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ABSTRACT

As processors increasingly become power limited, performance
improvements will be achieved by rearchitecting systems with
energy efficiency as the primary design constraint. While
some of these optimizations will be hardware based, com-
bined hardware and software techniques likely will be the
most productive. This work redesigns the register file system
of a modern throughput processor with a combined hardware
and software solution that reduces register file energy without
harming system performance. Throughput processors utilize
a large number of threads to tolerate latency, requiring a
large, energy-intensive register file to store thread context.
Our results show that a compiler controlled register file hier-
archy can reduce register file energy by up to 54 %, compared
to a hardware only caching approach that reduces register file
energy by 34%. We explore register allocation algorithms
that are specifically targeted to improve energy efficiency by
sharing temporary register file resources across concurrently
running threads and conduct a detailed limit study on the
further potential to optimize operand delivery for throughput
processors. Our efficiency gains represent a direct perfor-
mance gain for power limited systems, such as GPUs.

Categories and Subject Descriptors: C.1.4 [Computer
Systems Organization]: Processor Architectures — Parallel
Architectures

General Terms: Experimentation, Measurement

1. INTRODUCTION

Modern GPUs contain tens of thousands of threads to tol-
erate main memory and function unit latencies. Each thread
must store its register context in the processor’s register file,
leading to large register files that are energy intensive to
access. For example, the latest NVIDIA GPU contains a
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128KB register file per processor, with 16 processors per
chip. The register file of such systems consumes 15-20%
of the processor’s dynamic energy, making it an attractive
target for optimization [13].

GPU workloads present common register usage patterns.
Most values are only read a single time, often within a few
instructions of being produced. Values that are read several
times tend to be read in bursts. Our prior work exploits
these patterns with a register file cache (RFC) that reduces
the number of accesses to the register file [11]. This tech-
nique was able to reduce register file system energy by 36%.
In this work, we propose an alternate system in which the
compiler explicitly controls operand movement through the
register file hierarchy, using a operand register file (ORF)
rather than an RFC. We also propose a deeper register file
hierarchy, with an additional 1 entry per thread, last result
file (LRF), which consumes minimal energy to access.

Allocating values across the register file hierarchy to min-
imize energy requires different algorithms than traditional
register allocation. In traditional register allocation, allo-
cation decisions focus on performance, due to the different
access times of registers and memory [4, 21]. Since our base-
line system is heavily pipelined to tolerate multi-cycle reg-
ister file accesses, accessing operands from different levels of
the register file hierarchy does not impact performance. In-
stead, each level of the hierarchy requires increasing amounts
of energy to access. To reduce the storage requirements of
the upper levels of the register file hierarchy, we use a two-
level thread scheduler. The scheduler partitions threads into
active and pending threads and only active threads are al-
lowed to issue instructions and allocate entries in the ORF
and LRF. Along with performing register allocation, the
compiler moves threads between these two states.

Performing compiler allocation reduces reads to the main
register file by 25% compared to the previous proposed RFC.
Additionally, software control minimizes writes to the regis-
ter file hierarchy. Deepening the register file hierarchy fur-
ther reduces energy by replacing half of the accesses to the
ORF with accesses to the LRF. Overall, our techniques re-
duce register file energy by 54%, an improvement of 44%
compared to the hardware only RFC.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses background and prior work using an RFC.
Section 3 describes our microarchitecture. Section 4 dis-
cusses the allocation algorithms. Section 5 and 6 discuss our
methodology and results. Section 7 presents a limit study on
opportunities to further optimize operand delivery. Sections
8 and 9 discuss related work and conclusions.



MemCtrl ][ MemCtrl ][ MemCtrl | [TT I[ [T II [T II [T I I I
25 [ s [ 125 | Main Register File Main Register File
[TITCE eI #x128 bit Banks
(1R1W)
I
SM|SM|SM | SM [SM [ SM | SM | SM Warp Scheduler ﬁ ﬁ ﬁ ﬁ
Interconnect v Operand Buffering
SIMT Lanes ﬁ ﬁ @ ﬁ
SM | SM | SM [ SM | SM [ SM | SM | SM TITITTTITTTTTT T [T 11T
ALU SFU ||MEM || TEX S M T
T T T
ﬁ ﬁ ﬁ ALU F E E
[ s J[ s [ 125 ] Shared Memory Ul [M][X
MemCtrl |[ MemCtrl MemCtrl 32 KB

(a) GPU chip.

(b) Streaming multiprocessor (SM).

(c) 4-Wide SIMT cluster, repli-
cated 8 times to form an SM.

Figure 1: Baseline GPU architecture.
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Figure 2: Register Usage Patterns

2. BACKGROUND

GPUs employ massive parallelism and multithreading to

tolerate a range of latencies, including long latencies to DRAM.

To increase efficiency, GPUs aggregate multiple threads into
execution groups called warps. The threads within a warp
are allowed to take their own execution paths, but perfor-
mance is maximized when all threads in a warp take the
same execution path. In this single instruction, multiple
thread (SIMT) execution model, a single warp instruction is
fetched each cycle and an active mask tracks which threads
within a warp execute the fetched instruction. Our system,
modeled after a contemporary GPU, contains a streaming
multiprocessor (SM) that serves 32 warps of 32 threads each,
for a total of 1024 machine resident threads per SM. Fig-
ures 1(a) and 1(b)show a chip-level and SM-level diagram
of our baseline system. Each SM has access to 32KB of low
latency, software-controlled, on-chip shared memory. Many
applications first copy their working sets from global DRAM
memory to the on-chip shared memory before operating on
it, reducing the required number of DRAM accesses.

The main register file (MRF) stores context for all ma-
chine resident threads. The MRF is 128KB, allowing for
32 register entries per thread. The MRF is banked into 32,
4KB banks to provide high bandwidth. The operand buffer-
ing and distribution logic, shown in Figure 1(c), is responsi-
ble for fetching operands over several cycles and delivering
them to the correct function unit. Each entry is 128 bits
wide and stores a given register for 4 threads. The 128 bits
must be split into 4, 32-bit values and distributed to the 4
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SIMT lanes in a cluster, consuming a significant amount of
wire energy. Each of the four lanes in the cluster has its own
private ALU, but lanes share more expensive execution units
including the special function unit (SFU for transcendental
and other functions), the port to memory (MEM), and the
texture unit (TEX - commonly used in graphics). The 4-
wide SIMT lane cluster, shown in Figure 1(c) is replicated
8 times to form a 32-wide SM.

2.1 GPU Register Usage Patterns

Similar to CPU workloads [10], GPU workloads have com-
mon register usage patterns. Our prior work characterized
these patterns for a set of NVIDIA-proprietary traces [11].
In this work, we replicate the experiment on a set of openly
available applications. Figure 2(a) shows the number of
times each value, written into the register file is read; Fig-
ure 2(b) shows the lifetime, in instructions, of values that
are only read once. Up to 70% of values are only read once
and 50% of all values produced are only read once, within
three instructions of being produced. These characteristics
can be leveraged to optimize register file system energy by
keeping short lived values in small, low-energy structures,
close to the function units that produce and consume them.

2.2 Prior Work: Register File Cache

In our prior work, we proposed a register file cache and a
two-level warp scheduler to reduce register file energy [11].
Figure 3 shows that proposed architecture. In that work, we
added a small, 6-entry per thread, register file cache (RFC)
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Figure 3: Modified GPU microarchitecture from prior work [11]. (a) High level SM architecture: MRF with
32 128-bit banks, multiported RFC (3R/1W per lane). (b) Detailed SM microarchitecture: 4-lane cluster

replicated 8 times to form 32 wide machine.

to each SIMT lane. Each bank of the RFC is private to a
single SIMT lane. Values produced by the function units are
written into the RFC. Instructions first check the RFC for
their read operands and then only access the MRF for val-
ues not present in the cache. The RFC employs a FIFO re-
placement policy and writes evicted values to the MRF. To
prevent writing dead values back to the MRF, the compiler
encodes static liveness information in the program binary to
elide writebacks of dead values to the MRF.

We also introduced a two-level warp scheduler to reduce
the size of the RFC. The high thread count on a GPU hides
two sources of latency. A large number of warps are needed
to tolerate the long latencies from main memory access.
However, the short latencies from function units and shared
memory access can be tolerated with a much smaller set of
threads. The two-level scheduler partitions threads into ac-
tive threads that can issue instructions and pending threads
that are waiting on long-latency operations. Only the ac-
tive threads have RFC entries allocated. When an active
warp encounters a dependence on a long latency event, it is
swapped out and its RFC values are flushed to the MRF.
The descheduled warp is replaced with a ready warp from
the pending set. With at least 8 active warps, out of a total
of 32 machine resident warps, the SM suffers no performance
penalty from using the two-level warp scheduler. The RFC
was able to reduce the number of MRF accesses by 40-70%,
saving 36% of register file energy without a performance
penalty. In this paper, we extend our prior work in two
ways: (1) using software allocation of register resources in-
stead of hardware-controlled caching, and (2) and deepening
the register file hierarchy to further save energy.

3. MICROARCHITECTURE

This section describes our proposed microarchitecture, in-
cluding moving from a hardware managed register file cache
to a software managed operand register file and expanding
the register file hierarchy to three levels.

3.1 OREF: Operand Register File

A hardware controlled RFC that captures the written reg-
ister values of all executed instructions has two main ineffi-
ciencies. First, values that are evicted from the RFC con-
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sume energy being read from the RFC before being written
to the MRF. Second the RFC must track the register names
from the larger MRF namespace with tags and lookups in
the RFC.

We propose a software managed operand register file (ORF)
that eliminates these deficiencies. The compiler can leverage
its knowledge of register usage patterns to determine where
to allocate values across the register file hierarchy, mapping
frequently read or soon to be read values to the ORF and
values with less temporal locality directly to the MRF. Val-
ues that have temporal locality and that are persistent can
be written to both the ORF and MRF in the same instruc-
tion, eliminating write-back on eviction.

Rather than add explicit bits to indicate the level of the
register file hierarchy, the register file namespace is parti-
tioned with each segment of architectural register names
representing a different level of the hierarchy. As a result,
this approach does not increase the energy associated with
storing larger instructions or increase the instruction decode
energy. Further, because the location of each operand is de-
termined at decode time, the ORF need not employ tags or
incur tag checking energy overheads. Because the architec-
ture register namespace is typically under-utilized, using a
portion of the namespace to represent LRF and ORF en-
tries does not diminish a program’s ability to fully use its
MRF resources. Since the existing register file namespace
is used, a binary can correctly execute on chips with dif-
ferent hierarchy organizations. However, as modern GPUs
typically employ just-in-time compilation to perform chip-
specific code-generation, the JIT compiler can perform op-
timizations for design specific register hierarchies.

3.2 LRF: Last Result File

A three-level register file hierarchy is more energy-efficient
than a two-level hierarchy. Our results in Section 6.4 show
that a hardware caching scheme benefits from a three-level
register file hierarchy, but a software controlled hierarchy
sees greater benefits, because the compiler can control data
movement in the register file hierarchy to minimizing energy.
Figure 4 shows our proposed three-level hierarchy for a 4-
wide SIMT cluster. Our hierarchy consists of a small upper-
level, last result file (LRF), a medium sized ORF, and a



[ I I
MRF
4x128-bit Banks (1R1W)

[ I I
g g %
it

| Operand Buffering

G Y

| Operand Routing

IREIREIRE
(e Sanks
L

I
] I
s
ALU LFJ
1l

—
—

Em<Z
> m —

L P

. LRF 4x32-bit

Figure 4: Microarchitecture of three-level register
file organization for 4 SIMT lanes, the LRF is only
accessible from the ALU units.

large lower-level MRF. Our value usage analysis found many
values whose only consumer was the next instruction. By
introducing an LRF, with only a single entry per thread,
we capture these results in a very small structure with low
access energy.

Each of the ORF and LRF entries is 32-bits wide and each
bank has 3 read ports and 1 write port. Three read ports
enables single cycle operand reads, eliminating the costly
operand distribution and buffering required for MRF ac-
cesses. Our workloads use parallel thread execution (PTX)
assembly code, which supports 64-bit and 128-bit values [16].
Values wider than 32-bits are stored across multiple 32-bit
registers. In the workloads we examined, the vast majority
of instructions (99.5%) only operate on 32-bit values. When
a larger width value is encountered, the compiler allocates
multiple entries to store the value in the ORF. The compiler
encodes the level of the register file for each register operand
in the instruction. Because the percent of instructions op-
erating on wider data values in our workloads is small, this
approach incurs negligible overhead from instructions with
wide register operands.

The private ALUs operate with full warp wide through-
put. The SFU, MEM, and TEX units operate at a reduced
throughput and we collectively refer to them as the shared
datapath. Our register profiling shows that only 7% of all
values produced are consumed by the shared datapath. Fur-
ther, 70% of the values consumed by the shared datapath
are produced by the private datapath, reducing the opportu-
nity to store values produced and consumed by the shared
datapath near the shared datapath. Due to these access
patterns, the most energy-efficient configuration is for the
shared datapath to be able to access values from the ORF
but not from the LRF. By restricting the LRF to only be
accessible from the private datapath, we minimize the ALU
to LRF wire path and the associated wire energy.

We also explore an alternative LRF design that splits the
LRF into separate banks for each operand slot. For example,
a fused multiply-add (D = A * B + C) reads values from
three register sources referred to as operands A, B, and C. In
a split LRF design, rather than a single LRF bank per SIMT
lane, each lane has a separate LRF bank for each of the
three operand slots. Each of the three LRF banks per lane
contains a single 32-bit entry. The compiler encodes which
LRF bank a value should be written to and read from. This
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design increases the effective size of the LRF, while keeping
the access energy minimal. Our results show that short-
lived values stored in the LRF are not commonly consumed
across different operand slots. When a value is consumed
across separate operand slots, the compiler allocates it to
the ORF, rather than to the split LRF. Using a split LRF
design can increase wiring energy, a tradeoff we evaluate in
Section 6.4.

4. ALLOCATION ALGORITHM

The compiler minimizes register file energy by both reduc-
ing the number of accesses to the MRF and by keeping values
as close to the function units that operate on them as pos-
sible. Allocating values to the various levels of our register
file hierarchy is fundamentally different from traditional reg-
ister allocation. First, unlike traditional register allocation
where a value’s allocation location dictates access latency,
in our hierarchy a value’s allocation location dictates the
access energy. The processor experiences no performance
penalty for accessing values from the MRF versus the LRF
or ORF. Second, because the LRF and ORF are temporally
shared across threads, values are not persistent and must
be stored in the MRF when warps are descheduled. The
compiler controls when warps are descheduled, which inval-
idates the LRF and ORF, forcing scheduling decisions to be
considered when performing allocation. Rather than simply
consider a value’s lifetime, in order to maximize energy sav-
ings, the compiler must consider the number of times a value
is read and the location of these reads in relation to schedul-
ing events. Finally, the allocation algorithms must consider
the small size of the LRF and to a lesser extent the ORF,
compared with traditional register allocation that has access
to a larger number of register file entries. The compiler al-
gorithms to share the register file hierarchy across threads
in the most energy-efficient manner are a key contribution
of this work.

4.1 Extensions to Two-Level Warp Scheduler

The two-level warp scheduler used in our prior work with
a RFC deschedules a warp when it encounters a dependence
on a long latency operation. These scheduling events can
vary across executions due to control flow decisions. When
using the two-level scheduler with our SW controlled ORF,
the compiler must dictate when a warp is descheduled to
prevent control flow from causing uncertainties in when a
warp will be descheduled. The compiler performs ORF al-
location for an execution unit called a strand. We define a
strand as a sequence of instructions in which all dependences
on long latency instructions are from operations issued in a
previous strand. This definition differs somewhat from us-
age in prior work by Crago et al., which splits a thread into
separate memory accessing and memory consuming instruc-
tion streams termed strands [7]. Similar to this prior work,
we use the concept of a strand to indicate a stream of in-
structions that terminates on a long-latency event.

We add an extra bit to each instruction indicating whether
or not the instruction ends a strand. We evaluate the en-
ergy overhead of adding this extra bit in Section 6.5. To
simplify ORF allocation, we add the restriction that a back-
ward branch ends a strand and that a new strand must be-
gin for basic blocks (BBs) that are targeted by a backwards
branch. All values communicated between strands must go
through the MRF. If a strand ends due to a dependence on
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savings = NumberOfReadsInStrand *
(MRF_ReadEnergy - ORF_ReadEnergy) -
ORF_WriteEnergy;

if LiveOutOfStrand == false then
| savings += MRF_WriteEnergy;
end

return savings;

Figure 6: Function to calculate energy savings of
allocating a register instance to the ORF.

a long-latency operation, the warp will be descheduled by
the two-level warp scheduler until the long latency opera-
tion completes. If a strand ends due to a backwards branch,
the warp need not be descheduled. However, all inter-strand
communication must always occur through the MRF.
Figure 5(a) shows the strand boundaries for a simple ker-
nel. Strand 1 terminates due to a dependence on a long-
latency operation, which will cause the warp to be desched-
uled. The other strand endpoints are caused due to the pres-
ence of a backwards branch. At these strand endpoints the
warp need not be descheduled, but values can not be com-
municated through the LRF or ORF past strand boundaries.
Section 7 explores relaxing the requirement that strands may
not contain backward branches. Figure 5(b) shows an exam-
ple where a long latency event may or may not be executed
due to control flow. Uncertainty in the location of long-
latency events complicates allocation; if BB3 executes, the
warp will be descheduled to resolve all long-latency events.
In BB4, the compiler must know which long latency events
are pending to determine when the warp will be desched-
uled. We resolve the uncertainty by inserting an extra strand
endpoint at the start of BB4, preventing values from being
communicated through the ORF. This situation is rare such
that these extra strand endpoints have negligible effect.

4.2 Baseline Algorithm

We first discuss a simplified version of our allocation algo-
rithm that assumes a two-level register file hierarchy (ORF
and MRF) and that values in the ORF cannot cross basic
block boundaries. The input to our allocation algorithm is
PTX assembly code which has been scheduled and register
allocated [16]. PTX code is in pseudo-SSA form, which lacks
phi-nodes. First, we determine the strand boundaries, across
which all communication must be through the MRF. Next,
we calculate the energy savings of allocating each value to
the ORF using the function in Figure 6. We calculate the
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foreach strand € kernel do
foreach registerInstance € strand do

range = registerInstance.LastReadInStrand -
registerInstance.CreationInstruction;

savings = calcEnergySavings(registerInstance) /
range;

if savings > 0 then

| priority_queue.insert(registerInstance);

end

end

while priority_queue.size() > 0 do
registerInstance = priority_queue.top();

foreach orfEntry € ORF do
begin = registerInstance.Creationlnstruction;
end = registerInstance.LastReadInStrand;

if orfEntry.available(begin, end) then
orfEntry.allocate(registerInstance);
exit inner for loop;
end
end
end
end

Figure 7: Algorithm for performing ORF allocation.

number of reads in the strand for each value and if each
value is live-out of the strand. Values live-out of the strand
must be written to the MRF, since the ORF is invalidated
across strand boundaries. These values may also be written
to the ORF if the energy savings from the reads outweighs
the energy overhead of writing to the ORF. Accounting for
the number of reads allows us to optimize for values that
are read several times, which save the most energy when
allocated to the ORF.

Figure 7 shows our baseline greedy algorithm. For each
strand, all values produced in that strand are sorted in de-
creasing order based on a weighted measure of the energy
saved by allocating them to the ORF, divided by the num-
ber of static instruction issue slots they would occupy the
ORF. Scaling the energy savings by an approximation of
the length of time the ORF will be occupied prevents long
lived values from occupying an entry when it may be more
profitable to allocate a series of short lived values. Our al-
gorithm only allocates values to the ORF that save energy,
using the parameters given in Section 5.2. We attempt to
allocate each value to the ORF from the time it was cre-
ated to the last read in the strand. If a value is not live-out
of the strand and we are able to allocate it to the ORF,
the value never accesses the MRF. The compiler encodes,
in each instruction, whether the value produced should be
written to the ORF, MRF, or both and if the read operands
should come from the ORF or the MRF. Next, we extend
our baseline algorithm to capture additional register usage
patterns commonly found in our benchmarks.

4.3 Partial Range Allocation

Figure 8(a) shows an example where R1 is produced, read
several times, and then not read again until much later. This
value will likely not be allocated to the ORF, under our base-
line algorithm because it has a long lifetime and we optimize
for energy savings divided by a value’s lifetime. To opti-
mize for this pattern, we augmented our baseline algorithm
to perform partial range allocation, allowing a subset of a
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savings = (NumberOfReadsInStrand - 1) *
(MRF_ReadEnergy - ORF_ReadEnergy) -
ORF_WriteEnergy;

return savings;

Figure 9: Function to calculate energy savings of
allocating a read operand to the ORF.

value’s reads to be handled by the ORF with the remaining
reads coming from the MRF. Because this optimization re-
quires a write to both the ORF and the MRF, the savings
from reading some of the values from the ORF must out-
weigh the energy overhead of writing the value to the ORF.
The partial range always begins when the value is produced
and ends with a read of that value. We extend our baseline
algorithm by trying to allocate a partial range when we fail
to allocate a value to the ORF. We iteratively shorten the
value’s range by reassigning the last read in the strand to
target the MRF rather than the ORF. The ORF allocation
range is repeatedly shortened until we either find a partial
range that can be allocated to the ORF or until it does not
become energetically profitable to allocate the partial range
to the ORF. This algorithm could perform sub-optimally
if we allocate partial ranges after full ranges, as the ORF
may already have been allocated to a value that saves less
energy. However, our greedy algorithm performs well with
partial range allocation converting a significant number of
MREF reads into ORF reads.

4.4 Read Operand Allocation

Figure 8(b) shows an example of a value, RO, that is read
several times in a strand but not written. Our baseline algo-
rithm would require all reads of RO to come from the MRF,
since we only allocate values that are produced by the func-
tion units into the ORF. To optimize these accesses we
extend our baseline algorithm to implement read operand
allocation. Figure 9 shows the calculation that determines
the energy savings of allocating a read operand to the ORF.
The energy savings of a read operand differs from the en-
ergy savings of a write operand, since the first read must
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inserting them into the same priority queue used for ORF
allocation of write operands shown in Figure 7. We prior-
itize read operands the same as write operands using the
potential energy savings divided by the number of instruc-
tion slots a value would occupy the ORF. We also allow
partial ranges of read operands to be allocated.

4.5 Handling Forward Branches

We found it somewhat common for a value to be written
on both sides of a hammock and consumed at the merge
point. We extend our baseline algorithm to allow values
to remain in the ORF across forward branches. Figure 10
illustrates three different patterns that occur with forward
branches, assuming that R1 has been written to the MRF
by a previous strand. In Figure 10(a), R1 is written in BB7
and consumed in BB9. However, because BB8 does not write
R1 and BB9 must statically encode from where R1 should be
read, R1 cannot be allocated to the ORF. In Figure 10(b),
there is an additional read of R1 in BB7. Depending on the
relative energy costs, it may be profitable to write R1 to both
the ORF and MRF in BB7. The read in BB7 could then read
R1 from the ORF, saving read energy. However, the read
in BB9 must still read R1 from the MRF. In Figure 10(c),
R1 is written in both BB7 and BB8. As long as both writes
target the same ORF entry, the read in BB9 can be serviced
by the ORF. Assuming R1 is dead after BB9, all accesses
to R1 in Figure 10(c) are to the ORF, eliminating all MRF
accesses. The compiler handles these three cases by ensuring
that when there is uncertainty in a value’s location due to
control flow the value will always be available from the MRF.

4.6 Extending to Three-Level Hierarchy

We expand our baseline algorithm shown in Figure 7 to
consider splitting values between the LRF, ORF, and MRF.
When performing allocation, we first try to allocate as many
values to the LRF as possible. Again, we prioritize values
based on the energy savings of allocating them to the LRF
divided by the number of instruction slots they occupy the
LRF. Almost all values allocated to the LRF have a life-
time of 1 or 2 instructions and are only read once. Next,
we allocate as many of the remaining values as possible to
the ORF. Values that cannot be allocated to the ORF are
shortened using our previously discussed partial range allo-
cation algorithm; we then attempt to allocate these short-



Suite Benchmarks

CUDA SDK 3.2

BicubicTexture, BinomialOptions, BoxFilter, ConvolutionSeparable, ConvolutionTexture, Dct8x8, DwtHaarlD, Dxtc,
EigenValues, FastWalshTransform, Histogram, ImageDenoising, Mandelbrot, MatrixMul, MergeSort, MonteCarlo, Nbody,
RecursiveGaussian, Reduction, ScalarProd, SobelFilter, SobolQRNG, SortingNetworks, VectorAdd, VolumeRender

Parboil cp, mri-fhd, mri-q, rpes, sad

Rodinia backprop, hotspot, hwt, lu, needle, srad

Table 1: Benchmarks.

Table 2: Simulation parameters.

ened ranges to the ORF. We explored allocating values to
both the LRF and ORF, but found it rare to be energetically
profitable. Therefore, in addition to the MRF, we allow a
value to be written to either the LRF or the ORF but not
both, simplifying the design. To minimize wire distance on
the commonly traversed ALU to LRF path, we restrict the
LRF to be accessed by only the private datapath. Therefore,
the compiler must ensure that values accessed by the shared
datapath (SFU, MEM, and TEX units) are only allocated
into the ORF. As discussed in Section 3.2, we explore using
a split LRF design, where each operand slot has a private
LRF bank. With this design, the compiler encodes which
LRF bank values should be written to and read from. Val-
ues that are accessed by more than one operand slot must
be allocated to the ORF.

S. METHODOLOGY

5.1 Simulation

We use Ocelot, an open source, dynamic compilation frame-
work for PTX to run our static register allocation pass on
each kernel [9]. Ocelot provides useful compiler information
such as dataflow analysis, control flow analysis, and dom-
inance analysis. We augment Ocelot’s internal representa-
tion of PTX to annotate each register access with the level
of the hierarchy that the value should be read from or writ-
ten to. We use benchmarks from the CUDA SDK [15], Ro-
dinia [5], and Parboil [17], shown in Table 1. These bench-
marks are indicative of compute applications designed for
modern GPUs. The CUDA SDK is released by NVIDIA
and consist of a large number of kernels and applications de-
signed to show developers the capabilities of modern GPUs.
The Rodinia suite is designed for evaluating heterogeneous
systems and is targeted to GPUs using CUDA or multicore
CPUs using OpenMP. The Parboil suite is design to exploit
the massive parallelism available on GPUs and these appli-
cations generally have the longest execution times of all of
our benchmarks.

We evaluate the energy savings of our register file hier-
archies and the performance effects of the two-level warp
scheduler for our benchmarks. To evaluate the energy sav-
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Table 3: ORF energy.

Parameter Value Entries Read Write Parameter I Value |
Execution Model In-order Energy | Energy MRF Read/Write Energy 8/ 11 pJ
Execution Width 32 wide SIMT (»J) (pJ) LRF Read/Write Energy || 0.7 / 2 pJ
Register File Capacity 128 KB 1 0.7 2.0 MRF Bank Area 38000 p?
Register Bank Capacity 4 KB 2 1.2 3.8 MREF Distance to Private 1 mm
Shared Memory Capacity 32 KB 3 1.2 4.4 ORF Distance to Private 0.2 mm
Shared Memory Bandwidth 32 bytes/cycle 4 1.9 6.1 LRF Distance to Private 0.05 mm
SM DRAM Bandwidth 32 bytes/cycle 5 2.0 6.0 MRF Distance to Shared 1 mm
ALU Latency 8 cycles 6 2.0 6.7 ORF Distance to Shared 0.4 mm
Special Function Latency 20 cycles 7 2.4 7.7 Wire capacitance 300 fF/mm
Shared Memory Latency 20 cycles 8 3.4 10.9 Voltage 0.9 Volts
Texture Instruction Latency 400 cycles Frequency 1 GHz
DRAM Latency 400 cycles Wire Energy (32 bits) 1.9 pJ/mm

Table 4: Modeling parameters.

ings we run each benchmark to completion, using the default
arguments and input sets provided with Ocelot. We use a
custom Ocelot trace analysis tool to record the number of
accesses that occur to each level of the register file over the
entire course of the program’s execution. We exclude two
benchmarks that take longer than 5 days to execute.

During the full application execution, we create a trace
that specifies the execution frequency of each dynamic con-
trol flow path in the application. We built a custom trace
based simulator that uses these traces to verify the perfor-
mance effects of two-level scheduling, using the simulation
parameters given in Table 2. Our simulator uses the execu-
tion frequencies to reconstruct likely warp interleavings that
are encountered over the course of the full application. We
execute 100 million thread instructions per benchmark on
our trace based simulator to verify the performance effects
of two-level scheduling. Since this work focuses on the reg-
ister file architecture of an SM, we limit the simulation to a
single SM rather than simulate an entire GPU.

5.2 Energy Model

We model the ORF and LRF as 3-read port, 1-write port
flip-flop arrays. We synthesize the designs using Synopsys
Design Compiler with clock-gating and power optimizations
enabled with a commercial 40 nm high-performance stan-
dard cell library. Our synthesis targets 1 GHz at 0.9V.
Table 3 shows the energy required to access 128-bits from
different sized ORFs, sized to support 8 active warps. We
model the MRF as 128-bit wide SRAM banks with 1 read
and 1 write port. We generate the SRAM banks using a
commercial memory compiler and characterize their energy
requirements at 1GHz. We use the methodology of [14] to
model wire energy with the parameters shown in Table 4.
Each ORF bank is private to a SIMT lane, greatly reducing
the wiring energy. The LRF is only accessed by the ALUs in
the private datapath, further reducing wiring energy. Com-
pared to the MRF, the wire energy for the private datapath
is reduced by a factor of 5 for accesses to the ORF and a
factor of 20 for accesses to the LRF.
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6. RESULTS

We present our initial results in a technology independent
metric by showing the breakdown of reads and writes across
the register file hierarchy. In Section 6.4, we combine our ac-
cess count measurements and energy estimates to calculate
the energy savings of our various schemes. First, we con-
firm prior work on two-level warp scheduling by finding no
performance penalty when using a two-level warp scheduler
with 8 active warps. All of our remaining results assume a
two-level warp scheduler using 8 active warps, which only
allocates LRF and ORF entries for active warps.

6.1 SW versus HW Control

Next, we compare our prior work using a HW controlled
RFC with our most basic SW controlled ORF. Figure 11
shows the breakdown of reads and writes across the hierar-
chies, normalized to the baseline system with a single level
register file. Compared with the software controlled ORF,
the hardware controlled RFC performs 20% more reads,
which are needed for writebacks to the MRF from the RFC.
The compiler controlled scheme eliminates the writebacks
by allocating each value to the levels of the hierarchy that
it will be read from when it is produced. For probable ORF
sizes of 2 to 5 entries per thread, the SW controlled scheme
slightly reduces the number of reads from the MRF by mak-
ing better use of the ORF. On average, each instruction
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12: Reads and writes to three-level register file hierarchy, normalized to single-level register file.

reads 1.6 and writes 0.8 register operands. Therefore, re-
ductions in read traffic result in larger overall energy sav-
ings. The SW scheme reduces the number of writes to the
ORF by roughly 20% compared to the RFC. Under the
caching model, all instructions, except long latency instruc-
tions, write their results to the RFC. However, some of these
values will not be read out of the RFC. The compiler is able
to allocate only the results that will actually be read from
the ORF, minimizing unnecessary writes. Partial range al-
location and read operand allocation reduce the number of
MRF reads by 20% at the cost of increasing ORF writes by
8%. Section 6.4 shows that this tradeoff saves energy.

6.2 Deepening the Register File Hierarchy

Adding a small (1 entry / thread) LRF to the register file
hierarchy has the potential for significant energy savings.
We present results for both a software managed and hard-
ware managed three-level hierarchy. When using a hardware
managed hierarchy, values produced by the execution units
are first written into the LRF. When a value is evicted from
the LRF, it is written back to the RFC; likewise when a
value is evicted from the RFC, it is written back to the MRF.
When a thread is descheduled, values in the LRF and RFC
are written back to the MRF. We use static liveness infor-
mation to inhibit the writeback of dead values. Because the
shared function units cannot access the HW LRF, the com-
piler ensures that values accessed by the shared units will
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be available in the RFC or MRF. When using a software
managed hierarchy, the compiler controls all data movement
across the three levels.

Figure 12 shows the breakdown of reads and writes across
the three levels of the software and hardware managed hi-
erarchy. The software managed design minimizes the num-
ber of overhead reads by eliminating writebacks. The soft-
ware managed design also reduces the number of MRF reads
by making better use of the LRF and ORF. Despite its
small size, the LRF still captures 30% of all reads, resulting
in substantial energy savings. Finally, the software man-
aged scheme reduces the number of overhead writes from
40% to less than 10% by making better allocation decisions.
Because of control flow uncertainties, the number of MRF
writes increases slightly when using a software managed de-
sign, which presents a minimal energy overhead.

6.3 Split versus Unified LRF

Finally, we consider the effect of a design with a separate
LRF bank for each operand slot. For example, a floating-
point multiply-add (FMA) operation of D = A * B + C,
reads operands from slot A, B, and C. Having a separate
bank for each LRF operand slot allows an instruction, in the
best case, to read all of its operands from the LRF. With
a unified LRF, only a single operand can be read from the
LRF and the others must be read from the ORF. A split
LRF increases reads to the LRF by nearly 20%, leading to
decreases in both ORF and MRF reads. Using a split LRF
design has the potential to increase the wiring distance from
the ALUs to the LRF, a tradeoff we evaluate in Section 6.4.

6.4 Energy Evaluation

We combine the access counts from the various configura-
tions with our energy model to calculate the energy savings
of the different options. Figure 13 shows the register bank
access and wire energy normalized to a single level regis-
ter file hierarchy. In our previous paper that proposed the
RFC the register file energy savings were 36%. Our results
for the HW controlled RFC, shown by the HW bar, show a
34% savings in register file energy, validating the prior re-
sult with a slight variance due to the different benchmarks.
By relying on software allocation and optimizations to our
baseline algorithm, we are able to improve this savings to
45%, as shown by the 3-entry per thread SW bar. The
optimizations of partial range allocation and read operand
allocation provide a 3-4% improvement in energy efficiency
over the baseline allocation algorithm. The software bars in
Figure 13 include these optimizations. Compared to the HW
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RFC design, our optimized software system provides a 22%
improvement in energy efficiency with no performance loss
and a simplified microarchitecture that elides RFC tag stor-
age and comparison. Comparing the most energy-efficient
two-level designs, both the HW and SW schemes maximize
the energy savings with 3 RFC / ORF entries per thread.
The increase in effectiveness from having a larger RFC /
ORF is not justified by the increased per-access energy.

Adding a LRF reduces energy for both the hardware and
software controlled schemes, although the benefit is larger
when using software control, shown by the HW LRF and
SW LRF Split bars in Figure 13. The most energy-efficient
three-level SW design uses 3 ORF entries per thread, saving
54% of register file energy, while the most energy-efficient
three-level HW design uses 6 RFC entries per thread, sav-
ing 41% of register file energy. The compiler is better able
to utilize each entry and the smaller structure reduces the
per-access energy. Splitting the LRF provides a 4% energy
reduction compared with a unified LRF.

Figure 14 shows the energy breakdown between wire and
access energy among the different levels of the register file hi-
erarchy for our most energy-efficient configuration. Roughly
two thirds of the energy is spent on accesses to the MRF,
equally split between access and wire energy. The bulk of the
remaining energy is spent accessing values from the ORF.
Even though the LRF captures 1/3 of operand reads, ac-
cesses to the LRF consume a very small portion of the over-
all energy, due to its small size, motivating future work to
focus on reducing MRF accesses. While a split LRF has
the potential to increase LRF wire distance and energy, Fig-
ure 14 shows that the LRF wire energy comprises less than
1% of the baseline register file energy.
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Figure 15 shows the per-benchmark normalized register
file energy for our most energy-efficient design, the SW LRF
Split configuration with 3 ORF entries per thread. Reduc-
tion and ScalarProd show the smallest efficiency gains of
25% and 30% respectively. These benchmarks see a small
gain because they consist of a tight loop with global loads, a
single FMA, and independent adds to update address vari-
ables and the loop counter. Few values are passed in reg-
isters between these instructions and the threads must be
swapped in and out of the active set frequently due to the
global loads, causing frequent invalidation of the LRF and
ORF. The best way to optimize these benchmarks is to
unroll the inner loop and issue all of the long latency in-
structions at the beginning of the loop. This strategy would
allow the rest of the loop to remain resident and make use
of the LRF and ORF.

Our most energy-efficient three-level configuration saves
54% of register file energy, a 44% improvement over the
prior HW register file cache and a 27% improvement over
a purely HW controlled three-level design. Using our pre-
viously proposed high-level GPU power model [11], our re-
duction in register file energy represents a 8.3% reduction in
SM dynamic power, which is a savings of 5.8% of chip-wide
dynamic power. Our system suffers no performance penalty
and simplifies the microarchitecture of our prior work by
eliminating register file cache tags.

6.5 Instruction Encoding Overhead

Our proposed system makes two changes to instruction en-
codings: specifying the level of the hierarchy each operand
is located and an additional bit to each instruction to in-
dicate the end of a strand. While the cost of storing and
encoding this information could potentially negate energy
savings from the software controlled register file hierarchy,
our analysis indicates that the overheads are quite low.

Prior work has found that on a GPU instruction fetch,
decode, and schedule represents roughly 15% of chip-wide
dynamic power. This percentage reflects the natural instruc-
tion fetch efficiency of GPUs in which a single instruction
fetch can feed all of the instructions in a warp (up to 32 in
our model). If we conservatively assume that fetch, decode,
and schedule each consume roughly equal energy, fetch and
decode are responsible for 10% of chip-wide dynamic power,
which increases as bits are added to each instruction. To
evaluate the effect of extra bits we make the simplifying as-
sumption that additional bits result in linear increases in
fetch and decode energy. On current generation NVIDIA
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GPUs there is unused space in the register file namespace
that we use to encode hierarchy information. Therefore our
overhead is only a single bit per instruction to indicate the
end of a strand, resulting in a 3% increase in fetch and de-
code energy, a chip-wide overhead of 0.3%, and an overall
increase of energy efficiency of 5.5%.

If we assume pessimistically that extra bits are required
for each operand, an instruction may require as many as
5 additional bits: 4 to increase the register namespace for
each of 4 operands and 1 to indicate the end of a strand.
This assumption yields an increase in chip-wide fetch and
decode energy of 15%, resulting in a 1.5% chip-wide energy
overhead. This high-level model makes several simplifying
assumptions and is intended to show that our proposed sys-
tem would still save energy even with worst-case encoding
overheads. A real-world system must carefully tradeoff the
increase in fetch and decode energy versus the utility of this
additional compiler provided data when designing the ISA.
Even with these worst case assumptions, our proposed sys-
tem reduces chip-wide dynamic power by at least 4.3%.

7. REGISTER HIERARCHY LIMIT STUDY

In this section, we consider several possible extensions to
our work and their potential effects on energy efficiency. The
most energy-efficient of our designs, with a three-level hier-
archy, reduces register file energy by 54%. An ideal system
where every access is to the LRF would reduce register file
energy by 87%. Of course this system is not practical as the
LRF is too small to hold the working set of registers and
the LRF is not preserved across strand boundaries. If each
operand only accessed a 5-entry per thread ORF, register
file energy would be reduced by 61%. In a realistic sys-
tem, each level of the hierarchy must be accessed, with the
MRF holding values needed across strand boundaries and
the ORF and LRF holding temporary values. Our current
system performs well and is competitive with an idealized
system, in which every access is to the ORF.

Variable Allocation of ORF Resources: An alterna-
tive design would allow each strand to allocate a different
number of ORF entries depending on its register usage pat-
terns. We evaluate the potential of such a system by encod-
ing in a strand header the energy savings of allocating be-
tween 1 and 8 ORF entries to each strand. When a strand is
scheduled, the scheduler dynamically assigns ORF resources
based on the strand header and the other warps running in
the system. If a thread receives fewer ORF entries than it



expected, those values are serviced from the MRF as there
is always a MRF entry reserved for each ORF value. We
implement an oracle policy that examines the register usage
patterns of future threads when deciding how many ORF
entries to allocate. Using the oracle scheduler, this variable
allocation policy is able to reduce register file energy by 6%.
This policy also presents the opportunity to run with fewer
active warps when sufficient ILP exists and to allocate each
warp more ORF entries. If we optimistically assume that
the number of warps can be lowered from 8 to an average
of 6 across the program’s execution, an additional 6% of
register file energy can be saved.

While these idealized gains are enticing, there are several
disadvantages to this dynamic policy. This policy requires
the SM to track the dynamic mappings of active warps to
ORF entries. Further, depending on the allocation policy,
fragmentation within the ORF could occur. This approach
requires the compiler to encode additional information in
the program binary which takes energy to fetch and decode.
We found that knowing the register needs of future threads
was key in making allocation decisions. A realistic sched-
uler would perform worse than our oracle scheduler, unless
restrictions were placed on thread scheduling to allow the
scheduler to know which threads would be scheduled in the
future. Finally, running with fewer active threads has the
potential to harm performance.

Allocating past backward branches: We do not allow
strands to contain backwards branches. Allocating values to
the ORF for the life of a loop requires inserting explicit move
instructions after the loop exits to move live values back to
the MRF. Since we optimize for short-lived values and the
ORF entries are already highly utilized resources, we expect
that few values could be allocated to the ORF for the life of
a loop. We examined the results of a variant of the hardware
caching scheme and find the energy difference when allowing
values to be resident in the cache past backward branches is
only 5% over a system that flushes the RFC upon encoun-
tering a backward branch. We could expect to see similar or
slightly better results using a SW controlled ORF, but the
energy overhead of the explicit move instructions must be
subtracted from the register file energy savings.

Instruction Scheduling: Reordering instructions presents

two opportunities to reduce register file energy. The first is
to reorder instructions within a block to shorten the dis-
tance between producers and consumers to increase ORF
effectiveness. To evaluate the potential of this approach, we
run our benchmarks with a 8-entry ORF but assume it has
the same energy cost to access as a 3-entry ORF when mak-
ing allocation decisions and calculating energy usage. This
idealized configuration consumes 9% less energy than the re-
alistic 3-entry ORF system. While this type of rescheduling
has potential to increase the effective size of the ORF, it is
unlikely to increase it by nearly a factor of 3, as in our ideal-
ized experiment. A more realistic experiment is to increase
the effective size of the ORF from 3 entries to 5 entries,
which reduces register file energy by 6%.

The second potential for instruction scheduling is to move
instructions across strand boundaries. Since inter-strand
communication must go through the MRF, moving instruc-
tions across strand boundaries increases the number of val-
ues that are only accessed from the ORF. We calculate
an idealized upper bound for moving instruction relative
to long latency events by never flushing the LRF or ORF
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when a warp is descheduled. In this idealized experiment,
all machine resident warps, not just active warps, have LRF
and ORF entries allocated, but we do not account for the
higher access energy that these larger structures would re-
quire. This idealized system consumes 8% less energy that
the realistic system. Rescheduling would only be able to pre-
vent a small number of values from being flushed, compared
to our idealized experiment. Both of these scheduling tech-
niques generally move consumers closer to producers, which
has the potential to reduce performance. Given that the
idealized energy gains are small, the realistic energy gains
would be unlikely to justify any performance loss.

8. RELATED WORK

Prior work has explored improving register file’s efficiency
by reducing the number of entries [2, 27], reducing the num-
ber of ports [18], and reducing the number of accesses [20,
25]. These approaches have been explored for traditional
CPUs, VLIW processors [28, 29, 30], and streaming pro-
cessors [8, 22]. Several systems, as early as the CRAY-1,
have proposed a compiler controlled register file hierarchy to
improve performance, energy, or area [6, 23]. Swensen and
Patt show that a two-level register file hierarchy can provide
nearly all of the performance benefit of a large register file on
scientific codes [24]. Recent work, proposes using a hybrid
SRAM / embedded DRAM (eDRAM) register file to reduce
the register file access energy of a GPU [27]. They pro-
pose changes to the thread scheduler to minimize the effect
of fetching values from eDRAM. As their proposed hybrid
SRAM / eDRAM design is not yet a mature technology, the
energy gains in a production system are unclear. Using a
variable number of registers, depending on a thread’s usage,
was proposed by [26].

ELM uses a software controlled two-level register file to re-
duce operand energy [3]. Unlike our system, the upper level
of the register file is not time-multiplexed across threads,
allowing allocations to be persistent for extended periods
of time. They use a similar algorithm for making allo-
cation decisions that considers the number of reads and a
value’s lifetime, but do not directly use the energy savings
when making allocation decisions. Follow on work considers
the interaction between register allocation and instruction
scheduling for ELM [19].

AMD GPUs allocate short lived values to clause tempo-
rary registers [1]. These registers are managed by software
and are not persistent across forward branches, unlike our
ORF and LRF. The result of the last instruction can be
accessed by a specially named register, similar to our LRF.
Unlike our LRF, writes to this register cannot be inhibited
so values can only be passed to the next instruction. Ay-
ala describes a combined hardware / software technique to
detect portions of a program where a small number of reg-
ister file entries are needed and the unneeded entries are
disabled in hardware to save access energy [2]. Gebotys per-
forms low-energy register and memory allocation by solving
a minimum cost network flow [12]. This approach requires
a complicated algorithm for allocation and we find little to
no opportunity to improve the allocations resulting from our
greedy algorithm. Section 2.2 provides an overview of our
previous work using a hardware controlled register file cache
and a two-level thread scheduler.



9. CONCLUSION

Energy efficiency must be optimized for all future com-
puter systems, ranging from low-powered embedded devices
to high-powered server-class processors. Many of the tra-
ditional structures on a chip present opportunities to be
rearchitected to improve energy efficiency. In this work, we
redesign the register file system of a modern GPU to utilize
a three-level hierarchy where all data movement is orches-
trated at compile-time. We explore compiler algorithms to
share temporary register file resources across concurrently
executing threads. This combined hardware and software
approach reduces register file system power by 54%, with-
out harming performance, and represents a 44% improve-
ment over the savings achieved by a previously proposed
hardware controlled RFC.
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