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Abstract. Stable models of logic programs have been studied by many
researchers, mainly because of their role in the foundations of answer set
programming. This is a review of some of the definitions of the concept
of a stable model that have been proposed in the literature. These defi-
nitions are equivalent to each other, at least when applied to traditional
Prolog-style programs, but there are reasons why each of them is valuable
and interesting. A new characterization of stable models can suggest an
alternative picture of the intuitive meaning of logic programs; or it can
lead to new algorithms for generating stable models; or it can work bet-
ter than others when we turn to generalizations of the traditional syntax
that are important from the perspective of answer set programming; or
it can be more convenient for use in proofs; or it can be interesting sim-
ply because it demonstrates a relationship between seemingly unrelated
ideas.

1 Introduction

Stable models of logic programs have been studied by many researchers, mainly
because of their role in the foundations of answer set programming (ASP) [30,
37]. This programming paradigm provides a declarative approach to solving com-
binatorial search problems, and it has found applications in several areas of sci-
ence and technology [21]. In ASP, a search problem is reduced to computing
stable models, and programs for generating stable models (“answer set solvers”)
are used to perform search.

This paper is a review of some of the definitions, or characterizations, of
the concept of a stable model that have been proposed in the literature. These
definitions are equivalent to each other when applied to “traditional rules” –
with an atom in the head and a list of atoms, some possibly preceded with the
negation as failure symbol, in the body:

A0 ← A1, . . . , Am,not Am+1,not An. (1)

But there are reasons why each of them is valuable and interesting. A new char-
acterization of stable models can suggest an alternative picture of the intuitive
meaning of logic programs; or it can lead to new algorithms for generating stable
models; or it can work better when we turn to generalizations of the traditional
syntax that are important from the perspective of answer set programming; or
it can be more convenient for use in proofs, such as proofs of correctness of ASP



programs; or, quite simply, it can intellectually excite us by demonstrating a
relationship between seemingly unrelated ideas.

We concentrate here primarily on programs consisting of finitely many rules
of type (1), although generalizations of this syntactic form are mentioned several
times in the second half of the paper. Some work on the stable model semantics,
for instance [15, 23, 39, 2], is not discussed here because it is about extending,
rather than modifying, the definitions proposed earlier; this kind of work does
not tell us much new about stable models of traditional programs.

The paper begins with comments on the relevant work that had preceded
the invention of stable models – on the semantics of logic programming (Sect. 2)
and on formal nomonotonic reasoning (Sect. 3). Early contributions that can be
seen as characterizations of the class of stable models in terms of nonmonotonic
logic are discussed in Sect. 4. Then we review the “standard” definition of stable
models – in terms of reducts (Sect. 5) – and turn to its characterizations in terms
of unfounded sets and loop formulas (Sect. 6). After that, we talk about the
definitions of stable models in terms of circumscription (Sect. 7) and in terms of
support relative to a well-ordering (Sect. 8), discuss two characterizations based
on tightening (Sect. 9), and talk about the relationship between stable models
and equilibrium logic (Sect. 10).

In recent years, two interesting modifications of the definition of the reduct
were introduced (Sect. 11). We have learned also that a simple change in the def-
inition of circumscription can give a characterization of stable models (Sect. 12).

This is an extended version of the conference paper [20].

2 Minimal Models, Completion, and Stratified Programs

2.1 Minimal Models vs. Completion

According to [47], a logic program without negation represents the least (and
so, the only minimal) Herbrand model of the corresponding set of Horn clauses.
On the other hand, according to [4], a logic program represents a certain set of
first-order formulas, called the program’s completion.

These two ideas are closely related to each other, but not equivalent. Take,
for instance, the program

p(a, b).
p(X,Y )← p(Y,X). (2)

The minimal Herbrand model

{p(a, b), p(b, a)} (3)

of this program satisfies the program’s completion

∀XY (p(X,Y )↔ ((X = a ∧ Y = b) ∨ p(Y,X))) ∧ a 6= b.



But there also other Herbrand interpretations satisfying the program’s comp-
letion – for instance,

{p(a, b), p(b, a), p(b, b)}. (4)

Another example of this kind, important in applications, is given by the
recursive definition of transitive closure:

q(X,Y )← p(X,Y ).
q(X,Z)← q(X,Y ), q(Y,Z). (5)

The completion of the union of this program with a definition of p has, in many
cases, unintended models, in which q is weaker than the transitive closure of p
that we want to define.

Should we say then that Herbrand minimal models provide a better seman-
tics for logic programming than program completion? Yes and no. The concept
of completion has a fundamental advantage: it is applicable to programs with
negation. Such a program, viewed as a set of clauses, usually has several minimal
Herbrand models, and some of them may not satisfy the program’s completion.
Such “bad” models reflect neither the intended meaning of the program nor the
behavior of Prolog. For instance, the program

p(a). p(b). q(a).
r(X)← p(X),not q(X). (6)

has two minimal Herbrand models:

{p(a), p(b), q(a), r(b)} (7)

(“good”) and
{p(a), p(b), q(a), q(b)} (8)

(“bad”). The completion of (6)

∀X(p(X)↔ (X = a ∨X = b)) ∧ ∀X(q(X)↔ X = a)
∧∀X(r(X)↔ (p(X) ∧ ¬q(X))) ∧ a 6= b

characterizes the good model.

2.2 The Challenge

In the 1980s, the main challenge in the study of the semantics of logic program-
ming was to invent a semantics that

– in application to a program without negation, such as (2), describes the
minimal Herbrand model,

– in the presence of negation, as in example (6), selects a “good” minimal
model satisfying the program’s completion.



Such a semantics was proposed in two papers presented at the 1986 Work-
shop on Foundations of Deductive Databases and Logic Programming [1, 48].
That approach was not without defects, however. First, it is limited to programs
in which recursion and negation “don’t mix.” Such programs are called strati-
fied. Unfortunately, some useful Prolog programs do not satisfy this condition.
For instance, we can say that a position in a two-person game is winning if
there exists a move from it to a non-winning position (cf. [46]). This rule is not
stratified: it recursively defines winning in terms of non-winning. A really good
semantics should be applicable to rules like this.

Second, the definition of the semantics of stratified programs is somewhat
complicated. It is based on the concept of the iterated least fixpoint of a program,
and to prove the soundness of this definition one needs to show that this fixpoint
doesn’t depend on the choice of a stratification. A really good semantics should
be a little easier to define.

The stable model semantics, as well as the well-founded semantics proposed
in [49, 50], can be seen as an attempt to generalize and simplify the iterated
fixpoint semantics of stratified programs.

3 Nonmonotonic Reasoning

Many events in the history of research on stable models can be only under-
stood if we think of it as part of a broader research effort – the investigation
of nonmonotonic reasoning. Early work in this area was motivated primarily by
the desire to understand and automate the use of defaults by humans. When
commonsense reasoning exploits a default, there is a possibility that taking into
account new information may force us to retract the conclusions that we have
made. The same kind of nonmonotonicity is observed in the behavior of Prolog
programs with negation. For instance, rules (6) warrant the conclusion r(b), but
if the fact q(b) is added to the program then this conclusion will be retracted.

As to the stable model semantics, three nonmonotonic formalisms are par-
ticularly relevant.

3.1 Circumscription

Circumscription [31, 32] is a syntactic transformation that turns a first-order
sentence F into the conjunction of F with another formula, which expresses
a minimality condition (the exact form of that condition depends on the “cir-
cumscription policy”). This additional conjunctive term involves second-order
quantifiers.

Circumscription generalizes the concept of a minimal model from [47]. The
iterated fixpoint semantics of stratified programs can be characterized in terms
of circumscription also [19]. On the other hand, circumscription is similar to
program completion in the sense that both are syntactic transformations that
make a formula stronger. The relationship between circumscription and program
completion was investigated in [43].



3.2 Default Logic

A default theory in the sense of [42] is characterized by a set W of “axioms” –
first-order sentences, and a set D of “defaults” – expressions of the form

F : MG1, . . . ,MGn

H
, (9)

where F,G1, . . . , Gn, H are first-order formulas. The letter M, according to Reiter,
is to be read as “it is consistent to assume.” Intuitively, default (9) is similar to
the inference rule allowing us to derive the conclusion H from the premise F , ex-
cept that the applicability of this rule is limited by the justifications G1, . . . , Gn;
deriving H is allowed only if each of the justifications can be “consistently as-
sumed.”

This informal description of the meaning of a default is circular: to decide
which formulas can be derived using one of the defaults from D we need to
know whether the justifications of that default are consistent with the formulas
that can be derived from W using the inference rules of classical logic and the
defaults from D – including the default that we are trying to understand! But
Reiter was able to turn his intuition about M into a precise semantics. His theory
of defaults tells us under what conditions a set E of sentences is an “extension”
for the default theory with axioms W and defaults D.

In Sect. 4 we will see that one of the earliest incarnations of the stable model
semantics was based on treating rules as defaults in the sense of Reiter.

3.3 Autoepistemic Logic

According to [36], autoepistemic logic “is intended to model the beliefs of an
agent reflecting upon his own beliefs.” Moore’s definition of propositional au-
toepistemic logic builds on the ideas of [35] and [34].

Formulas of this logic are constructed from atoms using propositional con-
nectives and the modal operator L (“is believed”). Its semantics specifies, for
any set A of formulas (“axioms”), which sets of formulas are considered “stable
expansions” of A. Intuitively, Moore explains, the stable expansions of A are
“the possible sets of beliefs that a rational agent might hold, given A as his
premises.”

In Sect. 4 we will see that one of the earliest incarnations of the stable model
semantics was based on treating rules as autoepistemic axioms in the sense of
Moore. The term “stable model” is historically related to “stable expansions” of
autoepistemic logic.

3.4 Relations between Nonmonotonic Formalisms

The intuitions underlying circumscription, default logic, and autoepistemic logic
are different from each other, but related. For instance, circumscribing (that is,



minimizing the extent of) a predicate p is somewhat similar to adopting the
default

true : M¬p(X)
¬p(X)

(if it is consistent to assume that X does not have the property p, conclude that
it doesn’t). On the other hand, Moore observes that “a formula is consistent if
its negation is not believed”; accordingly, Reiter’s M is somewhat similar to the
combination ¬L¬ in autoepistemic logic, and default (9), in propositional case,
is somewhat similar to the autoepistemic formula

F ∧ ¬L¬G1 ∧ · · · ∧ ¬L¬Gn → H.

However, the task of finding precise and general relationships between these
three formalisms turned out to be difficult. Discussing technical work on that
topic is beyond the scope of this paper.

4 Definitions A and B, in Terms of Translations into
Nonmonotonic Logic

The idea of [13] is to think of the expression not A in a logic program as syn-
onymous with the autoepistemic formula ¬LA (“A is not believed”). Since au-
toepistemic logic is propositional, the program needs to be grounded before this
transformation is applied. After grounding, each rule (1) is rewritten as a for-
mula:

A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An → A0, (10)

and then L inserted after each negation. For instance, to explain the meaning of
program (6), we take the result of its grounding

p(a). p(b). q(a).
r(a)← p(a),not q(a).
r(b)← p(b),not q(b).

(11)

and turn it into a collection of formulas:

p(a), p(b), q(a),
p(a) ∧ ¬L q(a)→ r(a),
p(b) ∧ ¬L q(b)→ r(b).

The autoepistemic theory with these axioms has a unique stable expansion,
and the atoms from that stable expansion form the intended model (7) of the
program.

This epistemic interpretation of logic programs – what we will call Defini-
tion A – is more general than the iterated fixpoint semantics, and it is much
simpler. One other feature of Definition A that makes it attractive is the sim-
plicity of the underlying intuition: negation as failure expresses the absence of
belief.



The “default logic semantics” proposed in [3] is translational as well; it inter-
prets logic programs as default theories. The head A0 of a rule (1) turns into the
conclusion of the default, the conjunction A1∧ · · · ∧Am of the positive members
of the body becomes the premise, and each negative member not Ai turns into
the justification M¬Ai (“it is consistent to assume ¬Ai”). For instance, the last
rule of program (6) corresponds to the default

p(X) : M¬q(X)
r(X)

. (12)

There is no need for grounding, because defaults are allowed to contain variables.
This difference between the two translations is not essential though, because
Reiter’s semantics of defaults treats a default with variables as the set of its
ground instances. Grounding is simply “hidden” in the semantics of default
logic.

This Definition B of the stable model semantics stresses an analogy between
rules in logic programming and inference rules in logic. Like Definition A, it
has an epistemic flavor, because of the relationship between the “consistency
operator” M in defaults and the autoepistemic “belief operator” L (Sect. 3.4).

The equivalence between these two approaches to semantics of traditional
programs follows from the fact that each of them is equivalent to Definition C
of a stable model reviewed in the next section. This was established in [14] for
the autoepistemic semantics and in [29] for the default logic approach.

5 Definition C, in Terms of the Reduct

Definitions A and B are easy to understand – assuming that one is familiar with
formal nonmonotonic reasoning. Can we make these definitions direct and avoid
explicit references to autoepistemic logic and default logic?

This question has led to the most widely used definition of the stable model
semantics, Definition C [14]. The reduct of a program Π relative to a set M of
ground atoms is obtained from Π by grounding followed by

(i) dropping each rule (1) containing a term not Ai with Ai ∈M , and
(ii) dropping the negative parts not Am+1, . . . ,not An from the bodies of the

remaining rules.

We say that M is a stable model of Π if the minimal model of (the set of clauses
corresponding to the rules of) the reduct of Π with respect to M equals M . For
instance, the reduct of program (6) relative to (7) is

p(a). p(b). q(a).
r(b)← p(b). (13)

The minimal model of this program is the set (7) that we started with; conse-
quently, that set is a stable model of (6).

Definition C was independently invented in [12].



6 Definitions D and E, in Terms of Unfounded Sets and
Loop Formulas

From [45] we learned that stable models can be characterized in terms of the
concept of an unfounded set, which was introduced in [49] as part of the definition
of the well-founded semantics. Namely, a set M of atoms is a stable model of a
(grounded) program Π iff

(i) M satisfies Π,1 and
(ii) no non-empty subset of M is unfounded for Π with respect to M .2

This Definition D can be refined using the concept of a loop, introduced
many years later in [27]. A loop of a grounded program Π is a non-empty set L
of ground atoms such that any elements A, A′ of L can be connected by a chain

A = A1, A2, . . . , Ak−1, Ak = A′ (k > 1)

of elements of L satisfying the following condition: for any i = 1, . . . , k − 1, the
program contains a rule R that such that Ai is the head of R and Ai+1 is a
member of the body of R. For instance, the result of grounding program (2)

p(a, b).
p(a, a)← p(a, a).
p(a, b)← p(b, a).
p(b, a)← p(a, b).
p(b, b)← p(b, b).

(14)

has 3 loops:
{p(a, a)}, {p(b, b)}, {p(a, b), p(b, a)}. (15)

Program (11) has no loops.
According to [17], if we require in condition (i) above that M satisfy the

completion of the program, rather than the program itself, then it will be pos-
sible to relax condition (ii) and require only that no loop contained in M be
unfounded; there will be no need then to refer to arbitrary non-empty subsets
in that condition.

In [27] loops are used in a different way. That paper associates with every
loop L of Π a certain propositional formula, called the loop formula for L.
According to Definition E,M is a stable model ofΠ iffM satisfies the completion
of Π conjoined with the loop formulas for all loops of Π. For instance, the loop
formulas for the loops (15) of program (14) are

p(a, a)→ false,
p(b, b)→ false,
(p(a, b) ∨ p(b, a))→ true.

1 That is, M satisfies the propositional formulas (10) corresponding to the rules of Π.
2 To be precise, unfoundedness is defined with respect to a partial interpretation, not

a set of atoms. But we are only interested here in the special case when the partial
interpretation is complete, and assume that complete interpretations are represented
by sets of atoms in the usual way.



The first two loop formulas eliminate all nonminimal models of the completion
of (14).

The invention of loop formulas has led to the creation of systems for gen-
erating stable models that use SAT solvers for search (“SAT-based answer set
programming”). Several systems of this kind performed well in a recent compe-
tition [5].

7 Definition F, in Terms of Circumscription

We saw in Sect. 4 that a logic program can be viewed as shorthand for an au-
toepistemic theory or a default theory. The characterization of stable models
described in [24, Sect. 3.4.1] relates logic programs to the third nonmonotonic
formalism reviewed above, circumscription. Like Definitions A and B, it is based
on a translation, but the output of that translation is not simply a circumscrip-
tion formula; it involves also some additional conjunctive terms.

The first step of that translation consists in replacing the occurrences of each
predicate symbol p in the negative parts ¬Am+1∧· · ·∧¬An of the formulas (10)
corresponding to the rules of the program with a new symbol p′ and forming
the conjunction of the universal closures of the resulting formulas. The sentence
obtained in this way is denoted by C(Π). For instance, if Π is (6) then C(Π) is

p(a) ∧ p(b) ∧ q(a) ∧ ∀X(p(X) ∧ ¬q′(X)→ r(X)).

The translation of Π is a conjunction of two sentences: the circumscription
of the old (non-primed) predicates in C(Π) and the formulas asserting, for each
of the new predicates, that it is equivalent to the corresponding old predicate.
For instance, the translation of (6) is

CIRC[C(Π)] ∧ ∀X(q′(X)↔ q(X)); (16)

the circumscription operator CIRC is understood here as the minimization of
the extents of p, q, r.

The stable models of Π can be characterized as the Herbrand interpretations
satisfying the translation of Π, with the new (primed) predicates removed from
them (“forgotten”).

An interesting feature of this Definition F is that, unlike Definitions A–E,
it does not involve grounding. We can ask what non-Herbrand models of the
translation of a logic program look like. Can it be convenient in some cases to
represent possible states of affairs by such “non-Herbrand stable models” of a
logic program? A non-Herbrand model may include an object that is different
from the values of all ground terms, or there may be several ground terms having
the same value in it; can this be sometimes useful?

We will return to the relationship between stable models and circumscription
in Sect. 12.



8 Definition G, in Terms of Support

As observed in [1], an Herbrand model M of a grounded program satisfies the
program’s completion iff every element A of M is supported, in the sense that
the program contains a rule (1) such that

A0 = A, A1, . . . , Am ∈M, Am+1, . . . , An 6∈M. (17)

A stronger form of this condition, given in [6], characterizes the class of stable
models. According to his Definition G, an Herbrand model M of a grounded
program is stable if there exists a well-ordering ≤ of M such that every element A
of M is supported relative to this well-ordering, in the sense that the program
contains a rule (1) satisfying conditions (17) and

A1, . . . , Am < A0.

For instance, the stable model (3) of program (14) is supported relative to the
order p(a, b) < p(b, a). On the other hand, model (4) is supported, but it is easy
to see that it is not supported relative to any ordering of its elements.3

When M is finite, well-orderings of M can be described in terms of functions
from atoms to integers, and supportedness relative to an order relation can be
described by a formula of difference logic – the extension of propositional logic
that includes variables for integers and atomic formulas of the form x − y ≥ c.
This observation suggests the posibility of using solvers for difference logic to
generate stable models [38].

9 Definitions H and I, in Terms of Tightening and the
Situation Calculus

We will talk now about two characterizations of stable models that are based,
like Definition F, on translations into classical logic that use auxiliary predicates.

Programs that have no loops, such as (11), are called tight. The stable mod-
els of a tight program are identical to the Herbrand models of its completion
[8]. Definition H [51] is based on a process of “tightening” that makes an ar-
bitrary traditional program tight. This process uses two auxiliary symbols: the
object constant 0 and the unary function constant s (“successor”). The tightened
program uses also auxiliary predicates with an additional numeric argument. In-
tuitively, p(X,N) expresses that there exists a sequence of N “applications” of
rules of the program that “establishes” p(X). The stable models of a program
are described then as Herbrand models of the completion of the result of its
tightening, with the auxiliary symbols “forgotten.”

3 To be precise, the characterization of stable models in [6] is limited to finite models,
and it uses different terminology.



We will not reproduce here the definition of tightening, but here is an exam-
ple: the result of tightening program (6) is

p(a, s(N)). p(b, s(N)). q(a, s(N)).
r(X, s(N))← p(X,N),not q(X).
p(X)← p(X,N).
q(X)← q(X,N).
r(X)← r(X,N).

Rules in line 1 tell us that p(a) can be established in any number of steps that
is greater than 0; similarly for p(b) and q(a). According to line 2, r(X) can
be established in N + 1 steps if p(X) can be established in N steps and q(X)
cannot be established at all (note that an occurrence of a predicate does not get
an additional numeric argument if it is negated). Finally, an atom holds if it can
be established by some number N of rule applications.

Definition I [25] treats a rule in a logic program as an abbreviated description
of the effect of an action – the action of “applying” that rule – in the situation
calculus.4 For instance, if the action corresponding to the last rule of (6) is de-
noted by lastrule(X) then that rule can be viewed as shorthand for the situation
calculus formula

p(X,S) ∧ ¬∃S(q(X,S))→ r(X, do(lastrule(X), S))

(if p(X) holds in situation S and q(X) does not hold in any situation then r(X)
holds after executing action lastrule(X) in situation S).

In this approach to stable models, the situation calculus function do plays the
same role as adding 1 to N in Wallace’s theory. Instead of program completion,
Lin and Reiter use the process of turning effect axioms into successor state
axioms, which is standard in applications of the situation calculus.

10 Definition J, in Terms of Equilibrium Logic

The logic of here-and-there, going back to the early days of modern logic [16], is a
modification of classical propositional logic in which propositional interpretations
in the usual sense – assignments, or sets of atoms – are replaced by pairs (X,Y )
of sets of atoms such that X ⊆ Y . (We think of X as the set of the atoms
that are true “here”, and Y as the set of the atoms that are true “there.”) The
semantics of this logic defines when (X,Y ) satisfies a formula F .

In [40], the logic of here-and-there was used as a starting point for defining
a nonmonotonic logic closely related to stable models. According to Pearce, a
pair (Y, Y ) is an equilibrium model of a propositional formula F if F is satisfied
in the logic of here-and-there by (Y, Y ) but is not satisfied by (X,Y ) for any
proper subset X of Y . Pearce showed that a set M of atoms is a stable model

4 See [44] for a detailed description of the situation calculus [33] as developed by the
Toronto school.



of a program Π iff (M,M) is an equilibrium model of the set of propositional
formulas (10) corresponding to the grounded rules of Π.

This Definition J is important for two reasons. First, it suggests a way to ex-
tend the concept of a stable model from traditional rules – formulas of form (1)
– to arbitrary propositional formulas: we can say that M is a stable model of a
propositional formula F if (M,M) is an equilibrium model of F . This is valuable
from the perspective of answer set programming, because many “nonstandard”
constructs commonly used in ASP programs, such as choice rules and weight
constraints, can be viewed as abbreviations for propositional formulas [11]. Sec-
ond, Definition J is a key to the theorem about the relationship between the
concept of strong equivalence and the logic of here-and-there [22].

11 Definitions K and L, in Terms of Modified Reducts

In [7] the definition of the reduct reproduced in Sect. 5 is modified by including
the positive members of the body, along with negative members, in the descrip-
tion of step (i), and by removing step (ii) altogeher. In other words, in the
modified process of constructing the reduct relative to M we delete from the
program all rules (1) containing in their bodies a term Ai such that Ai 6∈ M
or a term not Ai such that Ai ∈ M ; the other rules of the program remain
unchanged. For instance, the modified reduct of program (6) relative to (7) is

p(a). p(b). q(a).
r(b)← p(b),not q(b).

Unlike the reduct (13), this modified reduct contains negation as failure in the
last rule. Generally, unlike the reduct in the sense of Sect. 5, the modified reduct
of a program has several minimal models.

According to Definition K, M is a stable model of Π if M is a minimal model
of the modified reduct of Π relative to M .

In [9] the definition of the reduct is modified in a different way. The reduct
of a program Π in the sense of Ferraris is obtained from the formulas (10) cor-
responding to the grounding rules of Π by replacing every maximal subformula
of F that is not satisfied by M with “false”. For instance, the formulas corre-
sponding to the grounded rules (11) of (6) are the formulas

p(a), p(b), q(a),
false→ false,
p(b) ∧ ¬ false→ r(b).

Definition L: M is a stable model of Π if M is a minimal model of the reduct
of Π in the sense of Ferraris relative to M .

Definitions K and L are valuable because, like definition J, they can be ex-
tended to some nontraditional programs. Definition K was introduced, in fact,
in connection with the problem of extending the stable model semantics to pro-
grams with aggregates. Definition L provides a satisfactory solution to the prob-
lem of aggregates as well. Furthermore, it can be applied in a straightforward way



to arbitrary propositional formulas, and this generalization of the stable model
semantics turned out to be equivalent to the generalization based on equilibrium
logic that was mentioned at the end of Sect. 10.

12 Definition M, in Terms of Modified Circumscription

The authors of [10] defined a modification of circumscription called the stable
model operator, SM. According to their Definition M, an Herbrand interpretation
is a stable model of Π iff it satisfies SM[F ] for the conjunction F of the universal
closures of the formulas (10) corresponding to the rules of Π.

Syntactically, the difference between SM and circumscription is really minor.
If F contains neither implications nor negations then SM[F ] does not differ from
CIRC[F ] at all. If F has “one level of implications” and no negations (as, for
instance, when F corresponds to a set of traditional rules without negation, such
as (2) and (5)), SM[F ] is equivalent to CIRC[F ]. But SM becomes essentially
different from CIRC as soon as we allow negation in the bodies of rules.

The difference between SM[F ] and the formulas used in Definition F is that
the former does not involve auxiliary predicates and consequently does not re-
quire additional conjunctive terms relating auxiliary predicates to the predicates
occurring in the program.

Definition M combines the main attractive feature of Definitions F, H, and I –
no need for grounding – with the main attractive feature of Definitions J and L –
applicability to formulas of an arbitrarily complex logical form. This fact makes
it possible to give a semantics for an ASP language with choice rules and the
count aggregate without any references to grounding [18].

Among the other definitions of a stable model discussed in this paper, Defini-
tion J, based on equilibrium logic, is the closest relative of Definition M. Indeed,
in [41] the semantics of equilibrium logic is expressed by quantified Boolean for-
mulas, and we can say that Definition M eliminated the need to ground the
program using the fact that the approach of that paper can be easily extended
from propositional formulas to first-order formulas.

A characterization of stable models that involves grounding but is otherwise
similar to Definition M is given in [28]. It has emerged from research on the
nonmonotonic logic of knowledge and justified assumptions [26].

13 Conclusion

Research on stable models has brought us many pleasant surprises.
At the time when the theory of iterated fixpoints of stratified programs was

the best available approach to semantics of logic programming, it was difficult
to expect that an alternative as general and as simple as Definition C would
be found. And prior to the invention of Definition L, who would think that
Definition C can be extended to choice rules, aggregates and more without paying
any price in terms of the simplicity of the process of constructing the reduct?



A close relationship between stable models and the logic of here-and-there –
a nonclassical logic that had been invented decades before the emergence of logic
programming – was a big surprise. The possibility of defining stable models by
twisting the definition of circumscription just a little was a surprise too.

There was a time when the completion semantics, the well-founded semantics,
and the stable model semantics – and a few others – were seen as rivals; every
person interested in the semantics of negation in logic programming would tell
you then which one was his favorite. Surprisingly, these bitter rivals turned out
to be so closely related to each other on a technical level that they eventually
became good friends. One cannot study the algorithms used today for generating
stable models without learning first about completion and unfounded sets.

And maybe the biggest surprise of all was that an attempt to clarify some
semantic issues related to negation in Prolog was destined to be enriched by
computational ideas coming from research on the design of SAT solvers and to
give rise to a new knowledge representation paradigm, answer set programming.
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38. Ilkka Niemelä. Stable models and difference logic. Annals of Mathematics and
Artificial Intelligence, 53:313–329, 2008.
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