
Multi Address Space Parallel Architecture
Sergey N. Zheltov

Software Solutions Group, Intel Corp.
Sergey.Zheltov@intel.com

Stanislav V. Bratanov
Software Solutions Group, Intel Corp.

Stanislav.Bratanov@intel.com

1. PROBLEM DESCRIPTION
Performance is the crucial characteristic of a computational

system. Most of current computer architectures suffer from inherent
flaws that may impede the overall system performance increase
even though their particular components become faster.

For example, higher processor clock frequencies require
higher memory response rates to establish the system performance
growth. This is currently solved by multiple levels of cache
hierarchy with different access latencies and associativity types; at
the same time, it is quite difficult to provide a universal cache usage
strategy, suitable for any computational task, especially when a
cache system is supposed to function transparently to software.
That is why most modern architectures provide additional software
control features to optimize the cache utilization, namely: hints to
load/store instructions on which cache level should be affected by
the load/store operation; cache line locks, and hardware data pre-
fetch operations [1].

Another problem that affects the performance of modern
computer systems is the underutilization of execution units. Most
modern general-purpose processors are designed for parallel
(explicit or super-scalar) execution by dedicating specialized
execution units to executing a set of specific instructions. An
ordinary program code generated by a high level language compiler
usually employs a limited subset of execution units (normally an
integer arithmetic unit – ALU) and occasionally loads other units,
such as floating point or a unit for vector operations. This results in
constant operation of some units while the others are periodically
stalled.

The underutilization issue is to some extent solved by
Symmetric Multi-Threading systems that execute more than one
program thread on a physical processor, thus allowing a thread to
use free execution resources [2]. But still, if the program threads are
not properly designed, execution stalls may occur when all threads
demand the same execution resource [3].

All the above testify the need of more developed software
control over the program execution and execution resource
utilization.

2. CONCEPT OVERVIEW
The proposed system is supposed to solve many issues that

affect performance and other characteristics of current
architectures.

The general concept of the newly suggested architecture is to
be fully controlled by software.

According to the architecture’s design, all system resources are
represented by a set of execution units and address spaces, the
latter, in turn, have a set of properties assigned to each. The
properties include: addressing size, virtualization, protection,
performance, serialization, and other attributes.

A program may control all parameters of the system in terms
and by means of resource allocation and address space accesses.
System buses and peripheral devices are addressed via a special
address space.

A special space is dedicated to inter execution unit
communications.

The operating system owns a system control address space.
This address space contains special structures to maintain efficient
execution, thread/process separation, debugging capability,
resource sharing, virtualization and protection.

A new micro-threaded programming model is introduced to
facilitate parallel utilization of execution units.

ALU

SSE

LSU

add r0,r2
sub r5,r4
//load r1
signal.wait.lsu._r1_
sub r5,r1

vsqrt.f32 vr5
vadd.f32 vr32,vr3
vmul.f64 vr12,r14
vmul.f32 vr1,vr2
vmul.f32 vr3,vr4
vadd.f32 vr5,vr1
vadd.f32 vr5,vr3
// store vr5
signal.notify.lsu._vr5_
vsin.f32 vr5

mov.64 alu0.r1,[as8.0x12ff03f0]
signal.notify.alu._r1_
signal.wait.sse._vr5_
mov.128 [as1.0x00001000],sse0.vr5

ALU u-thread

SSE u-thread

LSU u-thread

Program Address Space

access

I/O Device
access

etc.

Largemem Address Space

Fastmem Address Space

Inter-Unit/Processor
Communications Address

Space

V
irt

ua
liz

ed
A

d
dr

e
ss

S
p

ac
es

N
on

-V
irt

u
al

iz
ed

A
d

dr
es

s
S

p
ac

es

I/O Address Space

access

access

Secure Address Space

3. ADVANTAGES
Based on the above concept it becomes possible to avoid cache

memory pollution providing fast memory addressed and managed
by software.

The utilization of execution units may be also increased as
their work is planned for each particular task on a micro-thread
basis.

Careful planning of the type of memory (or input/output)
operations and the amount of memory to be consumed reduces the
bandwidth each memory/storage device is required to support.

Besides, introducing separate address spaces and inter-space
data move operations helps extend the basic architecture and adapt
it to a particular task and/or environment.

Moreover, as execution units are not naturally homogeneous,
that is, require different data types, memory storage characteristics
and different execution times, it may appear to be of avail to group
the execution units closer to the address spaces that contain
resources most probable to be accessed by such units. This may
help solving problem of power concentration and distribution over a
die.

At last, having system management, I/O, and inter-processor
synchronization performed by separate units within separate
address spaces will efficiently hide the latencies (compared with
thousands of cycles for I/O operations and inter-processor
synchronization in, for instance, NUMA systems).

4. REFERENCES
[1] IA-32 Intel® Architecture Software Developer’s Manual.

Volumes 1-3. Intel Corp., 2004
[2] D.Marr et al. “Hyper-Threading Technology Microarchitecture

and Performance”. Intel Technology Journal, Q1 2002.
[3] Y.-K. Chen et al. “Media Applications on Hyper-Threading

Technology”. Intel Technology Journal, Q1 2002.


