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Abstract

Modern throughput processors such as GPUs employ thousands
of threads to drive high-bandwidth, long-latency memory systems.
These threads require substantial on-chip storage for registers, cache,
and scratchpad memory. Existing designs hard-partition this local
storage, fixing the capacities of these structures at design time. We
evaluate modern GPU workloads and find that they have widely
varying capacity needs across these different functions. Therefore,
we propose a unified local memory which can dynamically change
the partitioning among registers, cache, and scratchpad on a per-
application basis. The tuning that this flexibility enables improves
both performance and energy consumption, and broadens the scope
of applications that can be efficiently executed on GPUs. Compared
to a hard-partitioned design, we show that unified local memory
provides a performance benefit as high as 71% along with an energy
reduction up to 33%.

1. Introduction

Modern GPUs have emerged as an attractive platform for high per-

formance computing. Oriented to throughput processing, GPUs are

highly parallel with hundreds of cores and extremely high-bandwidth

external memory systems. GPUs employ thousands of chip-resident

threads to drive these parallel resources. With so many threads, reg-

ister files are the largest on-chip memory resource in current GPUs.

However, GPUs also provide both scratchpad memories and caches.

These local resources provide low latency and high bandwidth access,

as well as flexible scatter/gather addressing. In contrast to register

files, scratchpad and cache memories allow threads to share data on

chip, avoiding costly round trips through DRAM.

Although GPU architectures have traditionally focused primarily

on throughput and latency hiding, data locality and reuse are becom-

ing increasingly important with power-limited technology scaling.

The energy spent communicating data within a chip rivals the en-

ergy spent on actual computation, and an off-chip memory transfer

consumes orders of magnitude greater energy than an on-chip ac-

cess. These trends have made on-chip local memories one of the

most crucial resources for high performance throughput processing.

As a result, in addition to their large and growing register files, fu-

ture GPUs will likely benefit from even larger primary cache and

scratchpad memories. However, these resources can not all grow

arbitrarily large, as GPUs continue to be area-limited even as they

become power limited.

Unfortunately a one-size-fits-all approach to sizing register file,

scratchpad, and cache memories has proven difficult. To maximize

performance, programmers carefully tune their applications to fit

a given design, and many of these optimizations must be repeated

for each new processor. Even after careful optimization, different
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programs stress the GPU resources in different ways. This situation

is exacerbated as more applications are mapped to GPUs, especially

irregular ones with diverse memory requirements.

In this work, we evaluate unified local memory with flexible parti-

tioning of capacity across the register file, scratchpad (shared memory

in NVIDIA terminology), and cache. When resources are unified,

aggregate capacities can be allocated differently according to each

application’s needs. This design may at first seem fanciful, as register

files have typically had very different requirements than other local

memories, particularly in the context of CPUs. However in GPUs,

register files are already large, highly banked, and built out of dense

SRAM arrays, not unlike typical cache and scratchpad memories.

Still, a remaining challenge for unification is that even GPU register

files are very bandwidth constrained. For that reason, we build on

prior work that employs a two-level warp scheduler and a software-

controlled register file hierarchy [8, 9]. These techniques reduce

accesses to the main register file by 60%, mitigating the potential

overheads of moving to a unified design with shared bandwidth.

Unified memory potentially introduces several overheads. For

applications that are already tuned for a fixed partitioning, the main

overhead is greater bank access energy for the larger unified structure.

Another potential drawback is that with more sharing, unified memory

can lead to more bank conflicts. Our analysis shows that even for

benchmarks that do not benefit from the unified memory design, the

performance and energy overhead is less than 1%.

The unified memory design provides performance gains ranging

from 4–71% for benchmarks that benefit from increasing the amount

of one type of storage. In addition, DRAM accesses are reduced by

up to 32% by making better use of on-chip storage. The combination

of improved performance and fewer DRAM accesses reduces energy

by up to 33%.

The rest of this paper is organized as follows. Section 2 describes

our baseline GPU model. Section 3 characterizes the sensitivity to

register file, shared memory, and cache capacity of modern GPU

workloads. Section 4 proposes our unified memory microarchitecture.

Sections 5 and 6 discuss our methodology and results. Sections 7

and 8 describe related work and conclusions.

2. Background
While GPUs are increasingly being used for compute applications,

most design decisions were made to provide high graphics perfor-

mance. Graphics applications have inherent parallelism, with mem-

ory access patterns that are hard to capture in a typical CPU L1

cache [7]. To tolerate DRAM latency and provide high performance,

GPUs employ massive multithreading. Additionally, programmers

can explicitly manage data movement into and out of low-latency

on-chip scratchpad memory called shared memory.

Figure 1 shows the design of our baseline GPU, which is loosely

modeled after NVIDIA’s Fermi architecture. The figure represents

a generic design point similar to those discussed in the literature [2,

16, 25], but is not intended to correspond directly to any existing
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Figure 1: Baseline GPU architecture.

industrial product. The GPU consists of 32 streaming multiprocessors

(SMs) and 6 high-bandwidth DRAM channels for a total of 256

bytes/cycle of DRAM bandwidth. Figure 1b shows an SM containing

32 SIMT (single-instruction, multiple thread) lanes that each execute

up to one thread instruction per cycle. A group of 32 threads form an

execution unit called a warp. The SIMT model executes all threads in

a warp together using a common physical program counter. While the

hardware supports control-flow divergence of threads within a warp,

the SM operates most efficiently when all threads execute along a

common control-flow path. Warps are grouped into larger units called

co-operative thread arrays (CTAs) by the programmer. Threads in the

same CTA execute on the same SM and can communicate through

shared memory. A program may consist of one or more kernels, each

consisting of one or more CTAs.

2.1. Baseline SM Architecture
In this work, we focus on the design of the SM shown in Figures 1b

and 1c. The SM has up to 1024 resident threads, and a 32-entry,

single-issue, in-order warp scheduler selects one warp per cycle to

issue an instruction. Each SM provides 64KB of local scratchpad

storage known as shared memory, 64KB of cache, and a 256KB

register file. While these are large capacity structures compared

to a uniprocessor, the SM provides on average only 256 bytes of

registers, 64 bytes of data cache, and 64 bytes of shared memory per

thread. Figure 1c provides a detailed microarchitectural illustration

of a cluster of 4 SIMT lanes. A cluster is composed of 4 ALUs, 4

register banks, a special function unit (SFU), a memory unit (MEM),

and a texture unit (TEX) shared between two clusters. Eight clusters

form a complete 32-wide SM.

We leverage prior work which introduced a two-level warp sched-

uler and a software controlled register file hierarchy [8, 9]. The

two-level warp scheduler divides the 32 warps present on an SM into

an active set and an inactive set. Only warps in the active set are

allowed to issue instructions, and warps are moved to the inactive set

when they encounter a dependence on a long-latency operation. The

software controlled register file hierarchy introduces two additional

levels beyond the main register file (MRF): the operand register file

(ORF) with 4 entries per thread, and a last result file (LRF) with a

single entry per thread. Only active warps can allocate values in the

ORF and LRF. When an active warp is descheduled, all of its live

values must be in the MRF. The compiler controls all data move-

ment between the MRF, ORF, and LRF. The result of these prior

techniques is a reduction in the number of accesses to the MRF of

60%, without a performance loss, resulting in a significant savings in

register file energy and MRF bandwidth.

Each MRF bank is 16 bytes wide with 4 bytes allocated to the

same-named architectural register for threads in each of the 4 SIMT

lanes in the cluster. Each bank has a capacity of 8KB, providing

a total of 256KB of register file capacity per SM. Registers are

interleaved across the register file banks to minimize bank conflicts.

Instructions that access multiple values from the same bank incur a

cycle of delay for each access beyond the first. The operand buffering

between the MRF and the execution units represents interconnect

and pipeline storage for operands that may be fetched from the MRF

on different cycles. Stalls due to bank conflicts are rare and can be

minimized with compiler techniques [27].

Each SM contains 64KB of cache and 64KB of shared memory.

Each of these structures is composed of 32 2KB banks, and each bank

supports one 4-byte read and one 4-byte write per cycle. The cache

uses 128-byte cache lines which span all 32 banks, and only supports

aligned accesses with 1 tag lookup per cycle. Shared memory sup-

ports scatter/gather reads and writes, subject to the limitation of one

access per bank per cycle. Avoiding shared memory bank conflicts is

a common optimization employed by programmers. The cache and

shared memory banks are connected to the memory access units in

the SM clusters through a crossbar.

2.2. Unified Cache and Shared Memory

Fermi has a unified cache and shared memory, providing program-

mers a limited choice of either a 16KB cache and a 48KB shared

memory or a 48KB cache and a 16KB shared memory [16]. The

memory configuration is controlled through a CUDA library function.

Section 6.3 shows that a limited form of flexibility across shared

memory and cache, like that found in Fermi, has benefits. However,

a more flexible solution across all three types of storage (register file,

cache, and shared memory) further improves both performance and

energy consumption.

3. Application Characterization

In this section, we characterize modern GPU applications based on

their usage of registers, shared memory, and cache. We begin with

a large number of benchmarks and show that modern workloads

fall into several different categories. Next, we explain in detail why

some applications benefit from larger capacity in a given type of

storage. Finally, we study the performance sensitivity of applications

to storage capacity.
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Table 1: Workload characteristics.

Workload Registers per Registers per Thread RF Size Shared Memory Cache Size
thread 18 24 32 40 64 full occupancy (bytes / thread) 0 64KB 256KB

(no spills) (normalized dynamic instructions) no spills (KB) (normalized DRAM Accesses)

Shared Memory Limited
Needle [3] 18 1.02 1 1 1 1 72 264.1 0.85 1 1
sto [2] 33 1.18 1.08 1 1 1 132 127 3.95 1 1
lu [3] 20 1 1 1 1 1 80 96 1.94 1.46 1

Cache Limited
GPU-mummer [3] 21 1.04 1 1 1 1 84 0 1.48 1.01 1
BFS [3] 9 1 1 1 1 1 36 0 1.46 1.13 1
Backprop [3] 17 1.02 1 1 1 1 68 2.125 1.56 1 1
MatrixMul [15] 17 1.04 1 1 1 1 68 8 4.77 1 1
Nbody [15] 23 1 1 1 1 1 92 0 3.52 1 1
VectorAdd [15] 9 1 1 1 1 1 36 0 3.88 1 1
srad [3] 18 1 1 1 1 1 72 24 1.22 1.20 1

Register Limited
DGEMM [11] 57 1.42 1.23 1.01 1 1 228 66.5 1 1 1
PCR [26] 33 1.39 1.18 1.03 1 1 132 20 2.88 1.29 1
BicubicTexture [15] 33 1.18 1.10 1.05 1 1 132 0 1 1 1
hwt [3] 35 1.04 1.04 1.04 1 1 140 23 1 1 1
ray [2] 42 1.18 1.11 1.08 1.05 1 168 0 1.02 1.07 1

Balanced / Minimal Capacity Requirements
Hotspot [3] 22 1.21 1 1 1 1 88 12 1.44 1 1
RecursiveGaussian [15] 23 1.02 1 1 1 1 92 2.125 1.04 1.03 1
Sad [17] 31 1.01 1 1 1 1 124 0 1.01 1.01 1
ScalarProd [15] 18 1.01 1 1 1 1 72 16 1 1 1
SGEMV [11] 14 1 1 1 1 1 56 4 1.01 1.01 1
SobolQRNG [15] 12 1 1 1 1 1 48 2 1 1 1
aes [2] 28 1.30 1.18 1 1 1 112 24 1 1 1
Dct8x8 [15] 26 1.16 1.10 1 1 1 104 0 1 1 1
DwtHaar1D [15] 14 1 1 1 1 1 56 8 1 1 1
lps [2] 15 1 1 1 1 1 60 19 1.48 1 1
nn [2] 13 1 1 1 1 1 52 0 20.81 1.07 1

3.1. Workload Characterization

We characterize these applications along three axes:

• Register usage: Two parameters are related to register file capac-

ity: registers per thread and number of threads. Each thread is

allocated registers for thread private values, with the same number

of registers allocated for every thread in a kernel. Modern GPUs

support a very large number of registers per thread. However,

using more registers per thread results in fewer threads per SM,

as the register file is shared across the SM. The compiler inserts

spill and fill code when there are not enough registers available.

We use the number of dynamic instructions executed as a metric

to measure the overhead of register spills.

• Shared memory usage: Shared memory tradeoffs are controlled

by the programmer, with each kernel specifying the total shared

memory required per CTA along with the number of threads

per CTA. The physical shared memory capacity available in an

SM then dictates the maximum number of CTAs that can be

mapped, if the register file capacity does not become a bottleneck

first. While the programmer can often adjust shared memory

requirements by changing an application’s blocking pattern, we

evaluate existing benchmarks that have fixed shared memory

requirements per thread. Section 6.5 discusses tuning the shared

memory requirements to exploit the unified design.

• Cacheable memory usage: The amount of spatial and temporal

locality varies from application to application. Streaming appli-

cations mainly have spatial locality, but often have some degree

of access redundancy which can be filtered by a small cache.

Applications with cache blocking or a large number of register

spills have higher temporal locality. The cache is a very scarce

resource, and our baseline configuration has only 64 bytes on a

per-thread basis. We use the number of DRAM accesses as a

metric for the cache’s effectiveness.

Table 1 presents an analysis of a range of CUDA applications accord-

ing to the above criteria. Columns 2–8 show the per-thread register

requirements, with column 2 showing the number of registers per

thread required to eliminate spills. Columns 3–7 show the increase in

dynamic instructions due to spill and fill code with different numbers

of registers per thread. All of our surveyed benchmarks experience

no spills when 64 registers per thread are available. Hand tuned pro-

grams tend to use more registers per thread than compiled programs

as the programmer can block data into the register file for higher

performance. DGEMM, PCR, and BicubicTexture all experience a

large number of spills with a small number of registers per thread.

Column 8 shows the register file capacity required to achieve full

occupancy without experiencing register spills. The capacity required

ranges from 36KB to 228KB. Column 9 shows the number of bytes

of shared memory required per thread. Many applications need less

than 20 bytes per thread, particularly when developed to fit the small

shared memory capacities of early GPUs. Needle on the other hand,

requires a large amount of shared memory. Columns 10–12 show

the number of DRAM accesses for different capacity primary data

caches. In general, as the cache capacity is increased, DRAM ac-
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Figure 2: Performance as a function of register file capacity (with 64KB cache and unbounded shared memory), normalized to 64 registers per
thread and 1,024 threads per SM.

cesses decrease. This decrease in DRAM traffic is due to the cache’s

ability to filter traffic and amplify bandwidth. The DRAM bandwidth

demand can actually go up when using a cache, particularly when the

cache line size exceeds the minimum DRAM fetch size. For example,

Needle fetches unneeded data because only a fraction of the cache

line is used after fetch.

Table 1 demonstrates that different applications place different

stresses on the register file, shared memory, and cache structures.

Many of the benchmarks fall into the balanced / minimal capacity

requirements category as they were developed to fit the design of

existing GPUs. As new emerging applications are ported to GPUs and

applications are optimized to take advantage of our unified design,

we expect to see more diversity in the memory requirements.

3.2. Application Case Studies

To provide greater insight into the advantages of the unified design,

we discuss in detail the benchmarks which see a significant perfor-

mance benefit from higher capacity in a given type of storage.

Needle implements the Needleman-Wunsch algorithm for DNA

sequence alignment using dynamic programming [3]. The algorithm

constructs a large (2048 by 2048 entry) matrix where each entry

depends on its north, west, and north-west neighbor. The problem is

broken into subblocks to make use of shared memory. The size of

the subblock is a key parameter for this algorithm. Larger subblocks

improve performance, but increase the shared memory requirements

quadratically. Section 6.5 discusses the choice of blocking factor in

more detail.

LU performs LU decomposition to solve a set of linear equa-

tions [3]. The kernel requires a moderate amount of registers but a

high capacity shared memory. A large cache can exploit the reuse

patterns as values in the input matrix are accessed repeatedly.

GPU-mummer implements DNA sequence alignment using graph

traversal [3]. The algorithm consist of many parallel graph traversals

across a large reference suffix tree. Each thread processes a single

independent query. This workload does not use shared memory, as

the working set size depends on the input. If the reference suffix tree

is cached, a large performance gain is possible.

BFS is a breadth-first search of a graph with one million nodes [3].

It does not make use of shared memory and uses a small number of

registers per thread. The application benefits from caching as the

node and edge list is accessed repeatedly.

SRAD is an image processing application that relies on partial

differential equations [3]. It uses a moderate number of registers and

shared memory per thread, but benefits greatly from a large primary

cache. Each output element is computed based on its four neighbors,

allowing the cache to filter DRAM accesses.

DGEMM is an optimized double precision matrix multiplication ker-

nel from the MAGMA library [11]. Two temporary matrices in

shared memory capture subblock temporal locality. There is little

performance benefit from caching. Each thread requires 57 registers

per thread to eliminate spills, requiring a large register file.

PCR is a parallel cyclic reduction kernel that solves a tridiagonal

linear system [26]. The algorithm uses shared memory to store

temporary data and streams a large dataset from global memory.

The large amount of communication between steps of the algorithm

requires high bandwidth access to shared memory.

RAY performs ray-tracing with each thread responsible for ren-

dering a single pixel; several levels of reflections and shadows are

modeled. The kernel does not use shared memory but does require a

large number of registers. A larger data cache is able to capture the

environment, reducing the number of DRAM accesses.

3.3. Performance Sensitivity Study

Finally, we explore the performance sensitivity to the capacity of the

register file, shared memory, and cache. We present limit studies

which highlight the diverse memory requirements of modern work-

loads and the performance gains that can be achieved with larger

storage structures. The details of our evaluation methodology are

in Section 5. Because of the large number of benchmarks that we

characterize in Table 1, we only present results for a subset of bench-

marks which exhibit unique behaviors across the three different types

of on-chip storage.

3.3.1. Register File Capacity: Register file capacity is a function of

both the number of registers allocated to each thread and the number

of concurrent threads. Performance is penalized when the number of

registers per thread is small, which results in a large number of spills

and fills. Likewise, applications that must tolerate DRAM accesses

experience performance degradations when the number of concurrent

threads is small.

Figure 2 illustrates the relationship between performance and reg-

ister file capacity for four different types of applications. Each line in

the graph shows performance with a different number of registers per

thread. The performance penalty of spills can be seen by comparing

the four lines. The points on a given line show performance for 256,

512, 768, and 1024 threads per SM. DGEMM requires both a large

number of registers per thread and a large number of threads to max-

imize performance. These types of applications that require both a

large number of registers per thread and a large number of concurrent

threads stress the capacity of the register files found on current GPUs.

PCR experiences a large number of spills with 18 or 32 register per

thread and is less sensitive to thread count than DGEMM. There is no

advantage to using more registers per thread than is necessary to elim-

inate spills. Needle is an example of an application that eliminates
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Figure 3: Performance versus shared memory capacity (with 64 registers per thread and 64KB of cache), normalized to 1,024 threads per SM.
Note the wider x-axis on Needle.
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Figure 4: Performance as a function of cache capacity (with 64 registers per thread and unbounded shared memory), normalized to 512KB
cache and 1,024 threads per SM.

spills even with as few as 18 registers per thread. Further, increas-

ing thread count beyond 512 threads does not increase performance.

DRAM latency tolerance is not important for this application, as it

operates mainly out of shared memory. The spikes in performance

in Figure 2d result from the interaction between the cache size and

thread count. Changing the thread count can change performance due

to interactions with the thread scheduler, especially when the larger

number of threads are not needed to tolerate DRAM latency.

3.3.2. Shared Memory Capacity: Figure 3 shows the tradeoff in

performance and shared memory capacity. Each point along a line

shows an increasing number of threads per SM ranging from 256 to

1,024 in increments of 256. To isolate the effects of shared memory,

these experiments use a large register file, eliminating register spills,

and a 64KB cache. The application with the largest shared memory

needs is Needle, which requires over 200KB. We discuss alternate

blocking factors that can be used for Needle in Section 6.5. The

shared memory usage of PCR is typical of today’s applications. There

is a large performance gain from maximizing thread count and even

with the maximum number of threads per SM only 20KB of shared

memory is required. LU is an example of an application that requires

more shared memory than is present on today’s GPUs and maximiz-

ing thread count improves performance. STO is an example where the

application operates primarily out of shared memory, reducing the

importance of running a large number of threads to tolerate DRAM

latency. A small number of threads can still achieve high performance

and minimizes the shared memory requirements.

3.3.3. Cache Capacity: Figure 4 shows the performance sensitivity

to cache capacity. In these graphs, each line shows a different number

of threads per SM (ranging from 256 to 1,024), and each point along

a line shows performance with a different cache capacity. To isolate

the effects of cache capacity, the register file is sized to eliminate

spills and shared memory is unbounded. Running more threads per

SM helps to tolerate latency from main memory access, but also

reduces the amount of cache available on a per-thread basis. BFS
and PCR benefit from having a large cache. In particular, PCR sees a

large performance benefit moving from a 256KB to 512KB cache.

GPU-mummer sees a performance benefit from caching, but it has

a small working set for the input datasets we used. We expect a

greater improvement with larger datasets. Needle is an example of

an application that sees little performance benefit from caching as it

operates mostly out of shared memory.

4. Microarchitecture

The characterization in Section 3 shows that modern GPU workloads

have diverse local storage requirements and a single resource is often

most critical to performance of a given application. We propose

a unified memory architecture that aggregates these three types of

storage and allows for a flexible allocation on a per-kernel basis.

4.1. Overview

Figures 5a and 6 compare the microarchitectures of the baseline

design and our proposed unified architecture. The baseline design is

structured as discussed in Section 2.1. In the unified design, all data

storage is moved into the SM clusters. Effectively, the unified design

merges together the 32 MRF banks, 32 shared memory banks, and 32

cache banks. Although we evaluate a range of capacities, the number

of unified banks is always 32 per SM, to keep bandwidth constant.

Each unified bank supports 1 read and 1 write per cycle, as do the

banks in the baseline design. Also similar to the baseline design,

the SM clusters in the unified design are connected by a crossbar to

transfer data between the memory access units and other SM clusters.

As with the partitioned design, the cache tags are stored outside the

SM clusters and 1 tag lookup can be processed per cycle. A 384KB

unified design requires up to 7.125KB of tag storage compared with

the baseline 64KB cache requiring 1.125KB. This overhead can be

reduced by limited the maximum cache size in the unified design.

100



Unified 
(4 banks) 

MEM  
Unit 

Shared Memory / Cache Crossbar 
Cache 
Tags 

( )
Unified 

(4 banks) 

MEM  
Unit 

( )
Unified 

(4 banks) 

MEM  
Unit 

( )

(a) Unified SM architecture, 3 of 8 SM clusters shown.

Shared Memory / Cache Crossbar 

Cache Tags 
19 bits wide,  
3072 entries 

Remaining 
6 SM Clusters

(b) Detailed address mapping: RF: thread ID / register ID, Shared Memory/Cache: address (bytes).

Figure 5: Proposed unified memory microarchitecture.

MRF  
(4 banks) 

MEM  
Unit 

Shared Memory / Cache Crossbar 

Shared Memory (32 banks) Cache (32 banks) (((( ))

Cache 
Tags 

( )
MRF  

(4 banks) 

MEM  
Unit 

( )
MRF  

(4 banks) 

MEM  
Unit 

( )

Figure 6: Baseline SM architecture, 3 of 8 SM clusters shown.

4.2. Unified Memory Bank Design

Each unified memory bank is 16 bytes wide with byte-enable sup-

port. Figure 5b shows how registers, cache, and shared memory are

mapped across the banks. This figure shows 2 of the 8 SM clusters

found in one SM. Threads from a single warp are mapped evenly

across the 8 SM clusters, with 4 threads executing on each SM clus-

ter. As all of a thread’s register file entries are located in the same

SM cluster where it executes, register file values are not communi-

cated between SM clusters. The unified memory architecture does

not change the register file bank mapping, bank widths, or register

muxing in any way. The cache line size is 128 bytes in both the

partitioned and unified designs. As shown in Figure 5b, the cache

line is address-partitioned across 8 of the unified banks, 1 from each

of the SM clusters. The shared memory address space is mapped

across the banks in a similar manner. The unified memory design

uses a smaller number of larger memory banks. The banks are sized

such that the increase in bank size does not result in additional cycles

required for bank access. The bank access is not on the processor’s

critical path, allowing for a larger memory bank.

When accessing cache or shared memory, only a single bank is

used from each of the 8 clusters. This single bank routes its 16 bytes

of data onto the crossbar, providing a peak shared memory or cache

bandwidth of 128 bytes per cycle, identical to the baseline partitioned

design. Compared with the partitioned design, the unified design adds

one level of additional muxing for shared memory and cache accesses

across SM clusters. Section 5 describes how we account for the extra

wiring energy to access this multiplexor. This 4 to 1 mux is used to

select which bank should access the crossbar and is only traversed for

remote memory traffic, not for register file accesses. However, this

single bank per cluster design is more restrictive than the partitioned

design. To be bank-conflict free, a warp’s shared memory accesses

must coalesce to 8 banks rather than 32. A more aggressive design

allows multiple banks in a single cluster to be accessed to increase

the scatter / gather bandwidth. This enhanced design increases the

complexity of the data muxing in a cluster, but still only allows 16

bytes per cluster to enter the crossbar. We simulated this design

and found that it had an average performance improvement of 0.5%,

compared to the simpler design. Our results in Section 6 assume the

simpler design.

4.3. Arbitration Conflicts

In our baseline design, bank conflicts only occur within a single type

of storage. With the unified design, accesses to the register file and

cache or shared memory can conflict with each other. We refer to

these conflicts as arbitration conflicts. One of the key enablers of the

unified design is the software controlled register file hierarchy, which

fetches most operands from the ORF or LRF and greatly reduces the

required bandwidth to the MRF [9]. We model all conflicts and give

priority to register access before cache or shared memory, but find that

the performance impact of conflicts is small. Memory instructions

fetch a small number of register operands and these operands often

come from the LRF or ORF rather than the MRF, minimizing the

number of arbitration conflicts. Our design uses a write through

cache, eliminating bank accesses for evicting dirty data. The large

number of threads can also tolerate some additional latency from

conflicts without harming performance.

4.4. Managing Partitioning

Modern GPU workloads typically contain several different kernels,

each of which may have different memory requirements. Before

each kernel launch, the system can reconfigure the memory banks

to change the memory partitioning. Because the register file and

shared memory are not persistent across CTA boundaries, the only

state that must be considered when repartitioning is the cache. As we

use a write-through cache, the cache does not contain dirty data to

evict. In the applications that we evaluated, the memory requirements

across kernels were similar. Therefore, the results in Section 6 reflect

choosing a single memory partitioning at the start of each benchmark

and not reconfiguring the partitioning for each kernel.
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4.5. Allocation Decisions

The unified memory architecture requires the programming system

and hardware to determine the capacity of the register file, shared

memory, and cache. We use the following automated algorithm to

calculate the storage partitioning evaluated in Section 6:

• Register File: The compiler calculates how many registers per

thread are required to avoid spills (Table 1, column 2).

• Shared Memory: The programmer specifies the amount of

shared memory required per thread when constructing each kernel

in the same manner as today’s partitioned designs.

• Thread count: The hardware scheduler takes as input the num-

ber of registers per thread to avoid spills, the number of bytes

of shared memory, and the overall capacity of the unified mem-

ory. The scheduler calculates the maximum number of threads

by dividing the unified memory capacity by the per-thread reg-

ister and shared memory requirements. Some applications see

higher performance with fewer than the maximum number of

threads, due to interactions with the thread scheduler and memory

system. This phenomenon occurs both for the partitioned and

unified design. Techniques like autotuning [24] can be used to

automatically optimize thread count.

• Cache: Any remaining storage is allocated to the primary data

cache.

5. Methodology

When possible, we used the default input sets and arguments dis-

tributed with the benchmarks described in Table 1, but we scaled

down some of the workloads to make the simulation time tractable.

5.1. Simulation

We used Ocelot, a PTX dynamic compilation framework, to create

execution and address traces [6]. We built a custom SM simulator

that takes these traces as input and measures performance. We simu-

late execution using the SM parameters shown in Table 2. Our SM

simulator runs the traces to completion, correctly modeling synchro-

nization between threads in a CTA. We model execution for the full

application running on a single SM and allocate 8 bytes per cycle of

DRAM bandwidth making the simplifying assumption that the global

DRAM bandwidth is evenly shared among all 32 SMs. Because the

applications run each kernel many times across a large number of

threads, modeling a single SM, rather than the full chip, simplifies

simulation without sacrificing accuracy.

5.2. Energy Model

We assume a 32nm technology node for our energy evaluation using

the parameters listed in Table 3 and focus on the following elements

which are affected by our unified design:

• Bank Access Energy: Compared with the baseline partitioned

design, the unified design uses a smaller number of larger banks,

resulting in more energy per access to the main register file,

shared memory, and cache. Table 4 shows dynamic read and

write energy for SRAM banks of various sizes. These numbers

are scaled using a combination of CACTI [13] and prior work

that used synthesis for memory structures [8]. While the uni-

fied design increases bank access energy, especially for shared

memory and cache accesses, Section 6 shows that this increase is

small in comparison to total system energy.

Table 2: Simulation parameters.

Parameter Value

SM Execution Width 32-wide SIMT
SM Execution Model In-order
SM Register File Capacity 256 KB
SM MRF Bank Capacity 8 KB
SM Shared Memory Capacity 64 KB
SM Shared Memory Bandwidth 128 bytes/cycle
SM Cache Associativity 4-way
SM DRAM Bandwidth 8 bytes/cycle
ALU Latency 8 cycles
Special Function Latency 20 cycles
Shared Memory Latency 20 cycles
Texture Instruction Latency 400 cycles
DRAM Latency 400 cycles

Table 3: Energy parameters.

Parameter Value

Technology node 32 nm
Frequency 1 GHz
Voltage 0.9 V
Wire capacitance 300 fF / mm
Wire energy 1.9 pJ / mm
Dynamic power per SM 1.9 W
Leakage power per SM 0.9 W
Leakage power per KB of SRAM 2.37 mW
DRAM energy 40 pJ / bit

• Wiring Energy: In the baseline design, the cache and shared

memory banks are 4 bytes wide. In the unified design, the banks

are 16 bytes wide. To simplify the crossbar, we stripe cache lines

across banks in different SM clusters as described in Section 4.

However, we still incur an overhead of a 4:1 multiplexer. Further-

more, for an equal capacity design, the area of an SM cluster will

increase as cache and shared memory storage is moved into the

clusters. This increase in area will increase the overhead of the

crossbar that connects the clusters. As we have not implemented

a detailed physical design, we model these overheads as 10%

additional energy relative to the bank access energy for cache and

shared memory reads and writes. We also account for an increase

in cache tag lookup energy with this factor.

• SRAM Leakage: Each of the unified and partitioned designs use

different amounts of SRAM for the main register file, shared

memory, and cache. We use an estimate of 2.37 mW per KB of

SRAM capacity from prior work to calculate leakage for each

design [10].

• DRAM Energy: Our architecture reduces DRAM accesses by

making better use of on-chip memory. We model each DRAM

access as consuming 40 pJ/bit [22].

We use a high-level GPU power model to account for the core dy-

namic and leakage energy. We assume a modern GPU in 32nm

process technology that consumes 130 watts and contains 32 SMs.

The SMs consume 70% of the chip-wide energy, with the remaining

30% consumed by the memory system. Assuming that leakage is

one third of the chip-wide power, each SM consumes 1.9 watts of dy-

namic power and 0.9 watts of leakage power. Except for bank access

and DRAM energy, we assume that dynamic power for the SM is

constant across the various configurations. We use the performance

of the baseline 256/64/64 configuration to calculate SM dynamic

power for each benchmark. We adjust leakage for each configuration

using the SRAM leakage data of 2.37mW per KB of capacity. On the
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Figure 7: Performance (higher is better) and energy (lower is better) of unified design (384KB) normalized to an equal-capacity partitioned
design for applications that do not benefit from unified storage (note the narrow range of the y-axis).

Table 4: Energy for 16-byte SRAM bank access (32nm) for unified and
partitioned designs.

Structure Bank Size Read (pJ) Write (pJ)
Partitioned

256KB RF 8 KB 9.8 11.8
64KB Shared Memory 2 KB 3.9 5.1

64KB Cache 2 KB 3.9 5.1

Unified
384KB Unified 12 KB 12.1 14.9

baseline design with 384KB of SRAM storage, 0.7 watts of leakage

is from the core and 0.2 watts is from the SRAM. The SM and

SRAM leakage energy is calculated for each design point based on

performance. Design points with higher performance experience less

leakage, since faster completion of the workload results in less time

for transistors to leak.

6. Results

In this section, we evaluate the overheads and advantages of the uni-

fied memory design. We divide the benchmarks that we characterized

in Section 3 into two sets: those that see no benefit from the unified

design (Section 6.1) and those that benefit (Section 6.2).

6.1. Applications With No Benefit From Unified Memory

First, we evaluate the set of benchmarks that do not benefit from

the unified design. These benchmarks are not able to make use of

the additional capacity provided by the unified design to improve

performance. However, the unified design does not harm performance

or energy. Many of these benchmarks were tuned for the small

capacity structures present on early GPUs and may benefit from the

unified design if they were tuned for larger capacity structures.

Figure 7 shows the performance and energy improvements of a

384KB unified design normalized to an equal-capacity partitioned

design. Each SM in this baseline partitioned design contains a 256KB

register file, a 64KB shared memory, and a 64KB primary data

cache as described in Section 2. The unified design only slightly

changes performance and energy for these benchmarks, with the

largest changes less than 1%. The slight changes in performance and

energy are mainly due to (1) changes in bank conflicts resulting from

changing the bank width from 4 bytes in the partitioned case to 16

bytes in the unified case, and (2) from bank conflicts associated with

combining the register file with shared memory and the cache. These

results show that the performance degradation due to an increase in

bank conflicts is negligible.

One of the potential overheads of the unified design is an increase

in memory bank conflicts, as each memory bank supports only one

read and one write operation per cycle. Bank conflicts are due to

accesses from the same instruction or different instructions mapped

to the same bank. The inter-instruction conflicts depend on the exact

scheduling policy and instruction pipeline used. To get an estimate

of the potential increase in bank conflicts from unified memory, we

rely on a simplified model where we only track conflicts within a

single warp instruction. For each warp instruction, we count the

bank accesses across the 32 threads in the warp. We then impose a

performance penalty of 1 cycle for each access beyond the first for

the bank that was accessed the most by that warp instruction. For

example, if one bank was accessed three times and another bank was

accessed twice the instruction would be delayed by 2 cycles. This

model is likely pessimistic, as accesses from a single warp instruction

can actually span different clock cycles due to the pipeline design.

In the partitioned design, bank conflicts occur (1) in the register file

when an instruction tries to read multiple registers mapped to the

same bank, and (2) in the cache and shared memory when threads

in the same warp access values that are mapped to the same bank.

In the unified design, additional arbitration conflicts occur when an

instruction tries to read or write a value from the cache or shared

memory that is mapped into the same bank as its register operands.

Table 5 quantifies the potential increase in bank conflicts by show-

ing how many accesses each warp instruction makes to the same

memory bank. In both designs, the vast majority of warp instruc-

tions make one or fewer accesses to each memory bank. The unified

design experiences a small increase (0.6 percentage points) in the

number of warp instructions that access a bank multiple times. How-

ever, Figure 7 shows this increase in accesses leads to a negligible

performance change. The key enabler that allows the unification of

on-chip memory without excessive numbers of arbitration conflicts

is the register file hierarchy, which dramatically reduces the number

of accesses to the main register file [9].

Relative to the partitioned architecture, the unified memory design

slightly increases bank access energy due to its smaller number of

banks, each with higher capacity. However, bank access energy

Table 5: Breakdown of warp instructions based on the maximum
number of accesses to a single bank for the unified and par-
titioned design, averaged across Figure 7 benchmarks.

Maximum accesses to a single bank per instruction
<= 1 2 3 4 >4

Partitioned 97.0% 2.7% 0.09% 0.14% 0.03%
Unified 96.4% 3.4% 0.01% 0.02% 0.21%
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makes up a small component of overall system energy. Figure 7

shows that the overall changes in energy are negligible. The largest

increase in energy is 0.9% for nn and on average the energy of the

unified design is 0.06% lower than that of the partitioned design.

Much of the energy spent in the register file system, cache, and

shared memory is for control and wiring rather than actual bank

access. Additionally, the register file hierarchy reduces the number of

accesses to the main register file, minimizing register file bank access

energy for both the partitioned and unified designs. These results

show that even though these benchmarks do not benefit from the

unified design the overhead from our proposed design is negligible.

6.2. Applications That Benefit From Unified Memory

Next, we evaluate benchmarks that see significant improvements

from the unified memory architecture. We have made no source

code modifications to these benchmarks to tune them for the unified

memory architecture. As the analysis in Section 3 shows, modern ap-

plications have a variety of requirements in on-chip storage needs and

the unified memory architecture is able to adapt on a per-application

basis with the most efficient partitioning of on-chip storage.

As described in Section 4.5, the allocation decisions are managed

automatically by the compiler and hardware. Figure 8 shows how

the 384KB of unified memory was configured for each of these

benchmarks. The amount of storage devoted to the register file ranges

from 36KB on bfs to 228KB on dgemm. One of the applications,

needle, devotes 264KB to shared memory to allow a larger number

of concurrent threads to execute. The remaining applications that

make use of shared memory devote less than 100KB of their on-

chip storage to it. The unified memory design allows larger primary

caches, as any remaining storage not used for the register file or

shared memory serves as cache.

Figure 9 shows the performance, energy, and DRAM traffic im-

provements for eight benchmarks that see significant improvements.

The performance improvements range from 4.2% to 70.8% with an

average performance improvement of 16.2%. These performance im-

provements are the result of a combination of having a larger register

file, shared memory, or cache. In many cases, the larger capacity

register file or shared memory allows more concurrent threads to run,

which allows the SM to better tolerate DRAM latency.

All of the benchmarks, except for DGEMM, see a reduction in DRAM

traffic ranging from 1% to 32%. The reduction in DRAM accesses

is primarily the result of having higher capacity caches. As DRAM

bandwidth is and will continue to be a precious resource, minimizing

off-chip traffic is vital to improving efficiency. The performance

improvements along with the reduction in DRAM accesses lead to a

reduction in chip-wide energy. The energy savings range from 2.8%

to 33% across these eight applications. These savings are significant

for today’s power limited devices.

6.3. Comparison to Limited Unified Memory

As discussed in Section 2.2, Fermi has a limited form of unified

memory. The programmer can choose between either 16KB of shared

memory and 48KB of cache or 48KB of shared memory and 16KB

of cache per SM. Our unified design allows all three types of storage

found in the SM to be unified. We evaluate an equal-capacity Fermi-

like design which has a total of 384KB of storage divided into a

256KB register file and either 96KB of shared memory and 32KB

of cache or 32KB of shared memory and 96KB of cache. Figure 10

shows the improvement in performance, energy, and DRAM accesses

compared to the partitioned design.

Table 6: Performance and energy of three unified memory capacities
normalized to the the baseline partitioned design.

Performance Energy
(higher is better) (lower is better)

Benchmark 128KB 256KB 384KB 128KB 256KB 384KB

bfs 1.03 1.08 1.12 0.91 0.89 0.88
dgemm 0.77 1.01 1.08 1.13 0.95 0.94
lu 0.96 1.07 1.07 1.00 0.91 0.89
GPU-mummer 0.96 1.04 1.04 0.97 0.95 0.97
pcr 0.77 1.04 1.06 1.33 0.92 0.93
ray 0.94 1.03 1.13 1.01 0.95 0.89
srad 1.00 1.08 1.09 0.94 0.86 0.89
needle 1.29 1.75 1.71 0.76 0.64 0.67
Average 0.97 1.14 1.16 0.98 0.87 0.87

Figure 7
Benchmarks 0.99 1.00 1.00 0.93 0.96 1.00
(Average)

The Fermi-like design is able to improve performance for all of

the benchmarks between 1%–20%. However, comparing Figures 9

and 10 shows that the unified design achieves higher performance

for all but one benchmark. The Fermi-like design actually achieves

higher performance on GPU-mummer because this benchmark is ex-

tremely sensitive to cache size and thread scheduling. The smaller

capacity cache provided by the Fermi-like design results in slightly

different cache behaviors that interact differently with the thread

scheduler. Overall, the gains in energy-efficiency and DRAM traffic

reduction are higher for the unified architecture than the Fermi-like

limited flexibility design.

6.4. Capacity Sensitivity

Next, we explore the sensitivity of performance and energy to the

capacity of the unified memory. Larger unified memory designs im-

prove performance at the cost of increased SRAM leakage. Table 6

shows performance and energy for a range of different unified mem-

ory capacities. Performance is generally maximized with 384KB

of unified memory. Needle sees slightly higher performance with

256KB due to the choice of thread count and the resulting scheduling

decisions made by the thread scheduler. The performance of the

benchmarks from Figure 7 is flat across the range of capacities as

they do not see a speedup from the larger capacity designs.

As the capacity of unified memory is increased, SRAM leakage

increases. However, a larger capacity design can also reduce overall

leakage (higher performance reduces runtime) and DRAM energy.

The benchmarks that do not benefit from unified memory see the

lowest energy with the 128KB design, which minimizes SRAM leak-

age. The benchmarks that benefit from the unified design generally

see the lowest energy with either the 256KB or 384KB design. The

tradeoff between performance, area, and leakage must be carefully

considered when deciding how much storage should be allocated per

SM. Compared with the partitioned or limited flexibility designs, the

unified architecture gives designers more freedom as each memory

structure must be provisioned for the maximum requirements of any

workload. By dynamically partitioning storage, the unified design

allows the amount of storage to be set based on the aggregate storage

requirements of workloads.

6.5. Tuning Applications for Unified Architecture

Many applications are tuned to fit into the storage requirements of

either the register file, shared memory, or cache. A partitioned design
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Figure 9: Performance (higher is better), energy (lower is better), and DRAM traffic (lower is better) of unified design (384KB) normalized to an
equal-capacity partitioned design for applications that benefit from unified storage.
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Figure 11: Performance of various blocking factors and shared mem-
ory requirements for needle.

forces applications to be tuned across the narrow capacity range of

each structure. The unified architecture presents an opportunity to

tune applications across the entire range of performance and unified

memory capacity points. As a case study, Figure 11 shows perfor-

mance as a function of shared memory capacity for three different

shared memory blocking factors on Needle. Performance is normal-

ized to the maximum shared memory capacity tested of 520KB which

is required with a blocking factor of 64 and 1024 threads per SM.

As the blocking factor is increased, the amount of shared memory

required per thread increases. Each point along the lines represents

increasing the number of concurrent threads from 32 to 1024 in incre-

ments of 32. When the amount of shared memory available is small,

as found on prior generation GPUs, the blocking factor of 16 was

used. The results discussed so far in this paper have used a blocking

factor of 32, as this is the most efficient operating point when 64KB

of shared memory is available. When more than 300KB of shared

memory is available, a blocking factor of 64 provides slightly better

performance and requires fewer concurrent threads than a blocking

factor of 32. The unified design allows programmers the option of

optimizing their applications over wider ranges of performance points

and potentially utilizing more efficient algorithms.

7. Related Work
Several projects have considered reconfigurable memories that serve

as either cache or scratchpad for designs other than GPUs, includ-

ing Smart Memories [12], TRIPS [19], and the TI TMS320C62xx

DSP [21]. Ranganathan et al. proposed a reconfigurable cache that

could be divided into several partitions with each partition perform-

ing a different task [18]. Their work mainly focused on the cache

design required for reconfigurability and provided a case study for

using a cache partition for instruction reuse in a media processing
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application. The ALP project proposed to reconfigure part of the L1

data cache to serve as a vector register file when performing vector

processing [20]. Cook et al. proposed mechanisms for flexible parti-

tioning between cache and shared memory in a multi-core CPU [4].

Albonesi proposed selective cache ways which allows a subset of the

ways in a set associative cache to be disabled to save power [1].

Volkov identified applications that achieve better performance by

using fewer threads as this allows more registers to be allocated

to each thread [23]. Recent work uses cyclic reduction as a case

study on the tradeoffs between allocating values to the register file

versus shared memory along with balancing the number of registers

per thread and the number of threads per SM [5]. Murthy et al.

developed a model for optimal loop unrolling for GPGPU programs

that considers the increase in register pressure versus the potential

improvements from unrolling [14]. Our flexible storage system can

relax the programming burden associated with the fixed capacity

storage structures and accommodate diverse workloads.

8. Conclusion
Modern applications have varying requirements in register file, cache,

and shared memory capacity. Traditional GPUs require the program-

mer to carefully tune their applications to account for the size of

each of these structures. In this work, we propose a unified on-chip

storage for the register file, cache, and shared memory. This flexible

structure can adjust the storage partitioning on a per application basis,

providing a performance improvement as high as 71% along with

an energy reduction up to 33%. The overhead of the flexibility is

small, with a minimal increase in bank conflicts and a small increase

in bank access energy. These overheads are negligible in terms of

system performance and energy, even for benchmarks that do not

benefit from the unified design. We explore the sensitivity to unified

memory capacity and find that many benchmarks achieve energy

savings with smaller capacity unified memory. Future systems could

exploit this fact by disabling unneeded memory. Our unified equal

capacity design provides meaningful energy efficiency improvements

for a significant number of today’s benchmarks, which are tuned for

partitioned designs. By making the processor’s storage more flexible,

we broaden the scope of applications that GPUs can efficiently exe-

cute. Future applications or application tuning can further improve

efficiency by taking advantage of this new flexibility.
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