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Abstract. Although many supertree methods have been developed in the last few
decades, none has been shown to produce more accurate trees than the popular
Matrix Representation with Parsimony (MRP) method. In this paper, we evaluate
the performance of several supertree methods based upon the Quartets MaxCut
method of Snir and Rao. We show that two of these methods usually outperform
MRP and all other supertree methods we studied under many realistic model
conditions. In addition, we show that the popular criterion of minimizing the total
topological distance to the source trees is only weakly correlated with topological
accuracy, and therefore that evaluating supertree methods on biological datasets
is problematic.

1 Introduction

Supertree methods comprise one approach to reconstructing large molecular
phylogenies given a set (called a profile) of estimated trees (called source trees)
for overlapping subsets of the entire set of taxa. Source trees are combined into
a single supertree on the full set of taxa using various algorithmic techniques.
Because of the computational difficulties in estimating large phylogenies, many
computational biologists think that the only feasible strategy to estimating the
Tree of Life will involve a divide-and-conquer approach where trees are esti-
mated on subsets of taxa and a supertree method is used to assemble a tree
on the entire taxon set from the source trees. While there are many supertree
methods, only MRP is used regularly in supertree constructions on biological
datasets (4); furthermore, no other supertree method has been shown to produce
trees that are comparable in accuracy to MRP under the standard bipartition
metric (5).

One version of the supertree estimation problem uses quartet amalgamation
methods. Each estimated source tree is encoded by an appropriately chosen sub-
set of its induced quartet trees, and the set of quartets (the union of the chosen
subsets for each source tree) is used to estimate a supertree. Quartet amalga-
mation methods can thus be used to assemble supertrees from source trees of
arbitrary size.



The Maximum Quartet Consistency (MQC) problem is a natural optimiza-
tion problem, in which the input is a set of quartet trees and a supertree is sought
that displays the maximum number of quartet trees. MQC is NP-hard, and gen-
erally hard to approximate except in special cases (3; 15; 6; 11). Theoretical
results and heuristics for the special case where the input set contains a tree on
every quartet appear in (24; 20; 14; 16; 22). In a recent paper (21), Snir and
Rao presented Quartets MaxCut (QMC), a heuristic for MQC that can be ap-
plied to arbitrary sets of quartet trees (i.e., ones that may not contain a tree on
every quartet). Snir and Rao showed that by encoding the source trees as quartet
trees, QMC could be used as a generic supertree method. They then constructed
supertrees using this QMC-based supertree method for a number of biological
supertree profiles. Since the true supertree was not known, they could not eval-
uate the topological accuracy of the supertrees they constructed; instead, they
compared the QMC supertree to the source trees to produce two different aver-
age similarity measures for each supertree. A comparison between QMC-based
supertrees and MRP supertrees showed that QMC had higher average similar-
ity to the source trees under one criterion, and lower average similarity with
respect to another. QMC’s failure to outperform MRP as a supertree method
with respect to the average similarity to the source trees should not be consid-
ered a serious limitation for two reasons. First, average similarity to the source
trees is not the same as accuracy with respect to the true tree (a phenomenon
we investigate directly in this paper). Second, QMC depends critically upon the
specific technique used to encode each source tree as a set of quartet trees. In
other words, QMC might be producing highly accurate trees even though the
average similarity is lower than MRP, and it might produce more accurate trees
if other encodings of the source trees were used.

In this paper, we report results from a study in which we employ several
encodings of the source trees by quartet trees and apply QMC to the resultant
sets of quartet trees. We compare the accuracy of QMC using different encod-
ings to MRP and five other supertree methods: Robinson-Foulds Supertrees (1),
Q-Imputation (13), MinFlip (8; 7; 9), SFIT (10), and PhySIC (19). We find
that the topological accuracy of QMC supertrees computed on different encod-
ings varies substantially. Two QMC-based supertree methods, QMC(All) and
QMC(Exp+TSQ) (differing only in how the source trees are encoded), perform
similarly and outperform all the other supertree methods under many realistic
model conditions, and have comparable accuracy under most others. However,
MRP outperforms all QMC methods on the largest (1000-taxon) datasets. Fi-
nally, we find that using topological similarity to source trees as a proxy for
topological accuracy with respect to the true tree is of limited use, and can be
misleading. Thus, evaluating supertree methods on biological datasets is prob-



lematic, and supertree methods that seek to minimize topological distance to
source trees may not have the best accuracy.

2 Basics

Supertree Datasets Because of the taxon sampling strategies used by biologists,
source trees tend to be focused either on intensively sampled, smaller subgroups,
like big cats, or on larger, sparsely sampled groups, like all vertebrates. The
first type is called a clade source tree, and the second type is called a scaffold.
Supertree profiles include scaffolds to ensure sufficient overlap among the clade
trees.

The input to the supertree problem is a set of source trees, {t1, t2, . . . , tk},
on subsets of a set S of taxa. Source trees are often estimated using biomolecular
sequence datasets. Each source tree is estimated on its aligned sequence dataset
using computationally intensive methods–e.g., maximum parsimony or maxi-
mum likelihood heuristics like RAxML (23). A supertree method combines the
source trees into a tree on the full dataset.

Matrix Representation with Parsimony Matrix representation with parsimony
(MRP) (2; 18) is currently the most widely used supertree method. It encodes
source trees as a matrix of partial binary characters: all entries in the matrix are
0, 1, or ?, with each column in the matrix defined by a single edge in a source
tree. The matrix is then analyzed using a heuristic for the NP-hard maximum
parsimony problem (12).

Quartets MaxCut (QMC) QMC is a quartet amalgamation method, operating
in polynomial time and providing no guarantees with respect to its optimization
problem, MQC. The source trees are encoded by sets of quartet trees, and QMC
is applied to the union of these sets.

Quartet Encodings of Source Trees Here, we explore several techniques for
representing source trees by sets of quartet trees. Two of these techniques use
random sampling strategies (21), which are based upon computation of the topo-
logical distance between leaves in the source tree. The topological diameter of
a quartet tree q with respect to a source tree t is the maximum of its leaf-to-leaf
topological distances within the source tree and is denoted diamt(q). The quar-
tet encoding strategies used in (21) also include calculation of the Topologically-
Short Quartet (TSQ) trees, defined as follows: For each edge in a source tree,
pick the topologically nearest leaves in each of the subtrees around the edge. If
two or more leaves within a subtree have the same topological distance to the
edge, pick all such leaves. The set of quartet trees formed by picking one such



leaf from each subtree forms the TSQs around that edge. The union of all these
is the set of TSQ trees.

We tested five strategies for encoding a source tree t by a set of quartet trees:

All quartets: include all induced four-taxon trees.
k-short: a generalization of the TSQs: for each edge in a source tree, pick the

k topologically nearest leaves in each of the subtrees around that edge. The
(approximately) k4 quartets of leaves are the k-short quartet trees around
that edge, and the set of all such k-short quartet trees (unioning over all the
internal edges) forms the set k-short. In this study, we let k = 5 and k = 25.

Geo+TSQ: include a quartet q with probability d−3 where d = diamt(q), and
add the TSQ trees (this was studied in (21)).

Exp+TSQ: compute the topological distance between every pair of leaves, in-
clude a quartet with probability 1.5−d where d = diamt(q), and add the
TSQ trees (this was also studied in (21)).

3 Performance Study

We performed a study using simulated datasets to evaluate QMC-based su-
pertree methods in comparison to MRP and other supertree methods. Simula-
tions are used to evaluate phylogeny estimation methods, because the true tree is
known exactly. For our simulations, we used the SMIDGen (25) methodology,
and used datasets with 100, 500 and 1000 taxa. We used SMIDGen to produce
supertree datasets of mixed source trees, consisting of one scaffold dataset (pro-
duced by a random selection of taxa from the entire dataset) and many clade-
based datasets (focused, dense taxon sampling within a rooted subtree).

Simulation Study Design: For this study, we used simulated datasets gener-
ated for another study (25), and, therefore, describe the methodology only in
brief. The simulated datasets are produced by simulating evolution under a
GTR+Gamma+I process, down pure-birth model trees, deviated from a clock,
and containing up to 1000 leaves. We generated 30 replicates for each 100- and
500-taxon model condition, and 10 replicates for each 1000-taxon model con-
dition. Each model condition is indicated by the density of the scaffold dataset,
which is the percentage of the entire taxon set in the scaffold dataset, with scaf-
fold densities ranging from 20% to 100%. We used RAxML (23) to estimate
phylogenetic trees. We performed the MP search in the MRP analyses, using
a very effective heuristic search technique called the Ratchet (17), and com-
puted a greedy consensus (gMRP) tree for the set of most parsimonious trees
found during this search. We also computed supertrees based upon five ways of
encoding the source trees as sets of quartet trees and then applying QMC, as



described above. Finally, we computed supertrees using several other methods,
including Q-imputation (Q-Imp), Robinson-Foulds Supertrees (RFS), MinFlip,
SFIT, and PhySIC, all in their default settings. For RFS, MinFlip, and PhySIC,
methods that require rooted trees, we used mid-point rooting to root the source
trees, a method commonly used to root unrooted trees and particularly appro-
priate because our source trees were not strongly deviated from ultrametricity.
We computed three types of topological error rates for each estimated supertree
when compared with the model tree: false positive rates, false negative rates,
and Robinson-Foulds rates. We also computed the total topological distance of
each supertree to the estimated source trees, using FN (false negative), FP (false
positive) and RF (bipartition distance) errors modified so that we could handle
trees on different taxon datasets. We restricted the supertree to the subset of
taxa for the source tree, and then compute the topological distances between the
two trees. We note that the bipartition distance, also known as the “Robinson-
Foulds” (RF) distance, is the standard metric used in most studies. In our study,
we show both FN and FP as well, thus providing a more nuanced description of
error. Because QMC failed to return trees on some inputs, we restricted our re-
sults to datasets for which all the reported methods returned trees. This reduced
the number of replicates for some model conditions. We also recorded the run-
ning time of each method on each dataset. Because the analyses were run under
Condor (a distributed software environment (26)), running times (for the larger
datasets, especially) are inexact and are larger than if they had been run on a
dedicated processor. Running times are, therefore, an approximation of the time
needed to perform these analyses.

4 Results

4.1 Exploring QMC under Different Source Tree Encodings

We compared the performance of the QMC variants and gMRP (Fig. 1). For a
given model condition, we include only those methods that successfully com-
pleted on at least one third of the replicates, and display results for only those
replicates on which every selected method successfully completed. We report
performance with respect to FN rates, but the performance with respect to FP
and RF rates is almost identical.

On the mixed 100-taxon datasets, QMC(All) and QMC(Exp+TSQ) were es-
sentially tied as the best methods, followed by gMRP. Furthermore, QMC(All)
and QMC(Exp+TSQ) had the greatest advantage over gMRP for the sparse scaf-
fold cases. The other QMC variants had worse accuracy. On a large number of
the 500- and 1000-taxon datasets, many of the QMC variants failed to com-
plete, indicating that computational requirements can limit QMC’s utility. On
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Fig. 1. Average topological error (False Negative (FN) rates) with standard error regions on mixed
source-tree datasets. We use shaded regions in place of standard error bars as it better demon-
strates overlap; however, the shading between data points for a method is not intended as an
interpolation of error for scaffold factors not tested. Results are reported for the QMC variants
and gMRP, as a function of the scaffold factor and by number of taxa. Points are graphed for a
method if it had at least six datasets that completed in common with all other methods.

the 500-taxon datasets for which QMC(Exp+TSQ) could be run, it produced
topologically more accurate trees than gMRP, giving the biggest advantage on
the sparse scaffold datasets. For the 1000-taxon datasets, gMRP outperformed
all the QMC variants that completed. However, most QMC variants failed to
return trees on most inputs.

4.2 Comparing QMC(Exp+TSQ) to Other Supertree Methods

We compared QMC(Exp+TSQ) to six other supertree methods: gMRP, Q-Imp,
SFIT, MinFlip, PhySIC, and Robinson-Foulds Supertrees (RFS).

All of these methods could be run on the 100-taxon datasets, but some failed
to run on the larger datasets. For this reason, we obtained results for all seven
methods on the 100-taxon datasets, but only five methods on the 500-taxon
datasets (where SFIT and Q-Imp failed to run, due to computational limitations),
and only four methods on the 1000-taxon datasets (where we did not try to run
PhySIC, since it was computationally intensive for the 500-taxon datasets). In



addition, QMC(Exp+TSQ) failed to run on some datasets; we therefore only re-
port results for those datasets on which all reported methods were able to run.
PhySIC gives by far the worst results, producing completely unresolved trees
except when the scaffold density is 100%, at which point it produces results
that are still worse than the other methods. Because of it is not competitive with
other methods, we omit PhySIC from our graphs.
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Fig. 2. We report False Negative (FN) rates (means with standard error regions) for
QMC(Exp+TSQ), gMRP, SFIT, MinFlip, RFS, and Q-Imp, as a function of the scaffold factor,
for 100-, 500- and 1000-taxon model conditions.

The experiments show that three methods–QMC(Exp+TSQ), Q-Imp, and
gMRP–generally outperform the remaining methods with respect to topological
accuracy (Fig. 2). As with Fig. 1, in Fig. 2 we only include results for replicates
for which all displayed methods were able to complete. Since Fig. 2 includes
a different collection of methods, the results for a different collection of repli-
cates are used. On the 100-taxon datasets, QMC(Exp+TSQ) and Q-Imp both
gave higher accuracy than gMRP and all other methods (except on the 100%
scaffold datasets, where they were equal to gMRP). On the 500-taxon datasets
with sparse scaffolds, QMC(Exp+TSQ) performed better than all methods, with
only a slight advantage over gMRP. On the 500-taxon datasets with dense (75%



and 100%) scaffolds, QMC(Exp+TSQ) and gMRP were the most accurate, and
had essentially the same accuracy. On the 1000-taxon datasets, gMRP had an ad-
vantage over QMC(Exp+TSQ) and other methods, and QMC(Exp+TSQ) failed
to run on the dense scaffold datasets (QMC fails to run on profiles with large
source trees, due to computational reasons). The remaining methods–PhySIC,
SFIT, MinFlip, and RFS–are generally less accurate than QMC(Exp+TSQ), Q-
Imp, and gMRP, and some (i.e., PhySIC and SFIT) cannot be run on large
datasets. Interestingly, RFS outperforms QMC(Exp+TSQ) on the 1000 taxon
datasets, where it matches the accuracy on the sparse scaffold datasets and (un-
like QMC(Exp+TSQ)) is able to run on the dense scaffold datasets.

4.3 Evaluating Supertree Methods on Biological Datasets

For biological datasets, the true tree is not available, so evaluations of accuracy
have tended to use average or total topological distance to the source trees (for
example, (1; 21)). To test whether this is a good proxy for the quality of the
supertree, we computed three distances for each supertree T to the profile T of
source trees:

– SumFN is defined as follows: SumFN(T, T ) =
∑

t∈T (FN(T,t))

M , where
FN(T, t) is the number of edges in t that do not appear in T , and
M =

∑
t∈T mt, where mt is the number of internal edges in t.

– SumFP and SumRF are defined similarly, with FP(T, t) and RF(T, t) re-
placing FN(T, t), respectively. Here, FP denotes the false positive distance
and RF denotes the Robinson-Foulds (“bipartition”) distance. Each distance
is normalized to produce a value between 0 and 1. The false positive distance
between a supertree T and a source tree t in the profile T is the number of
edges in T that do not appear in t, and the Robinson-Foulds distance is the
total number of missing and false positive edges.

Note that if the supertree and all source trees are binary, then for each source
tree t, RF(T, t) = 2FN(T, t) = 2FP(T, t), and after normalization all three
distances are equal.

We examined how closely measurements of this sort are correlated to ac-
tual topological accuracy, that is, how closely SumFN, SumFP, or SumRF are
correlated to the FN, FP or RF distance to the true tree. We found the correla-
tions to be largely independent of the choice of topological distance to source
trees (SumFN, SumFP, or SumRF) or topological error (FN, FP or RF). The
reason for this was that the true supertree was fully resolved or nearly so, and
all the computed supertrees were either fully resolved or nearly so. We there-
fore present results focusing on the correlation between SumFN (topological
distance to the source trees) and FN (topological distance to the true tree).



To assess whether SumFN, SumFP or SumRF is a good optimality criterion,
we calculated Spearman rank-correlations for each of the 100-taxon simulated
datasets for the six supertree methods that consistently perform reasonably well
(MinFlip, gMRP, Q-Imp, QMC(All), QMC(Exp+TSQ), and RFS). Correlations
were calculated for each of these measures of distance to source trees and each
of FN, FP and RF (calculated by comparing the supertree estimated by each
of the methods with the true tree). The statistics were calculated this way to
test whether the rank-order of the topological distances to source trees corre-
lated strongly with the true rank-order of the supertrees, in terms of topological
accuracy with respect to the true tree.

The results (Table 1) show clearly that attempting to optimize the total dis-
tance to the source trees is of limited use in producing accurate supertrees. None
of the optimality criteria averaged better than 60% correlation with measures of
true accuracy for a given scaffold factor, and for some datasets, the criteria were
negatively correlated with the true quality of the supertrees that were estimated.

Table 1. Results of Spearman rank-order correlations of SumFN, SumFP, and SumRF with the
true FN, FP, and RF measures of supertrees estimated using six supertree methods.

FN FP RF
scaffold optimality
factor criterion mean range mean range mean range

SumFN 0.401 -0.890, 0.939 0.376 -0.890, 0.926 0.391 -0.890, 0.926
25 SumFP 0.421 -0.890, 0.939 0.421 -0.890, 0.926 0.426 -0.890, 0.926

SumFN 0.406 -0.890, 0.939 0.395 -0.890, 0.926 0.406 -0.890, 0.926
SumFN 0.544 -0.203, 1.000 0.536 -0.348, 0.971 0.541 -0.203, 0.971

50 SumFP 0.546 -0.143, 1.000 0.539 -0.257, 0.971 0.543 -0.143, 0.971
SumRF 0.546 -0.143, 1.000 0.539 -0.257, 0.971 0.543 -0.143, 0.971
SumFN 0.593 -1.000, 0.986 0.589 -1.000, 0.986 0.591 -1.000, 0.986

75 SumFP 0.593 -1.000, 0.986 0.589 -1.000, 0.986 0.591 -1.000, 0.986
SumRF 0.593 -1.000, 0.986 0.589 -1.000, 0.986 0.591 -1.000, 0.986
SumFN 0.447 -0.789, 1.000 0.447 -0.789, 1.000 0.447 -0.789, 1.000

100 SumFP 0.447 -0.789, 1.000 0.447 -0.789, 1.000 0.447 -0.789, 1.000
SumRF 0.447 -0.789, 1.000 0.447 -0.789, 1.000 0.447 -0.789, 1.000

Thus, the correlation between topological distance to source trees and topo-
logical error (i.e., distance to the true tree) tends to be only weakly positive, so
that while, in general, supertrees with smaller topological distance to the source
trees are more accurate, there can be more accurate supertrees with higher topo-
logical distance to the source trees. These results suggest that the highest accu-
racy supertrees may not optimize SumFN (or any other topological distance to
source trees).



This observation has two consequences for supertree analyses. First, directly
trying to optimize the topological distance is not likely to produce the most accu-
rate trees, since better trees are being produced through other means. Secondly,
because the true tree is not known for biological supertree datasets, it is difficult
to evaluate supertree methods using biological datasets.

These conclusions are clearly based upon the conditions of this experiment,
in which the source trees were reasonably, but not extremely, accurate. However,
when source trees have no error at all, the true tree is guaranteed to minimize the
distance to the source trees. Under this condition, MRP will also be guaranteed
to return the true tree as one of the solutions. Thus, for very highly accurate
source trees, both MRP and minimizing the total topological distance may be
very good optimality criteria; the issue is how well supertree methods perform
under more realistic conditions, where source trees have error.

4.4 Scalability

We now discuss running time issues on simulated data. Fig. 3 gives the results
for the QMC variants and gMRP, and Fig. 4 gives results for QMC(Exp+TSQ),
gMRP, and the other (not QMC-based) supertree methods.
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on mixed datasets; the y-axis is given with a logarithmic scale.
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Supertree methods on the simulated datasets showed some differences in
running times. First, gMRP was faster than the accurate QMC variants for most
of the model conditions, and the degree of improvement ranged from very small
(a few seconds) to several hours. In general, we saw that profiles with large
source trees were particularly difficult for QMC(Exp+TSQ) and QMC(All), and
that for such datasets, gMRP had a running time advantage.

We note that the running times of QMC(Geo+TSQ), QMC(Exp+TSQ), and
QMC(All) are directly impacted by the size of the source trees, since each four-
tuple of taxa must be examined to produce the quartet trees. Thus, for large
source trees, we expect these three methods to suffer computational limitations.

5 Conclusions

This study makes several important contributions. First, we show that while
MRP is still the most accurate supertree method for the largest datasets, both
QMC(Exp+TSQ) and Q-Imp produce more accurate supertrees than MRP and
other supertree methods for the smaller (100- and 500-taxon) datasets. There-
fore, an effort should be made to produce scalable and robust implementations
of the quartet methods, QMC(Exp+TSQ) and Q-Imp. Each of these methods



produces, at some point, a quartet encoding of the source trees. Scalable im-
plementations of these methods will require not using all the quartets in these
encodings, as such approaches simply will fail on large datasets.

The second important contribution of this study is that the total topological
distance to the source trees only provides limited information about topological
accuracy, and that reliable comparisons can only be made between supertrees
that have very different total topological distances. Consequently, previous stud-
ies that have explored performance of supertree methods using total topological
distance to the source trees need to be revisited.
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