
ICPC World Finals Moscow, Invitational
Online, September 30, 2021

Problem A. Anti-Tetris
Time limit: 2 seconds

Let us consider the game “Sticky Tetris”. In this game, there is a field of n×m squares. Tiles appear on
the field and the player can move the tiles.

Each tile is a 4-connected set of at most 7 squares.

Each new tile appears in any position that fits inside the field, does not intersect any other tile, and the
top cell of the tile is at the top row of the field. The player can move the tile left, right, and down, and at
any moment the tile must still entirely fit inside the field and must not intersect other tiles. The player
can stop the tile at any position at any time. After that, it cannot be moved. Since this is “Sticky Tetris,”
the tile will not fall once stopped.

You are given a final configuration of a “Sticky Tetris” game. You need to restore a sequence of steps that
leads to that configuration if it exists.

Input
The first line contains two integers n and m (1 ≤ n,m ≤ 50) — the size of the playing field.

The next n lines contain a string of m characters each. Each character could be either a ‘.’, or lowercase
English letter. Connected components of the same letter correspond to a single tile. Each tile consists of
at most 7 squares.

Output
If there is no solution, print −1.
Otherwise, print k — the number of different tiles that are placed on the field.

On the next k lines print the sequence of steps for each of the tiles in the order they are placed.

Each line consists of a number x followed by a string with steps. x (1 ≤ x ≤ m) is the starting column of
the leftmost square in the top row of the tile. The string consists of characters ‘L’ (for left), ‘R’ (for right),
and ‘D’ (for down), describing the path of that tile, ending with a single character ‘S’ (for stop). The final
position of the tile determines which tile is being placed. The string with steps can have at most n ·m+1
characters.

Examples
standard input standard output

3 2
aa
ab
aa

2
2 DS
1 S

5 6
....dd
.ccccd
.cbbdd
.aab.a
aabbaa

5
2 DDDS
4 DDLS
6 DDDS
2 DS
5 S

5 3
...
aab
abb
aab
.bb

-1

Page 1 of 18

ICPC World Finals Moscow, Invitational
Online, September 30, 2021

Problem B. Building Forest Trails
Time limit: 3 seconds

There are n villages lying equidistant on a circle in the middle of a thick, impassable forest. From ancient
times, it was impossible to move from one village to another, but technical progress has changed a lot.
Now, there is a technology to build passable trails in the forest.

The building process consists of m events. Each event is either building a trail or querying if two villages
are connected. Trails are built as straight lines connecting two villages. After a trail is built, anybody can
walk along the trail from one village to another.

Moreover, if two trails cross, anybody can turn at the intersection, and if other trails leave a village you
have just reached, they can also be used to walk along. So, for example, if villages are numbered 1 to 6
in the order around the circle, and there are trails 1 to 3, 2 to 4, and 4 to 6, then all villages, except the
5-th, are reachable from the 1-st village.

Given a list of m events, for each query, find if two given villages are reachable from each other at that
moment.

Input
The first line contains two integers n (2 ≤ n ≤ 2 · 105) and m (1 ≤ m ≤ 3 · 105) — the number of villages
and the number of events respectively.

Next m lines contain events. Each event description consists of three integers e (e is 1 or 2), v (1 ≤ v ≤ n),
and u (1 ≤ u ≤ n, u 6= v). If e = 1, then the event is building a trail between villages v and u. If e = 2,
then the event is a query if the villages v and u are connected. It is guaranteed that each trail is built at
most once.

Villages are numbered 1 to n in clockwise order around the circle.

Output
For each query print one character ‘0’ if villages are not reachable, and ‘1’ if villages are reachable from
each other. Print answers for all queries as a single string in one line.

Examples
standard input standard output

6 9
1 1 3
1 4 6
2 3 4
1 2 4
2 1 2
2 1 3
2 1 4
2 6 1
2 5 3

011110

2 5
2 1 2
2 2 1
1 1 2
2 1 2
2 2 1

0011

Page 2 of 18

ICPC World Finals Moscow, Invitational
Online, September 30, 2021

Problem C. Cactus Lady and her Cing
Time limit: 5 seconds

Cactus lady loves her cactuses very much. Especially she likes a small cactus named Cing. Cing can be
seen as a connected undirected graph in which every vertex lies on at most one simple cycle. Intuitively,
a cactus is a generalization of a tree where some cycles are allowed. Multiedges (multiple edges between
a pair of vertices) and loops (edges that connect a vertex to itself) are not allowed.

She bought a special grid for her special little cactus Cing. This grid can be represented as a
graph consisting of two paths of length 400 000, u(0,−200 000) − u(0,−199 999) − . . . − u(0,200 000) and
u(1,−200 000) − u(1,−199 999) − . . .− u(1,200 000), connected together by 400 001 edges (u(0,i), u(1,i)) for each i.
In other words, a grid can be seen as a ladder.

u(0,−200 000) u(1,−200 000)

u(0,−199 999) u(1,−199 999)

u(0,−199 998) u(1,−199 998)

u(0,200 000) u(1,200 000)

...
...

Cactus lady wants to know whether she can embed Cing into this grid, i.e., map each vertex of the cactus
onto a separate vertex of the grid while each edge of the cactus will be mapped onto some edge of the
grid.

Input
The first line contains an integer t — the number of test cases.

Each test case begins with a line containing two integers n and m — the number of vertices and the
number of edges in a given cactus, respectively (1 ≤ n ≤ 200 000; 0 ≤ m ≤ 250 000).

Each of the following m lines contains two integers v and u, describing the edges of the cactus
(1 ≤ v, u ≤ n, u 6= v).

The total sum of all n in the input doesn’t exceed 200 000.

Output
Print an answer for each test case in the same order the cases appear in the input.

For each test case print “No” in the first line, if no layout exists.

Otherwise print “Yes” in the first line, and the following n lines describing the layout. The i-th of
these n lines should contain two integers xi and yi, the location of the i-th vertex (0 ≤ xi ≤ 1;
−200 000 ≤ yi ≤ 200 000).

Page 3 of 18

ICPC World Finals Moscow, Invitational
Online, September 30, 2021

Example
standard input standard output

5
4 3
1 2
2 3
3 4

8 7
1 2
3 2
2 4
4 5
4 6
6 7
6 8

5 4
1 2
1 3
1 4
1 5

8 9
1 2
2 3
3 4
1 4
4 5
5 6
6 7
7 8
5 8

10 10
1 2
2 3
3 4
4 5
5 6
6 1
3 7
4 8
1 9
6 10

Yes
0 0
0 1
1 1
1 2
Yes
0 3
1 3
1 4
1 2
0 2
1 1
0 1
1 0
No
Yes
0 0
1 0
1 1
0 1
0 2
0 3
1 3
1 2
Yes
1 1
1 2
1 3
0 3
0 2
0 1
1 4
0 4
1 0
0 0

Note
Empty lines between test cases are for clarity. In real test cases there are no empty lines.

In these notes, we consider the embeddings for tests 2 and 4.

We start with the embedding for test 2.

Page 4 of 18

ICPC World Finals Moscow, Invitational
Online, September 30, 2021

8

7 6

5 4

1 2

3

u(0,0) u(1,0)

u(0,1) u(1,1)

u(0,2) u(1,2)

u(0,3) u(1,3)

u(0,4) u(1,4)

. . .

. . .

Here goes the embedding for test 4.

1 2

4 3

5 8

6 7

u(0,0) u(1,0)

u(0,1) u(1,1)

u(0,2) u(1,2)

u(0,3) u(1,3)

. . .

. . .

Page 5 of 18

ICPC World Finals Moscow, Invitational
Online, September 30, 2021

Problem D. Dragon Curve
Time limit: 5 seconds

A dragon curve is a self-similar fractal curve. In this problem, it is a curve that consists of straight-line
segments of the same length connected at right angles. A simple way to construct a dragon curve is as
follows: take a strip of paper, fold it in half n times in the same direction, then partially unfold it such
that the segments are joined at right angles. This is illustrated here:

In this example, a dragon curve of order 3 is constructed. In general, a dragon curve of a higher order
will have a dragon curve of a lower order as its prefix. This allows us to define a dragon curve of infinite
order, which is the limit of dragon curves of a finite order as the order approaches infinity.

Consider four dragon curves of infinite order. Each starts at the origin (the point (0, 0)), and the length
of each segment is

√
2. The first segments of the curves end at the points (1, 1), (−1, 1), (−1,−1) and

(1,−1), respectively. The first turn of each curve is left (that is, the second segment of the first curve ends
at the point (0, 2)). In this case, every segment is a diagonal of an axis-aligned unit square with integer
coordinates, and it can be proven that there is exactly one segment passing through every such square.

Given a point (x, y), your task is to find on which of the four curves lies the segment passing through
the square with the opposite corners at (x, y) and (x + 1, y + 1), as well as the position of that segment
on that curve. The curves are numbered 1 through 4. Curve 1 goes through (1, 1), 2 through (−1, 1), 3
through (−1,−1), and 4 through (1,−1). The segments are numbered starting with 1.

Input
The first line contains an integer n (1 ≤ n ≤ 2 · 105) — the number of test cases.

Each of the following n lines contains two integers x and y (−109 ≤ x, y ≤ 109) — the coordinates.

Output
For each test case, print a line containing two integers — the first is the index of the curve (an integer
between 1 and 4, inclusive), and the second is the position on the curve (the first segment has the
position 1).

Example
standard input standard output

5
0 0
-2 0
-7 -7
5 -9
9 9

1 1
2 2
3 189
4 186
2 68

Page 6 of 18

ICPC World Finals Moscow, Invitational
Online, September 30, 2021

Note
You can use this illustration to debug your solution:

Page 7 of 18

ICPC World Finals Moscow, Invitational
Online, September 30, 2021

Problem E. Easy Scheduling
Time limit: 2 seconds

Eonathan Eostar decided to learn the magic of multiprocessor systems. He has a full binary tree of tasks
with height h. In the beginning, there is only one ready task in the tree — the task in the root. At each
moment of time, p processes choose at most p ready tasks and perform them. After that, tasks whose
parents were performed become ready for the next moment of time. Once the task becomes ready, it stays
ready until it is performed.

You shall calculate the smallest number of time moments the system needs to perform all the tasks.

Input
The first line of the input contains the number of tests t (1 ≤ t ≤ 5 ·105). Each of the next t lines contains
the description of a test. A test is described by two integers h (1 ≤ h ≤ 50) and p (1 ≤ p ≤ 104) — the
height of the full binary tree and the number of processes. It is guaranteed that all the tests are different.

Output
For each test output one integer on a separate line — the smallest number of time moments the system
needs to perform all the tasks.

Example
standard input standard output

3
3 1
3 2
10 6

7
4
173

Note
Let us consider the second test from the sample input. There is a full binary tree of height 3 and there
are two processes. At the first moment of time, there is only one ready task, 1, and p1 performs it. At the
second moment of time, there are two ready tasks, 2 and 3, and the processes perform them. At the third
moment of time, there are four ready tasks, 4, 5, 6, and 7, and p1 performs 6 and p2 performs 5. At the
fourth moment of time, there are two ready tasks, 4 and 7, and the processes perform them. Thus, the
system spends 4 moments of time to perform all the tasks.

1

2 3

4 5 6 7

p1

2 3

4 5 6 7

p2 p1

4 5 6 7

p2 p1

4 7

p1 p2

Page 8 of 18

ICPC World Finals Moscow, Invitational
Online, September 30, 2021

Problem F. Framing Pictures
Time limit: 2 seconds

Life has been discovered on Venus! What is more, the life forms appear to be convex polygons. An
international consortium is designing a probe to send to Venus to take pictures, but they need to estimate
the bandwidth needed to send back pictures.

When the probe takes a picture of a life form and wishes to send it back to Earth, the bandwidth required
is proportional to the area of the bounding box (in other words, the smallest axis-aligned rectangle that
contains the life-form). The shape and size of the life forms are known, but the orientation relative to the
camera is random. You must thus determine the expected (average) area of the bounding box across all
orientations.

Input
The input describes the shape of a life form as a convex polygon in two dimensions.

The first line of input contains an integer n (3 ≤ n ≤ 200 000) — the number of vertices. The remaining
n lines each contain two integers x and y (−109 ≤ x, y ≤ 109) — the coordinates of a vertex. The vertices
are given in counterclockwise order, and no three vertices lie on a straight line.

Output
Output a single line containing the expected area of the bounding box of the polygon. Your answer should
have an absolute or relative error of at most 10−6.

Examples
standard input standard output

4
0 0
10 0
10 10
0 10

163.661977237

5
0 0
10 0
15 8
5 20
-5 7

365.666028588

Note
The pictures show example life forms and various camera orientations.

x

y

10

10

0 x

y

0 10 20

10

20

Page 9 of 18

ICPC World Finals Moscow, Invitational
Online, September 30, 2021

Problem G. Game of Chance
Time limit: 6 seconds

The King wants to marry off his daughter, and he wants her husband to have the greatest innate luckiness
possible. To find such a person he decided to hold a heads-or-tails tournament.

If person A with luckiness x and person B with luckiness y play heads-or-tails against each other, person
A wins with probability x/(x+ y).

The tournament has several rounds. Each round some participants are split into pairs. Each pair plays
against each other, and the loser leaves the tournament.

The participants are numbered from 1 to n. During the first round, a number k (1 ≤ k ≤ n) is selected
such that n− k/2 is a power of 2 (such k always exists and is unique). Only participants numbered from
1 to k take part in the first round. It ensures that in all other rounds the number of participants is the
power of 2.

During other rounds, all the participants who still have not left the tournament take part. If during some
round, participants numbered p1 < . . . < p2m take part, then they are split into pairs in the following
manner: participant p2i−1 plays against participant p2i for each i from 1 to m.

The rounds are held until only one participant is left. He is declared the winner of the tournament and he
will marry the King’s daughter. The princess can’t wait to find out who is her future husband. She asked
every participant to tell her his luckiness. Assuming they did not lie, she wants to know the probability
of each participant winning the tournament. As you are the best friend of the princess, she asks you to
help her.

Input
The first line of the input contains the number of participants, n (2 ≤ n ≤ 3 · 105). The second line of the
input contains n integer numbers, a1, . . . , an (1 ≤ ai ≤ 109). The luckiness of the i-th participant equals
to ai.

Output
Print n numbers pi. The i-th number should be the probability of the i-th participant winning the
tournament. The absolute error of your answer must not exceed 10−9.

Example
standard input standard output

5
1 4 1 1 4

0.026 0.3584 0.0676 0.0616 0.4864

Note
Here is an example of a tournament bracket, showing the winning probability in each pair.

1-st round 2-nd round 3-rd round The winner

1

2

1/5

4/5
1

3

4

5

1/2

1/2

1/5

4/5

3

5

1/5

4/5

3

Page 10 of 18

ICPC World Finals Moscow, Invitational
Online, September 30, 2021

Problem H. Higher Order Functions
Time limit: 2 seconds

Helen studies functional programming and she is fascinated with a concept of higher order functions —
functions that are taking other functions as parameters. She decides to generalize the concept of the
function order and to test it on some examples.

For her study, she defines a simple grammar of types. In her grammar, a type non-terminal T is defined as
one of the following grammar productions, together with order(T), defining an order of the corresponding
type:

• “()” is a unit type, order(“()”) = 0.

• “(” T “)” is a parenthesized type, order(“(” T “)”) = order(T).

• T1 “->“ T2 is a functional type, order(T1 “->” T2) = max(order(T1) + 1, order(T2)). The function
constructor T1 “->“ T2 is right-to-left associative, so the type “()->()->()” is the same as the type
“()->(()->())“ of a function returning a function, and it has an order of 1. While “(()->())->()“
is a function that has an order-1 type “(()->())“ as a parameter, and it has an order of 2.

Helen asks for your help in writing a program that computes an order of the given type.

Input
The single line of the input contains a string consisting of characters ‘(’, ‘)’, ‘-’, and ‘>’ that describes
a type that is valid according to the grammar from the problem statement. The length of the line is at
most 104 characters.

Output
Print a single integer — the order of the given type.

Examples
standard input standard output

() 0

()->() 1

()->()->() 1

(()->())->() 2

()->(((()->())->()->())->()) 3

Page 11 of 18

ICPC World Finals Moscow, Invitational
Online, September 30, 2021

Problem I. Interactive Rays
Time limit: 2 seconds

This is an interactive problem.

Your goal is to find a circle on a plane by shooting rays and getting the distance to the circle as a result.

Interactor has three hidden integer parameters that are determined in advance for each test, but which
you don’t know — xc, yc, and rc. (xc, yc) are coordinates of the circle’s center and rc is its radius. The
absolute values of xc, yc, and rc do not exceed 105, and 1 ≤ rc ≤

√
x2c + y2c − 1.

You can shoot rays that extend from the origin (0, 0) and go via a point (xq, yq) with the integer coordinates
you specify. For each ray, you get a distance from the ray to the circle or 0 if the ray intersects the circle.

Interaction Protocol
The interaction starts with your program printing a query to the standard output and finishes when your
program finds and prints the answer to the problem.

Each query has a form of “? xq yq”, where xq and yq are integers (|xq|, |yq| ≤ 106; xq 6= 0 or yq 6= 0).

The interactor outputs a line with a single floating-point number — the distance between a query ray and
a circle that is precise to 10−10 by an absolute value.

Your program can make the next query, read the output, and so on. You are allowed to do at most 60
queries. At the end of the interaction, print the answer line “! xc yc rc”, flush the output and exit.

Note, that the output of the interactor is actually rounded to the 10-th digit after a decimal
point, so if you are stress-testing your solution locally, make sure that you also perform the
corresponding rounding.

Example
standard input standard output

? 0 -10

? 10 -10

? 10 0

? 10 10

? 10 20

? 10 30

! 20 10 10

12.360679775

11.2132034356

0.0

0.0

3.416407865

5.8113883008

Note

x

y

10 20 30

-10

0

10

20

30

Illustration of the queries from the example interaction.

Page 12 of 18

ICPC World Finals Moscow, Invitational
Online, September 30, 2021

Problem J. Just Kingdom
Time limit: 5 seconds

The Just Kingdom is ruled by a king and his n lords, numbered 1 to n. Each of the lords is a vassal of
some overlord, who might be the king himself, or a different lord closer to the king. The king, and all his
lords, are just and kind.

Each lord has certain needs, which can be expressed as a certain amount of money they need. However,
if a lord, or the king, receives any money, they will first split it equally between all their vassals who still
have unmet needs. Only if all the needs of all their vassals are met, they will take the money to fulfill
their own needs. If there is any money left over, they will return the excess to their overlord (who follows
the standard procedure for distributing money).

At the beginning of the year, the king receives a certain sum of tax money and proceeds to split it
according to the rules above. If the amount of tax money is greater than the total needs of all the lords,
the procedure guarantees everybody’s needs will be fulfilled, and the excess money will be left with the
king. However, if there is not enough money, some lords will not have their needs met.

For each lord, determine the minimum amount of tax money the king has to receive so that this lord’s
needs are met.

Input
The first line of the input contains the number of lords n (0 ≤ n ≤ 3 · 105). Each of the next n lines
describes one of the lords. The i-th line contains two integers: oi (0 ≤ oi < i) — the index of the overlord
of the i-th lord (with zero meaning the king is the overlord), and mi (1 ≤ mi ≤ 106) — the amount of
money the i-th lord needs.

Output
Print n integer numbers ti. The i-th number should be the minimum integer amount of tax money the
king has to receive for which the needs of the i-th lord will be met.

Example
standard input standard output

5
0 2
1 2
0 1
1 1
0 5

11
7
3
5
11

Note
In the sample input, if the king receives 5 units of tax money, he will split it equally between his vassals —
the lords 1, 3, and 5, with each receiving 5

3 of money.

Page 13 of 18

ICPC World Finals Moscow, Invitational
Online, September 30, 2021

Lord 1 will split the money equally between his vassals — 2 and 4, with each receiving 5
6 . Lord 5 will keep

the money (having no vassals). Lord 3 will keep 1 unit of money, and give the remaining 2
3 to the king.

The king will then split the 2
3 between the vassals with unmet needs — 1 and 5, passing 1

3 to each. Lord
5 will keep the extra cash (now having a total of 2, still not enough to meet his needs). Lord 1 will split
it equally between his vassals, and the extra 1

6 will be enough to meet the needs of lord 4.

Page 14 of 18

ICPC World Finals Moscow, Invitational
Online, September 30, 2021

Problem K. Kingdom of Islands
Time limit: 2 seconds

The Kingdom of Islands consists of p islands. As the king, you rule over the whole kingdom, while each
island is ruled over by one or several jarls under your rule. In total, there are n jarls under your jurisdiction.

Each island of the kingdom has its own strong traditions, so jarls that rule over the same island support
each other and never have conflicts. The downsides of such strength are cultural conflicts between people
inhabiting different islands. Thus, two jarls that rule over different islands are in conflict.

However, recent years brought a few changes to traditional relations between the jarls. To your knowledge,
there are exactly k pairs of jarls such that relationships between two jarls in the pair are different from the
traditional. That is, if two jarls of the pair you know rule over the same island, these jarls are in conflict. If
they rule over different islands, then they overcome cultural disagreement and there is no conflict between
them anymore.

As a true responsible king, you are worried about whether the kingdom is close to a major conflict. In
order to estimate the current situation, you would like to find the largest possible group of jarls such that
every two jarls in the group are in conflict.

Input
The first line of the input consists of two integers p and n (1 ≤ p ≤ n ≤ 105; 1 ≤ p ≤ 104).

The second line consists of n integers s1, s2, . . . , sn (1 ≤ si ≤ p). The integer si denotes that the i-th jarl
rules over the island number si. It is guaranteed that each island is ruled by at least one jarl.

The third line consists of a single integer k (0 ≤ k ≤ 20).

Then k lines follow. The j-th of these lines consists of two distinct integers aj and bj (1 ≤ aj < bj ≤ n),
denoting that the relation between the aj-th jarl and the bj-th jarl differs from traditional. It is guaranteed
that no pair of jarls appears twice in this list.

Output
In the first line print a single integer q between 1 and n — the largest possible number of jarls in a pairwise
conflicting group. In the second line print q distinct integers between 1 and n — the numbers of jarls in
the group. The numbers of jarls can be printed in any order.

Page 15 of 18

ICPC World Finals Moscow, Invitational
Online, September 30, 2021

Examples
standard input standard output

4 4
1 2 3 4
1
2 3

3
1 4 2

2 4
1 1 2 2
1
3 4

3
2 4 3

4 8
1 1 1 2 2 3 4 4
7
1 2
2 3
3 6
4 5
5 7
2 7
3 8

6
8 6 5 4 2 1

Note
The conflict graph for the last sample testcase is given below. Each circle represents an island.

Page 16 of 18

ICPC World Finals Moscow, Invitational
Online, September 30, 2021

Problem L. Labyrinth
Time limit: 2 seconds

In a dream, Lucy found herself in a labyrinth. This labyrinth consists of n rooms, connected by m passages
(i-th passage is wi cm wide). Each passage can be traversed in both directions. It is guaranteed that it is
possible to get from any room to any other room. But this is not an ordinary labyrinth — each room in
this labyrinth contains a magic candy. When Lucy eats this magic candy, she is getting wider. Specifically,
if she eats candy from room i she becomes wider by ci cm. Note that she is not obliged to eat candy the
first time she visits a particular room, but she can eat each candy only once.

Unfortunately, passages in this labyrinth are pretty narrow, so after eating some candy, Lucy can get
too wide and will not be able to traverse them — her width should not be greater than the width of the
corresponding passage.

Lucy starts her journey in a room number 1. She wants to eat all the candies. After that, she will just
wake up, so she does not have to be able to return to the room 1. She realizes that with her current width,
she may not be able to do so, so she plans a workout before embarking on her journey. Lucy wants to
know if it is possible to start with some positive width and still eat all the candies. If yes, then what is
the maximal starting width with which it is possible.

Input
The first line contains two integers, n and m (2 ≤ n ≤ 105;n− 1 ≤ m ≤ 105) — the number of rooms and
the number of passages.

The second line contains n integers — ci (1 ≤ ci ≤ 109).

Next m lines contain three integers each — ai, bi and wi (1 ≤ ai, bi ≤ n; ai 6= bi; 1 ≤ wi ≤ 109) describing
passage that connects rooms ai and bi and is wi cm wide. It is guaranteed that the resulting labyrinth is
connected and there is at most one passage between any pair of rooms.

Output
If it is possible to eat all the candies, output the maximal possible starting width, otherwise output −1.

Examples
standard input standard output

3 3
1 2 3
1 2 4
1 3 4
2 3 6

3

2 1
1 1
1 2 1

-1

Page 17 of 18

ICPC World Finals Moscow, Invitational
Online, September 30, 2021

Problem M. The Mind
Time limit: 2 seconds

This is an interactive problem.

In this problem, you need to come up with a strategy for a cooperative game. This game is played by
two players. Each player receives 5 cards. Each card has a random integer between 1 and 100 on it. It is
guaranteed that all numbers on cards are distinct.

The goal of the game is to play a card with a minimal number on it out of all 10 cards dealt to the
players before any other card. The problem is that each player can only see their own cards and cannot
communicate with another player in any way.

The game consists of 5 turns. During each turn, players simultaneously make a move. Each player can
either play their smallest card or do nothing. If on some turn the smallest card is played, and no other
card is played on or before that turn, players win. If two cards are played at the same turn or if after all
5 turns, no card is still played, players lose.

Players cannot communicate, so a strategy for the game should only be based on 5 cards that the player
has. You can describe a strategy as five numbers 0.0 ≤ pi ≤ 1.0,

∑5
i=1 pi ≤ 1, where pi — the probability

of playing the player’s smallest card in their hand on i-th turn. If you know the cards dealt to the players,
and the strategies that players choose, you can compute the probability of winning by a simple formula.

You will be given n = 1000 randomly generated hands of 5 cards. You need to generate a strategy for each
of the hands to maximize the probability of winning. After the judge program receives all n strategies, it
generates all possible valid pairs of those hands (pairs which have the same numbers are discarded), and
computes a probability of winning based on two strategies provided by your program.

To ensure that answers for different hands are independent, you must output a strategy for
a hand and flush the standard output before reading information about the next hand.

If the average probability of winning a game is more than 85% over all valid pairs of hands, the test is
considered passed. This problem contains the sample test and 20 randomly generated tests with n = 1000.

Input
The first line contains one integer n — the number of hands. It is guaranteed that n = 1000 for all cases
except the first sample case.

Each of the next n lines contains 5 numbers ai (1 ≤ ai ≤ 100, ai < ai+1) — the cards in the hand. It is
guaranteed that each possible set of 5 cards has an equal probability of being chosen.

Output
For each of the n hands you need to output 5 numbers 0.0 ≤ pi ≤ 1.0,

∑5
i=1 pi ≤ 1, where pi — probability

of playing the smallest card on i-th turn.

Example
standard input standard output

2
2 12 27 71 100

22 29 39 68 90
0.8 0.2 0.0 0.0 0.0

0.0 0.2 0.2 0.2 0.3

Note
In the example test there is only one valid pair of hands. The winning probability for the example output
is equal to 0.8 + 0.2 · (1 − 0.2) = 0.96. Also note that the second player will not play a card at all with
probability 0.1.

Page 18 of 18

