Incremental Task Model Updates from
Demonstration

Reymundo A. Gutierrez Vivian Chu

Andrea L. Thomaz Scott Niekum

University of Texas at Austin Georgia Institute of Technology University of Texas at Austin University of Texas at Austin

ragtz@cs.utexas.edu vchu@gatech.edu

Abstract—Fully specifying a task model such that a robot can
perform a task in all situations and environments is intractable.
Instead, we propose a novel algorithm that allows users to update
a baseline model by providing demonstrations or corrections in
the environment in which the robot operates. A set of model
updates are proposed that make structural changes to a finite
state automaton (FSA) representation of the task. These changes
are instantiated through conversion into a state transition hidden
Markov model (STARHMM). The STARHMM’s probabilistic
properties are then used to perform approximate Bayesian model
selection to choose the best model update, if any. We implement
and evaluate the model selection component on a simulated block
sorting domain. Initial results show that this formulation can
choose models that sufficiently incorporate new demonstrations,
while remaining as simple as possible.

I. INTRODUCTION

Given the size and complexity of robotics problems, any
initial model of a task is likely incomplete and would require
modification upon encountering previously unseen circum-
stances. For example, a robot may be deployed with a set of
preprogrammed task models for common tasks that fail under
certain conditions or use cases unknown to the engineers. Due
to the intractability of enumerating all scenarios the robot may
encounter, it is advantageous to have a mechanism that allows
end users to update and adapt these models by providing
demonstrations or corrections in the environment in which
the robot operates. This leads to the following question: How
can a task model be efficiently updated to incorporate new
information that may or may not fit into the existing policy
defined by the task model?

Learning from demonstration (LfD) provides an intuitive
mechanism to program robots, allowing them to learn new
skills from example executions provided by humans [2].
While much work has focused on learning single policies
for skill execution [1, [12] or sequencing a set of learned
policy primitives [13]], recent efforts have focused on learning
task models by jointly reasoning over action primitives and
their sequencing while tackling the problem of incremental
learning of such task models [[7, 18 10} [1 1, [14]]. However, these
methods either require an explicit reward function definition
[Z, 18] or utilize computationally expensive processes such
as simulated evaluation [14] or Markov chain Monte Carlo
(MCMC) sampling [10l [11]. Utilizing a parametric method
with closed-form inference could remove the need for a reward
function while decreasing the computational overhead.

athomaz @ece.utexas.edu sniekum @cs.utexas.edu

FSA Model
? D Model Selection

[e
! 1

Apply Edits
Convert to STARHMM
sco Pr(DIO)

T - ey

Fig. 1. The proposed incremental task model updates pipeline consists of
first applying a set of edits given the demonstrations, and then comparing the
edited model’s likelihoods given the data. This work focuses on the model
comparison step, with the edit application step replaced with a set of user-
provided models.

argmax; Pr(D|E;) + penalty

E;: argmax

In this work, we present a new method that utilizes
corrective demonstrations to inform incremental changes to
the model, which is represented as a finite-state automaton
(FSA) with primitives defined by an initiation, a termination,
a dynamics, and a policy model. A set of model updates
are proposed that make specified structural changes to the
FSA. These changes are instantiated through conversion into a
state transition hidden Markov model (STARHMM) [9]. The
STARHMM'’s probabilistic properties are then used to perform
approximate Bayesian model selection, which chooses the
best update to incorporate into the model. We implement and
evaluate the model selection component on a simulated block
sorting domain. Given demonstrations, the model selection
component of the framework should be able to choose from a
set of candidate models the simplest model that fits the data
well. Initial results show that this method is able to select the
simplest good-fit model from a set of candidate FSA updates.

II. RELATED WORK

One way of representing complex skills is through finite
state automata (FSA), which define the transitions between
a set of primitives. Kappler et al. [6] learn associative skill
memories (ASMs) which are sequenced through a manually-
specified manipulation graph. ASMs utilize sensor traces as a
feedback mechanism to enforce stereotypical behavior of the

Fig. 2. Graphical representation of STARHMM [9]. While the STARHMM
also has additional nodes representing high-level motor primitives (M), it is
not used in this work.

encoded skills. These sensor traces can also be used to evaluate
the success and failure of the skills, allowing transition into
recovery behaviors dictated by the manipulation graph. Alter-
natively, Konidaris et al. [7] utilize reward signals to discover
the subgoals of a demonstration, which provide a segmentation
of the demonstration and results in a skill chain. These skill
chains are then merged to form skill trees. This work was
later extended to learn skill trees autonomously [8]]. The work
by Riano and McGinnity [14] and Niekum et al. [10, [11]] are
most closely related to this work. Riano and McGinnity [14]]
discover FSAs to accomplish a task through an evolutionary
algorithm that permutes the structure of the FSA, but requires
many simulated executions to evaluate an FSA’s fitness. Work
by Niekum et al. [[10} [1 1] segments demonstrations with a Beta
Process Autoregressive hidden Markov model (BP-AR-HMM)
and constructs an FSA using those segments. This approach
allows corrective demonstrations to improve the FSA, but this
MCMC sampling approach does not provide a mechanism to
know when to terminate the algorithm.

Interactive learning has been used in prior work to update
an agent’s task model. Chernova and Veloso [3] utilize their
Confidence-Based Autonomy (CBA) algorithm to intelligently
query a human teacher for more demonstrations in low-
confidence states. These demonstrations are then used to
update the agent’s policy. Jain et al. [5] introduce a method
for iterative improvement of trajectories in order to incorpo-
rate user preferences. Each demonstration potentially provides
new information regarding task constraints, which are then
incorporated into the task model. However, these methods are
currently limited to low-level skills and do not reason over the
sequencing of multiple low-level skills.

III. BACKGROUND

We utilize two different graphical representations to model
and modify tasks: (1) finite state automatons (FSAs) and
(2) state transition auto-regressive hidden Markov models
(STARHMMs). We represent a task using a FSA, a directed
graph in which nodes represent low-level primitives and edges
indicate transitions between primitives. We convert the existing
FSA into a STARHMM and use the probabilistic properties
of the STARHMM to evaluate changes to the FSA. This next

section briefly walks through the basics of the two models
before continuing to our approach.

A. Finite State Automaton

A finite state automaton (FSA) is defined as a directed
graph, with nodes representing primitives and edges repre-
senting valid transitions between primitives. For the purposes
of this work, each node z; within the FSA is a primitive
defined by an initiation classifier - when the primitive should
begin (P, a termination classifier - when a primitive should
end (P'¢"™), a state dynamics model - how the state changes
with actions (P%"), and a policy model - when to take what
action (PP°!). More concretely, z; is defined below where
i € {1,...,k}, s € R™ is the observed state at time ¢,
a; € R™ is the action at time ¢, and x is the number of
nodes in the FSA.

Zi = {Pﬁmt(st%PEerm(st)v

P (s141]50, @), (1)

PfOl(aHSt)}

The edges of the graph are encoded through the following
two functions.

o parent(i): returns the parents of primitive i
e children(i): returns the children of primitive 4

A full policy execution is computed by selecting a primitive
and executing its policy at each time step. The primitive
selection follows the structure of the graph such that if the
current primitive is z;, the most likely primitive from the set
Z ={z;|j € {{i} Uchildren(i)}} is selected as the primitive
in the next time step.

B. State Transition Auto-Regressive Hidden Markov Model

A state transition auto-regressive hidden Markov model
(STARHMM) [9] is a probabilistic graphical model that cap-
tures the entry and exit conditions that represent the subgoals
of multi-phase tasks. In addition to the state and action
variables outlined in Section a STARHMM has hidden
states, which we refer to as phases (p; € {1,...,k}), and
termination states (¢; € {0,1}). Hidden phases are similar
to nodes within an FSA in that they index a primitive. The
termination state governs when a phase can transition.

A STARHMM models the state dynamics with the distribu-
tion P(sty1|8¢, a, pt), which is similar to the FSA, except
now it also depends on the hidden phase, p. The phase
transitions (p; — py+1) depend on the current state s;11, the
previous phase p;, and the termination status of the previous
phase ¢;. These dependencies are modeled with the distribution
P(ptt1|St+1, pt, €:). Phase transition can only occur when the
previous phase has terminated, which constrains the phase
transition distribution in the following manner.

L pey1=ps

2
0 pry1 # pe @

P(ps1]St41,pt, €6 = 0) = {

When ¢ =
transitions are governed by

1 (i.e. when p, has terminated), phase
the initiation distribution

P(pt41]8t+1, pt, € = 1). Finally, phase termination ¢; depends
on the current phase p; and the next state s;y;. This is
modeled by the distribution P(e;|8¢+1, p¢). The incorporation
of this auxiliary variable allows for the explicit modeling of
each phase’s state-dependent exit conditions. The graphical
representation of this model can be seen in Fig. [2]

Given the above distribution definitions, the probability of
observing a sequence of states si.ny41, actions ai.n, phases
p1:N+1, and phase terminations €.y _1 is

P(81:N+1,@1:N, P1:N+1, Po:N—1) = P(eq, p1,51)-

N N 3)
H P(st41]st, ar, p)P(ar) H P(pe, €c-1st, pr1)
t=1 t=2

where P(eo, p1,51) = P(s1,€0)P(p1]s1,€0) and

]P)(pta 6t71|3t>pt71) = P(pt|st7pt717 thl)P(€t71|5tu0t71)~

IV. APPROACH

As described earlier, our goal is to take a model of a task and
make use of corrective demonstrations to inform incremental
changes to this model. Our approach uses the following two-
step method for incremental task model updates: (1) searching
for model updates defined by a set of candidate corrections and
(2) selecting the best model from this set.

Given a set of demonstrations for an error condition induced
by an incomplete or incorrect FSA, we generate a set of candi-
date corrections to the model. We make candidate corrections
according to a predefined set of edit types, which correspond
to structural changes of the FSA. These edit types are: node
modification, node addition, and edge addition. A candidate
correction is then defined as a set of decisions over these
edit types, which cover a range of transformations needed
to correct different modeling errors. For example, a small
change to the policy may only require modifying an existing
node, while learning new sub-skills would require additional
nodes. In this way, each candidate correction defines a search
direction in the space of possible FSAs. For each candidate
correction, we find an associated model update through a
search procedure that learns the parameters of a STARHMM
that was created by converting the FSA into a STARHMM.
The search is constrained to modifications specific to the
candidate correction (e.g. allowing only node modification).
We use the corrective demonstrations to instantiate these
models through the Expectation-Maximization (EM) algorithm
for STARHMMs [9]]. Then, the system chooses the most likely
correction through approximate Bayesian model comparison.
The overall pipeline can be seen in Fig. [I]

A. FSA-STARHMM Conversion

In order to instantiate the model updates needed for model
comparison, the FSA must be converted to an equivalent
STARHMM. The initiation and termination classifiers of the
FSA are modeled using logistic regression, where wi™ € R?
and wi'™ € R? are the weights for the initiation and

termination classifiers and ¢(s;) € R? is the feature vector
for state s;.
Pt (s,) = 1 4)
i t 1+ e*wj"iﬂqﬁ(st)
1

Pgerm(st) = 1+ 0w T T (sr)

(&)

The dynamics and policy of each primitive are represented as
linear Gaussian models

den(sﬁl‘st, a;) = N(A;s; + B;ay, E?yn) (6)

7

PP (ay)sy) = N (V i8¢, 5P (7)

7 %

where A; € R™*", B; € R"™™, V,; € Rmxn, 5¥n ¢ Rnxn,
and 37! € R™*™ are specific to each primitive z;.

Each phase in the STARHMM indexes a primitive in the
FSA. Using the FSA models, we parameterize the termination
and state transition distributions of the STARHMM as

1-— Pt_erm(st+1) €t =
P(e|spp1, pr =1) = ! (3
(€t|st+1, pt) {]P’ﬁ”m(stﬂ) 6 =1
P(8¢11]86, s, pr = 1) =PI (504156,) 9

thus directly mapping the termination classifier and dynamics
model of each primitive in the FSA to the termination distri-
bution and state transition distribution of the associated phase
in the STARHMM, respectively.

The initiation distribution P(ps41|8¢+1, pr, €2 = 1) takes on
different parameterizations depending on the edit type during
model learning and the structure of the FSA during model
selection. These parameterizations all take the following form

p JET(pt)
0 j¢&T(pe)
B P (s041)P(prs1 = Jloe)

a Poker() P (se+1)P(pes1 = jlpt)

where T is a function that takes a phase and returns the set of
allowable transitions. Sections and define T for the
model learning and selection steps respectively. The distribu-
tion P(ps11|pt) defines the prior probability of transitioning
from p; to py+1. In the general case, this distribution can be
estimated by keeping a running count of all transitions seen.
In the simplest case, the allowable transitions can all be given
an equal prior probability. With this parameterization, the
phase transition distribution for p; can be constructed from the
initiation classifiers of the primitives in 7'(p;). In other words,
the transition probabilities for primitives in T'(p;) are governed
by the initiation classifiers of all primitives in T'(p;), while all
primitives not in T'(p,) have a transition probability of zero.
With these definitions, a traversal of the FSA corresponds to
a p sequence assignment in the STARHMM.

P(piy1 = jlse41, 00,60 = 1) = {
(10)

p

B. Candidate Correction Application

A candidate correction is defined as a set of decisions over
the following edit types: node modification, node addition, and
edge addition. Specifically, a candidate correction can allow
node modification; allow the addition of X > 1 new nodes;
and/or allow the addition of new edges. This leads to a total
of 4K + 3 possible candidate corrections. The decisions over
the edit types define the free parameters I' = {@,T'} for the
model learning procedure, where ® is the set of node model
parameters and 7' is a function that returns the set of allowable
transitions for each phase.

EDIT TYPES: Each edit type defines its own set of free pa-
rameters v = {6, 7}. In the following, & is the current number
of nodes and the notation 8; = {wi™it wier™ A; B;, "}
is used to denote the set of model parameters in a STARHMM
for node z;. We describe each edit type in detail below. The full
set of free parameters for a candidate correction is the union
over the edit type free parameters (@ = 8"™°? U@" 44 UH°dd
and T(i) = 7/%2(i) U 77med (4) U 77add (5) U 76244 (), where
rf5a(3) = {i} U children(i)).

Node Modification: Allowing node modification sets all
current node model parameters as free (0" = {6;|i €
{1,...,K}}). If node modification is not allowed, there are
no free node model parameters (8"™°* = {}). In both cases,
7imed (i) = {}.

Node Addition: Allowing node addition creates a set of free
parameters for each new node ("% = {0;]i € {rk+1..., K+
K}}) and allows all transitions to and from these new nodes.
Concretely, if ¢ < k then 7744 (3) = {jlj € {kx +1,..., 6+
K1} if ¢ > & then 7744 (3) = {j|j € {1,...,k + K}}. If
node addition is not allowed, 8"*¢? = {} and 7" (3) = {}.

Edge Addition: Allowing edge addition does not create
new free node model parameters (0°??¢ = {}) but allows
for potential transitions between all current nodes (76244 (7) =
{jli € {1,...,k}}). Several new edges could be added,
provided the demonstration dictates their necessity. If edge
addition is not allowed, 8°¢¢¢ = {} and 744 (3) = {}.

MODEL LEARNING: For each candidate correction, a new
STARHMM is instantiated with its parameters initialized ac-
cording to the FSA-STARHMM conversion procedure outlined
in Section [IV-A] In the full pipeline, the set of demonstra-
tions will be used to train the STARHMMSs according to
the free parameters of the candidate correction. Expectation-
Maximization is used to update the parameters ® with tran-
sitions governed by 7'. In this work, the model learning step
is replaced with a set of user-defined models. This allows for
the evaluation of the subsequent model selection steps.

C. FSA Updates

For each of the STARHMMs learned in the previous step,
the corresponding FSA can be constructed by first replacing
the initiation, termination, and dynamics models of all primi-
tives in the current FSA with the corresponding models in the
new STARHMM as defined in Section [V-Al Then, the new
STARHMM is used to infer the maximum likelihood primitive
sequence given the corrective demonstrations by setting 7T’

Fig. 3. The simulation environment allows a user to give demonstrations.

according to the candidate correction (Section [IV-B) and
running the max-product algorithm. The resultant sequence
is a combination of primitives in the current FSA and the
new learned primitives. After removing redundancies in the
sequence (e.g. 1,2,2,2,3,3 — 1,2,3), a new FSA is defined
by iteratively merging the sequence with the current FSA using
a process similar to the one outlined by Konidaris et al. [7];
elements in the sequence are merged with the nodes they in-
dex, with new edges and nodes defined through the unmerged
elements. As an example, suppose that the subsequence 2,7, 4
appears in the maximum likelihood sequence and 7 is a new
primitive. This corresponds to a new node being added to the
FSA with parent z, and child z,. The policies P’ for the
new primitives added to the FSA are learned by training the
policy models on the segments of the demonstrations assigned
to each primitive by the maximum likelihood sequences.

D. Model Selection

Each corrective demonstration induces a most likely prim-
itive sequence in each of the learned FSAs. The likelihoods
of these sequences are computed by running the max-product
algorithm on each model’s associated STARHMM, with the
allowed transitions following the FSA structure. This corre-
sponds to

T(i) = {i} U children(i) (11)

In order to avoid over-fitting, the likelihoods must be
balanced with model complexity. Though we are currently
exploring full Bayesian model comparison, we presently use
the approximation given by the Akaike Information Criterion
(AIC), defined below

AIC =2k — 21In(L) (12)

where k is the number of parameters and L is the likelihood.
The model with the minimum AIC score is the best fit model.
The number of parameters k is computed as follows

k= ni(lw™] + [wl™]) + |Ai| + |Bs| + S| (13)
=1

(a) Node Addition

=
] ’ | | $
i = &]
- i ™ @ n |]
—> @ T -y >
| v =)
. =
. . > [) =
o
B $@$ = RF
=9 =

(b) Node Modification

(c) Edge Addition

Fig. 4. The model selection component of the incremental update pipeline was evaluated using three experiments. In experiment 1 (a), the system should
select the simplest model that fits each color sort demonstration (e.g. for green sort, the second model is best). In experiment 2 (b) and 3 (c), the system
selected between two plausible model updates given the prior FSA plus a new demonstration. In experiment 2 (b), an initial model that can only sort from
half the table must be updated by either modifying its current sort primitive or adding a new sort primitive. In experiment 3 (c), an initial model that can
only sort blue blocks if they are placed in the gripper must be updated by either modifying its current red grasp primitive or adding a new grasp primitive.

This corresponds to summing the number of transition and
dynamics parameters of an FSA’s corresponding STARHMM.
The n; parameters are weighting factors that account for the
number of times the ith primitive is used in the construction of
the phase transition distribution. With the above 7' definition,

n; = |parent(i)| + 1(|children(i)| > 1) (14)

Thus, the number of parameters is proportional to the number
of nodes and edges in the FSA.

E. Initial FSA Construction

The above sections outlined the task model update pipeline
assuming a preexisting FSA. Thus, a method is required that
can construct an initial FSA to start the process. We propose
two methods to initialize the task model update pipeline.
After initialization with either of these methods, the learning
procedure is run to fine-tune the parameters.

USER-DEFINED: Under this method, a user is asked to
provide a semantic breakdown of the task whereby a set of
requisite steps are described. For each of these steps, the user
provides examples of the state configurations that describe the
step’s goal. The user provides demonstrations for the execution
of each step as well as their sequential ordering.

Each step corresponds to a primitive in the FSA, whose
structure is defined by the user-provided ordering. The ini-
tiation and termination classifiers are initialized by training

the logistic regression models under the positive-unlabeled
paradigm described by Elkan and Noto [4]. The goal state
demonstrations of each step are used as positive examples for
that primitive’s termination model, while its initiation model
uses its parents’ goal state demonstrations as positive exam-
ples. All demonstrations can be used as unlabeled examples
for all initiation and termination classifiers. This leaves the
first primitive’s initiation model undefined. To resolve this, all
points within a specified distance of the first points of each
demonstration for that primitive are used as positive examples.
Finally, the dynamics and policy models are trained using the
states and actions recorded during demonstration.

AUTOMATED: Under this method, the user provides demon-
strations of the full execution of the task. The making and
breaking of object contacts can be used to define an initial
segmentation into primitives by spectral clustering using a
similarity metric defined by contact distribution kernels, as
outlined by Kroemer et al. [9]. The FSA structure is defined by
inferring the demonstrations’ primitive traversal and following
the merging procedure outlined in Section [[V-C| Exploration
of this technique is a topic of future work.

V. EXPERIMENTS

This evaluation is aimed at the model selection component
of our approach, which was conducted on a simulated block
sorting domain. The simulation environment consists of a
table, three bins, and a gripper start area. A user can move

Task Model

R RG RGB

Red | -17716.53 | -10533.59 | -3693.94

Demo| Green 0 -2492.32 | 3859.02

Blue 00 7299.87 | 5190.70

(a) Node Addition AIC Scores
Task Model
L R LR L/R

Demo Left - -10364.88 | -13878.30 | -11640.95
Right | -5775.34 - -10873.87 | -8152.87

(b) Node Modification AIC Scores

Task Model
RB* RB R/B
Demo\ Blue | 34880.08 | -771.55 | -380.01

(c) Edge Addition AIC Scores

Fig. 5. In experiment 1 (a), the system selected the smallest model that
encodes each color sort demonstration. In experiment 2 (b), the system opted
to expand the initiation classifier to encompass the whole table (LR) instead
of adding a new primitive (L/R). In experiment 3 (c), the system optde to add
an edge (RB) to model the blue sort demonstration instead of adding a new
primitive (R/B).

the gripper and grasp blocks using the mouse. Blocks appear
on the table with a random color within a pre-specified range
of red, green, and blue (i.e for a red sort task, the block
color is sampled from a red color distribution). The simulated
environment can be seen in Figure [3] The state space of this
environment consists of the gripper location e = (e, e,),
block location b = (bg,b,), block color ¢ = (r,g,b),
and the distances between the gripper and each of the bins
(n" = (ny,ny), n? = (ng,n), nb = (ngmg)) and block:
S = (e,b,clle — n'|,[le — n, e — n||,le — b]]). The
action at each time step was the displacement of the gripper
and a binary variable k indicating if the gripper is closed:
A = (Ae, k).

For each of the experiments described below, expert demon-
strations were used to construct the FSAs using the first of the
two methods outlined in Section [V-El

A. Experiment 1: Node Addition

For the first experiment, three models were constructed: the
first can only sort red blocks; the second can only sort red
and green blocks; and the third can sort red, green, and blue
blocks. One of the authors provided a sorting demonstration
for each color, moving a block from the table to the bin of that
color and returning the gripper to the start location. Then, the
model selection component of our approach was used to select
the appropriate model for each demonstration. The FSAs used
for this experiment can be seen in Figure @(a)]

The AIC scores for each model and demonstration are
shown in Figure As can be seen, the correct model was
selected for each demonstration. Specifically, the simplest FSA
that encodes each demonstration was chosen.

B. Experiment 2: Node Modification

For the second experiment, two initial models were con-
structed: red block sorting from the left side of the table;

and red block sorting from the right side of the table. In
other words, they were trained such that the initiation of the
sort primitive only covers half of the table. For the left sort
model, an expert demonstration was provided that moved a red
block from the right side of the table to the bin and returned
the gripper to the start location. Then, the model selection
component of our approach was used to select between two
plausible model updates: expanding the sort initiation to cover
the entire table (node modification) or adding a primitive to
sort from the right side. We also ran a symmetric experiment
for the right sort model. The FSAs used in this experiment
can be seen in Figure (b))

The AIC scores for each model and demonstration are
shown in Figure As can be seen, the system opted to
expand the sort primitive initiation classifier (LR) in each
case since the increase in likelihood achieved when adding
a new primitive wasn’t enough to counterbalance the increase
in parameters.

C. Experiment 3: Edge Addition

For the third experiment, an initial model was constructed
that can sort red blocks but can’t fully sort blue blocks.
Specifically, the model couldn’t grasp blue blocks, but could
sort them if they were placed in the gripper. An expert
demonstration was provided that moved a blue block from
the table to the blue bin and returned the gripper to the
start location. Then, the model selection component of our
approach was used to select between two plausible model
updates: adding an edge from the grasp to sort blue primitive
or adding a new grasp blue primitive. The FSAs used in this
experiment can be seen in Figure [4(c)

The AIC scores for each model are shown in Figure [5(c)} As
can be seen, the system opted to add a new edge (RB) since the
increase in likelihood achieved when adding a new primitive
wasn’t enough to counterbalance the increase in parameters.

VI. CONCLUSION

As robots enter unstructured real-world environments, they
will require a way to incrementally update and adapt their
task models in order to account for unforeseen scenarios.
We introduce an approach to discover such model updates
through iterative constrained search and selection, covering a
range of transformations needed to correct different modeling
errors. Given demonstrations, model updates are found that
make specified changes to the task model, after which the
best among these updates is selected for incorporation into the
original task model. The selection component of this pipeline
was evaluated in this work.

We demonstrated that given demonstrations of un-modeled
behavior, the proposed model selection framework chooses the
simplest task model that fits the demonstrations. This then
served as an update to the original task model. Each of the
experiments resulted in the selection of the simplest good-
fit model. Thus, our experiments indicate that STARHMM
representations of FSA task models can be used to perform
this model selection.

The immediate next step is the implementation of the
automated candidate correction model learning procedure, as
well as testing the full pipeline in more complex domains.
The current formulation must use the entire set of objects in
each of the of the initiation, termination, and dynamics models.
This will lead to computational inefficiencies as the state space
grows. Thus, it would be useful to modify the STARHMM to
select the relevant object subset for each model. In addition,
incorporating policy into the STARHMM would allow more
direct learning and adaptation of the policy models.

ACKNOWLEDGMENTS

This work has taken place in the Socially Intelligent Ma-
chines (SIM) lab and the Personal Autonomous Robotics Lab
(PeARL) at The University of Texas at Austin. SIM and
PeARL research is supported in part by the National Science
Foundation (IIS-1638107).

REFERENCES

[1] Baris Akgun, Maya Cakmak, Karl Jiang, and Andrea L
Thomaz. Keyframe-based learning from demonstration.
International Journal of Social Robotics, 4(4):343-355,
2012.

[2] Brenna D Argall, Sonia Chernova, Manuela Veloso,
and Brett Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57
(5):469-483, 2009.

[3] Sonia Chernova and Manuela Veloso. [Interactive policy
learning through confidence-based autonomy. Journal of
Artificial Intelligence Research, 34(1):1, 2009.

[4] Charles Elkan and Keith Noto. |Learning classifiers
from only positive and unlabeled data. In Proceedings
of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 213-220.
ACM, 2008.

[5] Ashesh Jain, Brian Wojcik, Thorsten Joachims, and
Ashutosh Saxena. |Learning trajectory preferences for
manipulators via iterative improvement. In Advances in
neural information processing systems, pages 575-583,
2013.

[6] Daniel Kappler, Peter Pastor, Mrinal Kalakrishnan,
Manuel Wiithrich, and Stefan Schaal. Data-Driven On-
line Decision Making for Autonomous Manipulation. In
Robotics: Science and Systems, 2015.

[7] George Konidaris, Scott Kuindersma, Roderic Grupen,
and Andrew Barto. |CST: Constructing Skill Trees by
Demonstration. Doctoral Dissertations, University of
Massachuts, Ahmrest, 2011.

[8] George Konidaris, Scott Kuindersma, Roderic A Grupen,
and Andrew G Barto. Autonomous Skill Acquisition on
a Mobile Manipulator. In AAAIL 2011.

[9] Oliver Kroemer, Christian Daniel, Gerhard Neumann,
Herke Van Hoof, and Jan Peters. Towards learning
hierarchical skills for multi-phase manipulation tasks. In
Robotics and Automation (ICRA), 2015 IEEE Interna-
tional Conference on, pages 1503-1510. IEEE, 2015.

[10] Scott Niekum, Sarah Osentoski, George Konidaris, and
Andrew G Barto. Learning and generalization of complex
tasks from unstructured demonstrations. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ Interna-
tional Conference on, pages 5239-5246. IEEE, 2012.
Scott Niekum, Sachin Chitta, Andrew G Barto, Bhaskara
Marthi, and Sarah Osentoski. Incremental Semantically
Grounded Learning from Demonstration. In Robotics:
Science and Systems, volume 9, 2013.

Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan
Schaal. [Learning and generalization of motor skills by
learning from demonstration. In Robotics and Automa-
tion, 2009. ICRA’09. IEEE International Conference on,
pages 763—-768. IEEE, 2009.

Peter Pastor, Mrinal Kalakrishnan, Ludovic Righetti, and
Stefan Schaal. [Towards associative skill memories.
In Humanoid Robots (Humanoids), 2012 12th IEEE-
RAS International Conference on, pages 309-315. IEEE,
2012.

Lorenzo Riano and T Martin McGinnity. Automatically
composing and parameterizing skills by evolving finite
state automata. Robotics and Autonomous Systems, 60
(4):639-650, 2012.

(11]

[12]

(13]

(14]

https://link.springer.com/article/10.1007/s12369-012-0160-0
http://www.sciencedirect.com/science/article/pii/S0921889008001772
http://www.sciencedirect.com/science/article/pii/S0921889008001772
http://www.aaai.org/Papers/JAIR/Vol34/JAIR-3401.pdf
http://www.aaai.org/Papers/JAIR/Vol34/JAIR-3401.pdf
http://delivery.acm.org/10.1145/1410000/1401920/p213-elkan.pdf?ip=128.83.158.124&id=1401920&acc=ACTIVE%20SERVICE&key=603D2E7028CD4EF5%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=934978153&CFTOKEN=51747676&__acm__=1494489499_beb967bbaf5ccff45386d2d1eb1d0043
http://delivery.acm.org/10.1145/1410000/1401920/p213-elkan.pdf?ip=128.83.158.124&id=1401920&acc=ACTIVE%20SERVICE&key=603D2E7028CD4EF5%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=934978153&CFTOKEN=51747676&__acm__=1494489499_beb967bbaf5ccff45386d2d1eb1d0043
http://papers.nips.cc/paper/5179-learning-trajectory-preferences-for-manipulators-via-iterative-improvement
http://papers.nips.cc/paper/5179-learning-trajectory-preferences-for-manipulators-via-iterative-improvement
https://pdfs.semanticscholar.org/6941/c6657c3ac5023eb8b26c85e0f8b2a29b1af1.pdf
https://pdfs.semanticscholar.org/6941/c6657c3ac5023eb8b26c85e0f8b2a29b1af1.pdf
http://projects.iq.harvard.edu/files/scottk/files/cst-ws.pdf
http://projects.iq.harvard.edu/files/scottk/files/cst-ws.pdf
http://people.csail.mit.edu/gdk/pubs/arsa-aaai.pdf
http://people.csail.mit.edu/gdk/pubs/arsa-aaai.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7139389
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7139389
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6386006
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6386006
http://www.roboticsproceedings.org/rss09/p48.pdf
http://www.roboticsproceedings.org/rss09/p48.pdf
http://ieeexplore.ieee.org/abstract/document/5152385/
http://ieeexplore.ieee.org/abstract/document/5152385/
http://ieeexplore.ieee.org/abstract/document/6651537/
http://ac.els-cdn.com/S0921889012000036/1-s2.0-S0921889012000036-main.pdf?_tid=e06ab2b0-3501-11e7-bb3c-00000aab0f6b&acdnat=1494366963_91e2fc479e807b2ea05ebb1e12a251ea
http://ac.els-cdn.com/S0921889012000036/1-s2.0-S0921889012000036-main.pdf?_tid=e06ab2b0-3501-11e7-bb3c-00000aab0f6b&acdnat=1494366963_91e2fc479e807b2ea05ebb1e12a251ea
http://ac.els-cdn.com/S0921889012000036/1-s2.0-S0921889012000036-main.pdf?_tid=e06ab2b0-3501-11e7-bb3c-00000aab0f6b&acdnat=1494366963_91e2fc479e807b2ea05ebb1e12a251ea

	Introduction
	Related Work
	Background
	Finite State Automaton
	State Transition Auto-Regressive Hidden Markov Model

	Approach
	FSA-STARHMM Conversion
	Candidate Correction Application
	FSA Updates
	Model Selection
	Initial FSA Construction

	Experiments
	Experiment 1: Node Addition
	Experiment 2: Node Modification
	Experiment 3: Edge Addition

	Conclusion

