Predictors with six or more compo-

nents perform equally well with a misprediction rate of 2.7%

for a 6-component global predictor and a misprediction rate

of 2.6% for a 9-component global predictor. Since we use

interference-free predictors, the low misprediction rates seen

in these hybrid predictors is mainly due to the combination

of short and long history lengths used. When more histories

are used, each block has a higher chance of being predicted

using the history length that is the “best” for predicting the

block effectively. On average, the global predictor performs

better than the path-based predictor for all history lengths.

Table 2 shows the history lengths of the global compo-

nent predictors for the best performing configuration for each

length N from Figure 7. It also shows the corresponding

lowest misprediction rate. The components for each of the

best configurations use histories from either end of the set of

histories as well as from the middle of the histories, if they

can use more. We also observe that more histories are cho-

sen closer to each other at the beginning but when moving

towards the longest history, fewer such histories are chosen.

This pattern of history selection indicates an approximate ge-

ometric trend [21] in the choice of history lengths. About

85% of the branches can be predicted well by the 0-bit his-

tory component. The number of branches that require long

histories is few; hence, fewer components using the longer

histories are chosen. For example, in a global 5-component

predictor, three components (0 bit, 4 bit and 12 bit) are from

the lower half of the set of histories and two components

(20 bit and 30 bit) are from the upper half. This experiment

shows us the potential of multi-component predictors using

increasing history lengths.

4.2 Analysis of target prediction

We now examine target predictor inefficiencies in the pro-

totype predictor. Figure 4 shows that, for SPECint, the target

predictor’s contribution to mispredictions goes down when

the target predictor is scaled from 5KB to 16KB. For SPECfp

benchmarks, the low BTB and CTB MPKI in proto10K be-

come close to zero in proto32K. To determine the limits of

target prediction accuracy, we simulated multi-component

target predictors with a perfect exit predictor. The main bot-

tlenecks in the prototype target predictor (with perfect exit

prediction) for SPECint are described below:

• A 4096-entry Btype predictor was insufficient to store

the types of all exit branches. The Btype MPKI goes

down by half in the proto32K predictor (0.51 to 0.27)

when the number of entries is increased 4-fold.

• The maximum branch offset length for direct branches

within the same function was determined by consider-

ing the maximum number of blocks in large functions.

The BTB offset was set to nine bits. After the prototype

implementation was complete, we evaluated our predic-

tor using hyperblocks from the Scale compiler. Our re-

sults showed that several functions in the SPECint suite

had more hyperblocks than we had estimated. Thus, we

had underestimated the branch offset width.

• Aliasing was high in the BTB and CTB tables. In

general, 128 entries in the CTB were sufficient, but

some benchmarks with many small functions per-

formed poorly. When scaling the prototype predictor to

32KB, little reduction in the BTB MPKI and a signifi-

cant reduction (26%) in the CTB MPKI were observed.

• Though the RAS size was halved in proto32K, the RAS

MPKI goes down because the CTB size in proto32K

is 4X the size of the CTB in proto10K leading to less

aliasing for return address storage in the CTB entries.

• Absence of a separate indirect branch predictor was sig-

nificant for benchmarks like crafty, gcc and perlbmk.

• Few RAS mispredictions are caused by RAS overflow

and underflow.

The BTB and the CTB have the maximum contribution

towards target mispredictions. If offset length mispredictions

are removed, the mispredictions from these components can

be partitioned into aliasing and indirect branch/call target

mispredictions. We examine taken exits in the dynamic exe-

cution stream to identify the number of unique dynamic tar-

gets for each taken indirect branch. Some indirect branches

are easily predictable by the BTB, e.g. those that have only

one target during the entire run. If there is more than one

dynamic target, we categorize the branch/call as a dynamic

indirect branch/call. The MPKI is calculated separately for

such indirect branches and indirect calls. The remaining mis-

predictions are due to aliasing in the target buffers. For some

benchmarks, indirect branches significantly contribute to the

MPKI. For example, gcc has several multi-target branches

that are difficult to predict while perlbmk has several multi-

target calls that are difficult to predict. These branches need a

separate indirect branch predictor to achieve good prediction

accuracies. On average, we found that for the 16KB target

predictor (proto32K), about 75% of the mispredictions from

the BTB and 84% of the mispredictions from the CTB are

indirect branch/call mispredictions.

4.3 Improving exit and target prediction

Inspired by our analysis of ideal multi-component predic-

tors showing the potential of predictors with multiple histo-

ries (mostly, geometrically increasing lengths), we evaluated

block predictors inspired from two recent branch predictors,

the O-GEHL predictor [21] and the TAGE predictor [23].

The O-GEHL exit predictor did not outperform the proto-

type predictor (due to an inefficient final chooser and table

aliasing). Hence, we present the TAGE predictor below.

TAGE exit predictor: The TAGE branch predictor pro-

posed by Seznec et al. [23] makes use of a set of geometri-

cally increasing history lengths indexing a set of tagged ta-

bles. This branch predictor can be directly mapped to exit

7

Num. Components 1 2 3 4 5 6 7 8 9

Best global 6.29 4.04 3.26 2.97 2.81 2.70 2.63 2.59 2.57

mispred. rate (%)

Global history 30 0, 30 0, 12, 30 0, 8, 16, 30 0, 4, 12, 20, 30 0, 4, 8, 16, 24, 0, 4, 8, 12, 16, 0, 4, 8, 12, 16, 0, 4, 8, 12, 16,

lengths chosen 30 24, 30 20, 24, 30 20, 24, 28, 30

Table 2: Best global multi-component predictor configurations for different numbers of components from one to nine.

prediction since the final prediction is chosen based on tag

match and not adder-tree computation (adder-tree is more

suitable for binary prediction). A TAGE predictor consist-

ing of five components is shown in Figure 8.

addr

addraddr

addr

global history

addr

final prediction selection

h1 h2 h3 h4tag pred tag pred tag pred tag predpred

predicted taken/exit

Figure 8: A 5-component TAGE predictor containing a bimodal compo-

nent and four global+path history indexed components with geometrically

increasing history lengths (0, h1, h2, h3, h4).

The TAGE predictor is inspired from the ideal PPM pre-

dictor [1] that uses all history lengths from 0 to N-1 for an

N-component prediction. By combining the geometric his-

tory length technique of O-GEHL with the ideal PPM ap-

proach, an implementable version of the PPM predictor, i.e.,

TAGE is obtained. The index to each of the tables is gener-

ated using a hash of the corresponding history length, path

history bits and branch address. The prediction tables are

tagged to help ensure that a component giving a correct pre-

diction for a branch is the only component making a predic-

tion for that branch. In a practical design, often, two compo-

nents are updated. Hence, prediction for a branch occurring

in a particular path is never made by more than two tables.

This design saves space in the other components for other

branches and reduces replication of predictions. The disad-

vantage is that tags occupy lot of space and a fine balance is

required between the number of table entries and tag length.

When a branch can be predicted well by a component us-

ing a short history length, it is not allocated to longer-history

components. This optimization reduces destructive aliasing

and helps the longer-history components predict the difficult

branches better. Typically, the first component is a tag-less

bimodal predictor. When a branch needs to be predicted, the

component for which the tag matches gives the final predic-

tion. If more than one component has a matching tag, the

longer-history component is chosen. When none of the com-

ponents have matching tags, the bimodal component makes

the prediction. TAGE can also use dynamically varying his-

tories and replacement thresholds.

Adapting a TAGE branch predictor to predict exits is

straightforward. The TAGE exit predictor’s final prediction

selection logic is similar to that of the TAGE branch pre-

dictor. There are two main differences in our TAGE imple-

mentation. First, we do not use dynamic history or threshold

fitting. Second, we use a hash of the path history and the

block address bits as the tag in each TAGE table instead of

the block address alone. Using the history also to calculate

the tag achieves lower MPKI. We evaluated different sizes of

TAGE and local/TAGE hybrid predictors with varying num-

ber of tables, history lengths, tag lengths and hysteresis bit

lengths. The best TAGE and local/TAGE predictor configu-

rations are shown in Table 1.

Target predictor: For target prediction, we focus on re-

ducing the BTB and the CTB MPKI as they are the biggest

sources of target mispredictions. The BTB design space ex-

ploration showed that small offset width, aliasing and indi-

rect branch mispredictions are the main sources of inaccu-

racy. The 9-bit offset used in proto10K and proto32K was

not sufficient to include the targets of several blocks in cer-

tain benchmarks. The benchmark that is most affected by

the low offset width is gcc. Increasing the offset length to 13

bits (from nine bits), removed nearly all the mispredictions

due to insufficient offset length. For the 5KB predictor, we

increase the BTB offset by two bits.

The CTB MPKI accounts for CTB aliasing and indirect

call mispredictions. The CTB stores full call target addresses

and return address offsets. Hence, offset width mispredic-

tions are possible for returns only. Wrong return addresses

being pushed on to the RAS cause return address mispredic-

tions. When the CTB size is increased and the return offset

length in the CTB is increased by one bit, the RAS MPKI

goes down. The remaining mispredictions can be addressed

by using associative target buffers to reduce aliasing and by

including a separate indirect branch predictor. We do not ex-

plore these aspects in this paper. Table 1 shows the improved

target predictor configurations.

Predictor evaluation: Figure 9 shows the MPKI break-

down of several predictors for integer and FP benchmarks.

The first bar shows the MPKI breakdown for the proto10K

predictor as seen earlier. The second bar shows the MPKI of

a block predictor with the TAGE exit predictor and a target

predictor identical to the proto10K predictor. The third bar

shows the MPKI of a block predictor with the local/TAGE

hybrid exit predictor and a target predictor identical to the

8

RAS

CTB

BTB

btype

exitpred

 0

 5

 10

 15

 20

 25

A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D

M
is

p
re

d
ic

ti
o

n
s

p
er

 K
il

o
 I

n
st

ru
ct

io
n

s
(M

P
K

I)

bzip2 crafty gcc gzip mcf parser perlbmk twolf vortex vpr Mean−int

(a) SPECint 2000

RAS

CTB

BTB

btype

exitpred

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D

M
is

p
re

d
ic

ti
o

n
s

p
er

 K
il

o
 I

n
st

ru
ct

io
n

s
(M

P
K

I)

ammp applu apsi art equake mesa mgrid swim wupwise Mean−fp

(b) SPECfp 2000

Figure 9: Comparison of MPKI breakdown for 10KB predictors for SPECint and SPECfp suites. A indicates proto10K, B is TAGE with the same target

predictor as proto10K, C is Local/TAGE with the same target predictor as proto10K and D is Local/TAGE with the improved target predictor.

RAS

CTB

BTB

btype

exitpred

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D

M
is

p
re

d
ic

ti
o

n
s

p
er

 K
il

o
 I

n
st

ru
ct

io
n

s
(M

P
K

I)

bzip2 crafty gcc gzip mcf parser perlbmk twolf vortex vpr Mean−int

(a) SPECint 2000

RAS

CTB

BTB

btype

exitpred

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D

M
is

p
re

d
ic

ti
o

n
s

p
er

 K
il

o
 I

n
st

ru
ct

io
n

s
(M

P
K

I)

ammp applu apsi art equake mesa mgrid swim wupwise Mean−fp

(b) SPECfp 2000

Figure 10: Comparison of MPKI breakdown for 32KB predictors for SPECint and SPECfp suites. A indicates proto32K, B is TAGE with the same target

predictor as proto32K, C is Local/TAGE with the same target predictor as proto32K and D is Local/TAGE with the improved target predictor.

proto10K predictor. The final bar shows the MPKI of a block

predictor with the local/TAGE hybrid exit predictor and the

improved target predictor. Figure 10 shows the MPKI break-

down for the 32KB configuration. We allowed a 10% varia-

tion in predictor size to optimize different components.

For integer benchmarks, the TAGE predictor has a higher

exit MPKI than the proto10K predictor while the local/TAGE

predictor performs as well as proto10K (exit MPKI of 4.92).

In a 32KB configuration, the TAGE predictor performs

slightly better than proto32K while the local/TAGE predictor

has an MPKI that is 5% lower (exit MPKI of 4.26). We also

implemented a large 64KB local/TAGE exit predictor. This

predictor has 12.5% lower MPKI than a 64KB local/global

tournament predictor. Using the improved target predictor

with the local/TAGE predictor achieves the lowest overall

MPKI. On the whole, the overall MPKI drops from 7.76

to 7.15 from proto10K to the local/TAGE predictor with an

improved target predictor. This represents an improvement

of 7.9%. For the 32KB configuration, the improvement is

higher: the overall MPKI goes down by 15% (from 6.49

to 5.42). For SPECfp benchmarks the mean bars show that

there is a steady improvement in the MPKI from left to right

for both the sizes The overall MPKI values for the four con-

figurations are 1.56, 1.42, 1.34 and 1.19 for the 10KB pre-

dictors and 1.3, 1.22, 1.17 and 1.01 for the 32KB predictors.

These numbers indicate an improvement of 23.7% for the

10KB configuration and 22.3% for the 32KB configuration.

For both sets of benchmarks the best exit MPKI is achieved

by the local/TAGE predictor for most of the benchmarks

(exceptions are crafty, gzip and twolf among SPECint and

applu, apsi and swim among SPECfp). The TAGE branch

predictor is a sophisticated predictor that achieves very low

MPKI. However, the TAGE exit predictor only performs on

par with the local/global tournament predictor. When com-

bined with the local predictor, it performs much better. These

numbers indicate the potential of using improved predictors

using multiple length histories along with local exit predic-

tors in future block predictor designs.

5 Branch correlation in hyperblocks

In the previous section, we evaluated several exit predic-

tors. The best exit predictor that used long global histories,

tagged tables and a sophisticated algorithm was able to elim-

inate only an additional 5% of the exit mispredictions. We

hypothesize that loss in correlation is the reason for the poor

performance of exit predictors when compared to state-of-

the-art branch predictors [8, 23].

One goal of hyperblock formation is to enhance pre-

9

 DiffHB Exit

 DiffHB Predicate−define

 SameHB Exit

 SameHB Predicate−define

 0

 20

 40

 60

 80

 100
h

1
6

h
3

2
h

6
4

h
1

6
h

3
2

h
6

4

h
1

6
h

3
2

h
6

4

h
1

6
h

3
2

h
6

4

h
1

6
h

3
2

h
6

4

h
1

6
h

3
2

h
6

4

h
1

6
h

3
2

h
6

4

h
1

6
h

3
2

h
6

4

h
1

6
h

3
2

h
6

4

h
1

6
h

3
2

h
6

4

F
ra

ct
io

n
 o

f
o

v
er

al
l

ex
ec

u
ti

o
n

 t
im

e
(i

n
 %

)

bzip2 crafty gcc gzip mcf parser twolf vortex vpr Mean−int

Figure 11: Dynamic distribution of correlated branches among hyper-

blocks as exits and predicate-defines. Bars marked h16, h32 and h64 indi-

cate correlation observed within global branch histories of length 16, 32 and

64 bits respectively.

dictability by hiding difficult-to-predict branches as predi-

cates. Improving the predictability of blocks alone does not

guarantee increased performance. For example, basic blocks

are more predictable than hyperblocks using good branch

predictors but basic blocks are small and offer insufficient

scope for aggressive compiler optimizations. Furthermore,

when executing basic blocks, the window is severely under-

utilized in a block-based processor like TRIPS, which leads

to low performance. Aggressive block formation by combin-

ing too many basic blocks to construct large hyperblocks can

convert correlated branches to predicates and create more

exit branches. Both of these effects result in poor predictabil-

ity. Hence, a balance must be struck between the number

of useful instructions in the block and block predictability.

To that end, we perform a perceptron-based branch correla-

tion analysis to analyze whether hyperblock formation masks

branch correlation and reduces the efficacy of global history-

based predictors.

5.1 Comparing exit and branch predictability

Predicting exits can be more difficult than predicting

branches because of possible loss in correlation among ex-

its. Also, predicting exits is a “1 of N” problem (where N ≤ 8

for the TRIPS prototype) while predicting branches is a “1 of

2” problem. We evaluate misprediction rates and MPKI for

-O3 (basic block, BB) and -Omax (hyperblock, HB) com-

piled codes from the Scale compiler. We describe our find-

ings for the 16KB exit predictor in proto32K for SPECint

benchmarks. SPECfp benchmarks show a similar but less

pronounced trend. The proto10K exit predictor also shows

the same trend. To predict basic blocks, we ensure that a

branch predictor with the same size and the same local/global

tournament structure is used.

We observed that the mean misprediction rate for the BB

binary is 40% lower compared to the rate for the HB binary

(4.79% vs 7.97%). Lower misprediction rates indicate that

the branch predictor is inherently better at making predic-

tions compared to the exit predictor. The MPKI values indi-

cate an opposite trend. The mean MPKI for hyperblock code

is 4.48 while it is 7.68 for basic blocks. This is because, even

though the exit predictor is predicting worse than the branch

predictor, it has to make many fewer predictions which leads

to a large reduction in the MPKI. Since MPKI is the real

indicator of the impact of branch mispredictions on perfor-

mance, we see that the hyperblock code is, in effect, better

performing than the basic block code. This justifies the use

of hyperblocks instead of basic blocks for improved perfor-

mance. If the predictability of exits can be improved to equal

or exceed the predictability of basic blocks, we can achieve

further reduction in the MPKI, leading to larger performance

improvements.

5.2 Understanding exit predictability using corre­
lation analysis

To identify the loss of correlation due to block construc-

tion mechanisms, we perform a dynamic correlation analy-

sis of each branch in the BB code and identify all the other

branches that strongly influence the direction of this branch.

A global interference-free perceptron predictor [9] is used

to understand the set of correlated branches (in near and far

histories) for each BB code branch. Our compiler tags each

branch with a unique ID in the BB phase of compilation

and carries over the tag in all the subsequent phases as well.

Thus, using these tags in the intermediate code from the HB

phase, we can determine how the BB branches are mapped

to the HB exits and predicate-defines.

During a run of the HB code, we determine for each taken

block exit, whether the branches with which it is correlated

occurred in the same hyperblock or in a different hyper-

block, and whether the correlated branches occur as exits or

predicate-defines. Figure 11 shows the weighted distribution

of placement of strongly correlated branches in hyperblocks.

We consider strongly correlated branches as those that have

75% or more correlation with a given branch. Perceptrons

with 16, 32, and 64-bit global branch histories were used

to understand how much correlation information hyperblock

codes stand to lose vis-a-vis basic blocks running on hard-

ware with various global history lengths (16, 32, 64). We

show nine of the SPECint benchmarks in this study (perlbmk

did not work with our infrastructure).

A strongly influencing branch can be in one of the follow-

ing four places: within the same hyperblock as an exit branch

(bottommost component in each bar), within the same hy-

perblock as a predicate defining instruction (second compo-

nent), within a different block as a branch (third component)

and within a different block as a predicate-define instruction

(topmost component). If the correlated branch is in the same

block as the current exit branch, the global predictor may

not be able to use the direction information of the correlated

10

branch if it did not occur in the recent history captured by the

global predictor. If the correlated branch is in the same block

or in a different block, but has been converted to a predicate-

define, we once again lose correlation information that was

present in the BB compiled code. Simon et al. have pro-

posed incorporating predicate information in global branch

history [25].

There can be significant loss of correlation in the HB code

due to the presence of correlated branches as predicates and

exit branches in the same hyperblock. Dynamic correlated

branches tend to occur within the same hyperblock as much

as 15% of the time as exits (9%) or as predicate-defines (6%).

Some of the correlation provided by exits within the same

hyperblock may be captured by a global predictor if the re-

cent history in the predictor contains multiple instances of

the current block. However, in general, a local predictor can

capture self-correlation (in this case within the same block)

more easily. About 47% of the dynamic correlated branches

are found as predicates in another hyperblock. Considering

predicate-defines within the same block and within different

blocks, more than half of the strongly correlated branches

are present as predicate-defines in the hyperblock code lead-

ing to a significant loss in correlation. Since the remaining

correlated branches comprise of branches present as exits in

different hyperblocks, they can be captured by global predic-

tors when they occur in recent history.

These results indicate that there is severe loss in correla-

tion among exits in hyperblocks. Sometimes, a branch may

be strongly correlated with several other branches and even

if some of them are predicated, it could still be predicted

accurately if the directions of the non-predicated correlated

branches are available. For future work, we plan to analyze

the influence of correlated branches by classifying branches

that are necessary for the current branch to be predicted cor-

rectly and branches that may be if-converted without loss in

accuracy. “Lost” correlation from predicated branches can

be reclaimed by using predicate values (both predicted and

resolved) in the exit predictor. The set of correlated branches

for each branch can be profiled and used in the compiler to

construct better hyperblocks.

6 Related Work

Previous studies have proposed multiple branch and block

prediction to enable high fetch bandwidth [2, 22, 31]. These

predictors were used to predict few basic blocks at a time.

Block prediction and exit prediction for block-based proces-

sors have been explored in [5, 6, 7]. In our framework, direct

target prediction methods as proposed by some of these pre-

vious studies have not been as effective as exit prediction

followed by target prediction. Exit prediction is also less

complex and more accurate than previous multiple branch

prediction proposals [18]. To our knowledge, block-atomic

call-return semantics and assumptions about branches for

distributed processors (e.g. number of exits in a block, type

of branches) have not been discussed by previous studies.

Correlation, branch behavior and limits of branch pre-

dictability have been explored in detail for global predic-

tors [1, 4]. We are not aware of a similar analysis for ex-

its and predicate-defines in hyperblocks. Prior to this work,

Loh used an interference-free perceptron to study the global

correlation amongst branches in regular programs to moti-

vate partitioned history predictors [12]. Our use of percep-

trons is to understand the global correlation loss that arises

due to correlation-agnostic hyperblock construction heuris-

tics. Thomas et al. [29] used dataflow-based value tracking

across instructions to find the set of branches in the recent

execution window affecting a branch’s direction. Using this,

they removed non-correlated branches from the global his-

tory for future predictions. Several researchers have exam-

ined the interaction of predication and branch predictability.

Simon et al. discuss the notion of misprediction migration,

where only one of a pair of correlated branches get predi-

cated, thereby leaving the second branch without valuable

correlation information in the dynamic history [25].

7 Conclusions

This paper presented the design, evaluation, and analysis

of the TRIPS prototype block predictor. The TRIPS proto-

type predictor has several features like support for branch

type prediction, block-atomic call-return semantics, specu-

lative updates for all histories, and SMT mode. Mispre-

diction rate measurements from the prototype were decon-

structed with detailed software simulations to understand the

component-wise breakdown of the predictor MPKI. Design-

space exploration experiments show that a local/TAGE exit

predictor performs 5% better than a local/global exit predic-

tor but still falls short of accuracies achieved by advanced

branch predictors like the TAGE branch predictor. For target

predictors, we observed that changing the offset widths in the

BTB and the CTB results in the elimination of a significant

number of target mispredictions. On the whole, compared

to the 10KB prototype predictor, an improved block predic-

tor containing a local/TAGE exit predictor and an improved

target predictor achieve 7.9% and 23.7% reduction in MPKI

for SPECint and SPECfp benchmarks respectively. For the

scaled-up 32KB predictor, the improvements are better: 15%

and 22.3% for SPECint and SPECfp respectively. Using

a perceptron-based correlation analysis, we highlighted the

need to make block construction heuristics aware of infor-

mation about correlated branches, so that correlation-aware

placement and predication of branches in hyperblock code

can be implemented in the compiler. This experiment also

served to reaffirm the importance of a good local exit pre-

dictor component in predicting hyperblock exits, since intra-

block correlation is captured well by the local component.

In summary, we have shown that, with moderate hard-

ware, block prediction can be made feasible and reasonably

accurate which will enable higher execution efficiency in

11

block-based architectures. We showed design changes that

achieve reasonable reduction in mispredictions. However, to

lower the MPKI further, designing better exit predictors and

employing indirect branch predictors may be necessary. New

prediction algorithms utilizing all types of available intra-

block and inter-block correlation as well as correlation-aware

block formation heuristics may make block predictors per-

form on par with branch predictors.

Acknowledgments

This research is supported by a Defense Advanced Re-

search Projects Agency contract F33615-01-C-4106 and by

NSF CISE Research Infrastructure grant EIA-0303609.

References

[1] I.-C. K. Chen, J. T. Coffey, and T. N. Mudge. Analysis of branch pre-

diction via data compression. In International Conference on Archi-

tectural Support for Programming Languages and Operating Systems,

pages 128–137, 1996.

[2] S. Dutta and M. Franklin. Control flow prediction with tree-like sub-

graphs for superscalar processors. In International Symposium on Mi-

croarchitecture, pages 258–263, Dec. 1995.

[3] M. Evers, P.-Y. Chang, and Y. N. Patt. Using hybrid predictors to im-

prove branch prediction accuracy in the presence of context switches.

In International Symposium on Computer Architecture, pages 3–11,

Jul 1996.

[4] M. Evers, S. J. Patel, R. S. Chappell, and Y. N. Patt. An analysis

of correlation and predictability: What makes two-level branch pre-

dictors work. In International Symposium on Computer Architecture,

pages 52–61, July 1998.

[5] E. Hao, P.-Y. Chang, M. Evers, and Y. N. Patt. Increasing the instruc-

tion fetch rate via block-structured instruction set architectures. In

International symposium on Microarchitecture, pages 191–200, De-

cember 1996.

[6] Q. Jacobson, S. Bennett, N. Sharma, and J. E. Smith. Control flow

speculation in multiscalar processors. In International Symposium on

High Performance Computer Architecture, pages 218–229, Feb. 1997.

[7] Q. Jacobson, E. Rotenberg, and J. E. Smith. Path-based next trace

prediction. In International Symposium on Microarchitecture, pages

14–23, Dec. 1997.

[8] D. Jiménez. Piecewise linear branch prediction. In International Sym-

posium on Computer Architecture, pages 382–393, Jun 2005.

[9] D. Jiménez and C. Lin. Dynamic branch prediction with perceptrons.

In International Symposium on High Performance Computer Archi-

tecture, pages 197–206, Jan. 2001.

[10] R. E. Kessler. The Alpha 21264 microprocessor. IEEE Micro,

19(2):24–36, 1999.

[11] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform

cache structure for wire-delay dominated on-chip caches. In Inter-

national Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 211–222, Oct 2002.

[12] G. H. Loh. A simple divide-and-conquer approach for neural class

branch prediction. In International Conference on Parallel Architec-

tures and Compilation Techniques, pages 243–254, Sep 2005.

[13] B. A. Maher, A. Smith, D. Burger, and K. S. McKinley. Head and

tail duplication for convergent hyperblock formation. In International

Symposium on Microarchitecture, pages 65–76, Dec 2006.

[14] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-

mann. Effective compiler support for predicated execution using the

hyperblock. In International Symposium on Microarchitecture, pages

45–54, 1992.

[15] S. McFarling. Combining branch predictors. Technical Report TN-36,

DEC WRL, Jun 1993.

[16] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler. A de-

sign space evaluation of grid processor architectures. In International

Symposium on Microarchitecture, pages 40–51, Dec 2001.

[17] R. Nair. Dynamic path-based branch correlation. In International

Symposium on Microarchitecture, pages 15–23, 1995.

[18] N. Ranganathan, R. Nagarajan, D. Jiménez, D. Burger, S. W. Keckler,

and C. Lin. Combining hyperblocks and exit prediction to increase

front-end bandwidth and performance. Technical Report TR-02-41,

Department of Computer Sciences, The University of Texas at Austin,

Sep 2002.

[19] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,

S. W. Keckler, and C. R. Moore. Exploiting ILP, TLP, and DLP with

the polymorphous TRIPS architecture. In International Symposium

on Computer Architecture, pages 422–433, Jun 2003.

[20] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikan, S. Drolia,

M. S. S. Govindan, P. Gratz, D. Gulati, H. Hanson, C. Kim, H. Liu,

N. Ranganathan, S. Sethmadhavan, S. Sharif, P. Shivakumar, S. W.

Keckler, and D. Burger. Distributed microarchitectural protocols in

the TRIPS prototype processor. In International Symposium on Mi-

croarchitecture, pages 480–491, Dec 2006.

[21] A. Seznec. Analysis of the O-GEmetric History Length branch pre-

dictor. In International Symposium on Computer Architecture, pages

394–405, Jun 2005.

[22] A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud. Multiple-block

ahead branch predictors. In Architectural Support for Programming

Languages and Operating Systems, pages 116–127, 1996.

[23] A. Seznec and P. Michaud. A case for (partially) tagged geometric

history length predictor. Journal of Instruction-level Parallelism, Feb

2006.

[24] T. Sherwood, E. Perelman, and B. Calder. Basic block istribution anal-

ysis to find periodic behavior and simulation points in applications.

In Internationl Symposium on Parallel Architectures and Compilation

Techniques, pages 3–14, 2001.

[25] B. Simon, B. Calder, and J. Ferrante. Incorporating predicate infor-

mation into branch predictors. In International Symposium on High

Performance Computer Architecture, pages 53–64, Feb 2003.

[26] K. Skadron, M. Martonosi, and D. Clark. Speculative updates of lo-

cal and global branch history: A quantitative analysis. Journal of

Instruction-level Parallelism, 2, Jan. 2000.

[27] A. Smith, J. Burrill, J. Gibson, B. Maher, N. Nethercote, B. Yoder,

D. Burger, and K. S. McKinley. Compiling for EDGE architectures.

In International Symposium on Code Generation and Optimization,

pages 185–195, March 2006.

[28] J. Stark, M. Evers, and Y. N. Patt. Variable length path branch pre-

diction. In Architectural Support for Programming Languages and

Operating Systems, pages 170–179, Oct 1998.

[29] R. Thomas, M. Franklin, C. Wilkerson, and J. Stark. Improving

branch prediction by dynamic dataflow-based identification of corre-

lated branches from a large global history. In International Symposium

on Computer Architecture, pages 314–323, Jun 2003.

[30] Trimaran: An infrastructure for research in instruction-level paral-

lelism. http://www.trimaran.org.

[31] T.-Y. Yeh, D. Marr, and Y. Patt. Increasing the instruction fetch rate

via multiple branch prediction and a branch address cache. In Inter-

national Conference on Supercomputing, pages 67–76, Jul 1993.

12

