
The Dramatic True Story

of the Frame Default

Vladimir Lifschitz

University of Texas at Austin

Abstract

This is an expository article about the solution to the frame problem pro-
posed in 1980 by Raymond Reiter. For years, his “frame default” remained
untested and suspect. But developments in some seemingly unrelated areas
of computer science—logic programming and satisfiability solvers—eventually
exonerated the frame default and turned it into a basis for important appli-
cations.

1 Introduction

This is an expository article about the dramatic story of the solution to the frame
problem proposed in 1980 by Raymond Reiter [22]. For years, his “frame default”
remained untested and suspect. But developments in some seemingly unrelated ar-
eas of computer science—logic programming and satisfiability solvers—eventually
exonerated the frame default and turned it into a basis for important applications.

This paper grew out of the Great Moments in KR talk given at the 13th Inter-
national Conference on Principles of Knowledge Representation and Reasoning.
It does not attempt to provide a comprehensive history of research on the frame
problem: the story of the frame default is only a small part of the big picture, and
many deep and valuable ideas are not even mentioned here. The reader can learn
more about work on the frame problem from the monographs [17, 21, 24, 25, 27].

2 What Is the Frame Problem?

The frame problem [16] is the problem of describing a dynamic domain without
explicitly specifying which conditions are not affected by executing actions.

Here is a simple example. Initially, Alice is in the room, and Bob is not. Then
Bob enters the room. Common sense tells us that both Alice and Bob will be in
the room after that. But will this conclusion logically follow if we represent the

1



given facts by formulas? The assumptions about the initial state of affairs and
about the action that was executed can be written as

In0(Alice), ¬In0(Bob), Enter(Bob). (1)

(The subscript 0 in the first two formulas indicates that we are talking about the
time instant before the execution of the action.) The conclusions that we would
like to derive are

In1(Alice) (2)

and
In1(Bob). (3)

These conclusions are obviously not entailed by formulas (1), which do not even
contain the predicate symbol In1. What is missing is the commonsense knowledge
about the effect of entering a room:

∀x(Enter(x) → In1(x)) (4)

(any person who enters will be in the room after that).
Formula (3) logically follows from (1) and (4), but formula (2) does not. As-

sumptions (1) and (4) do not allow us to conclude that Alice’s location has not
changed. This is an instance of the frame problem.

Imagine now that we know, in addition to formulas (1), that Carol was not in
the room initially: ¬In0(Carol). The commonsense conclusion ¬In1(Carol) is not
a logical consequence of the assumptions that we made. This is an instance of the
frame problem, too.

3 Default Theories

Reiter’s approach to the frame problem is based on his concept of a default the-
ory [22]. Recall that a first-order theory is characterized by the set of first-order
sentences adopted as axioms. For instance, we can talk about the first-order the-
ory with axioms (1) and (4). Default theories are more general: in addition to
axioms, a default theory T can contain defaults—expressions of the form

F1 · · · Fm : MG1 · · · M Gn

H
, (5)

where the premises F1, . . . , Fm, the justifications G1, . . . , Gn and the conclusion H

are first-order formulas.1

Informally speaking, default (5) is a rule allowing us to derive H from F1, . . . , Fm

if the justifications G1, . . . , Gn can be assumed without contradicting any of the

1The definition of a default in [22] requires m = 1 and n > 0. It is convenient for our purposes
to allow m and n to be arbitrary nonnegative integers.

2



facts that can be derived from the axioms of T using classical logic and the de-
faults of T . This is a circular description, because it tells us under what conditions
default (5) can be used to derive its conclusion by referring to the formulas that
can be derived using the defaults of T , and (5) is one of these defaults. But Reiter
found a way to make this informal idea precise. This was an important event both
for logic and for artificial intelligence.

We will not reproduce Reiter’s definition here in its entirety, because details
are somewhat complicated. The idea is that defaults, like inference rules, allow
us to extend the set of axioms by deriving new formulas, but the set of formulas
that can be generated using defaults is defined by a fixpoint construction and is,
generally, not unique. To determine whether a set E of sentences is an “extension”
for a given default theory, we consider the set E′ of sentences that can be derived
from the axioms using classical logic and the inference rules

F1 · · · Fm

H

corresponding to the defaults (5) such that the justifications G1, . . . , Gm are con-
sistent with E. This process is anti-monotone: if we make E larger then E′ can
only become smaller, because fewer defaults will “fire.” We say that E is an
extension for the given default theory if E′ = E.

Here is an example. Consider a default theory with the axiom p ∧ q and two
defaults:

p : M r

r
,

p : M¬r

¬r
. (6)

Here p, q, r are propositional atoms. According to Reiter’s semantics, this default
theory has two extensions. One extension E1 consists of all sentences that logically
follow from p ∧ q and r. Indeed, the first of the two given defaults “fires” relative
to E1 (its justification r is consistent with E1); the second does not “fire”(its
justification ¬r is not consistent with E1). The set of formulas that can be derived
from the axiom p ∧ q using classical logic and the inference rule

p

r

corresponding to the first default equals E1. The other extension E2 consists of
all sentences that logically follow from p ∧ q and ¬r.

A formula is entailed by a default theory if it belongs to each of its extensions.
(This is sometimes called “skeptical” entailment.) In the example above, the
formulas entailed by the theory are the logical consequences of the axiom p ∧ q.
The two defaults “cancel” each other, as far as entailment is concerned.

3



4 The Frame Default

How can defaults help us solve the instances of the frame problem discussed in
Section 2? We can try to make the first-order theory with axioms (1) and (4)
stronger by adding the default

In0(x) : M In1(x)

In1(x)
. (7)

It says that if a person x is in the room before an action is executed, and it is con-
sistent to assume that x stays in the room after the action, then that assumption
is correct. It seems reasonable to expect that this default theory will entail (2).

To conclude that Carol’s location was not affected when Bob entered the room,
we can try to use the default dual to (7):

¬In0(x) : M¬In1(x)

¬In1(x)
. (8)

We can expect that in application to Carol as x this default would allow us to
derive ¬In1(Carol) from ¬In0(Carol). On the other hand, default (8) would not
be applicable to Bob as x, because the justification ¬In1(Bob) contradicts the
consequence (3) of the axioms.

This is the idea of Reiter’s approach to the frame problem. What is termed
the frame default in his paper is actually the expression

R(x, s) : M R(x, f(x, s))

R(x, f(x, s))
. (9)

It is based on the “situation calculus” model of change, more sophisticated than
our use of subscripts 0 and 1 for two time instants. The premise R(x, s) says
that x has property R in situation s. The expression f(x, s) in the justification
and the conclusion represents the situation that results from applying action f to
object x in situation s. In the “two time instants” notation, (9) would be written
as

R0(x) : M R1(x)

R1(x)
,

which is a generalization of (7).
All examples of defaults so far were “normal”: each of them has a single

justification, which is identical to the default’s conclusion. We will see in Section 8
that nonnormal defaults have important uses too.

To decide whether the frame default, or any other approach to the frame
problem for that matter, produces satisfactory results, we need to use it in for-
malizations of specific dynamic domains and to investigate properties of these
formalizations. This was not attempted in [22]. In 1980, when that paper was
published, one could only say that the frame default looked promising.

4



5 Minimizing Abnormality

A few years later, John McCarthy [15] proposed an approach to the frame problem
based on “abnormality theories”—first-order theories containing the special pred-
icate Ab. A model of an abnormality theory is called minimal if the extent of Ab
in it cannot be made smaller without violating the axioms.2 Minimal models are
models “with few abnormal objects.” The minimality condition can be expressed
by a formula, called circumscription. This is a second-order formula: it uses a
predicate variable to talk about changing the extent of Ab.

The formula
R0(x) ∧ ¬Ab(x) → R1(x) (10)

expresses that if x has property R at time 0 then normally x has property R

at time 1 as well. McCarthy’s proposed solution to the frame problem referred
to minimal models of theories containing axioms similar to (10). By minimizing
abnormality, we would minimize the set of objects x for which the truth value of
the property R would change with time from true to false.

This idea is used in [15] to describe the blocks world in which blocks can be
moved and painted. A satisfactory solution to the frame problem would allow us
to assert, first, that when a block is moved to a different location, the positions of
all other blocks and the colors of all blocks remain the same; second, that when a
block is painted a different color, the colors of all other blocks and the positions
of all blocks remain the same.

McCarthy’s hope was that these assertions would be true in all minimal models
of his abnormality theory. But this conjecture turned out to be incorrect: the the-
ory has unintended minimal models that do not have the desired properties. The
fact that some unintuitive models are not eliminated by minimizing change was
proved in [9] using a counterexample that is much simpler than the blocks world
domain. The example is known as the Yale Shooting Scenario, because it involves
shooting, and its authors were affiliated with Yale University. In this scenario,
a person named Fred is initially alive, and a gun is initially unloaded. Loading
the gun, waiting for a while, and then shooting the gun at Fred can be expected
to kill Fred. However, the abnormality theory describing this scenarion has an
unintended minimal model, in which the gun becomes mysteriously unloaded and
Fred survives.

Speaking of the frame problem in general, the authors of the counterexample
expressed the view that they established more than the inadequacy of the cir-
cumscription approach: the example could be restated, they noted, in terms of
default theories. Their reformulation did not use Reiter’s frame default, however.

2“Smaller” is understood here in the sense of set inclusion, not in the sense of comparing
cardinalities. To make the concept of a minimal model precise, we need to specify whether the
extents of predicates other than Ab may be changed as we try to make the extent of Ab smaller;
we do not go here into discussing this issue.

5



Instead, they wrote axioms involving an abnormality predicate in the style of [15],
but replaced the use of circumscription with a default. In the notation of [22], the
minimality of Ab can be expressed by the default

: M¬Ab(x)

¬Ab(x)
(11)

(if it is consistent to assume that x is not abnormal then that assumption is cor-
rect). So the impossibility of using the frame default (9) was not really established
by their argument. Nevertheless, the general feeling after the publication of the
Yale Shooting example was that the potential of default theories as a tool for
solving the frame problem was very much in question.

6 Explanation Closure

The Yale Shooting paper prompted a large number of responses. Most of them pro-
posed alternative ways to address the frame problem using some general methods
of reasoning about defaults and exceptions—for instance, using circumscription,
but in a different manner.

One group of authors took another path [8, 26, 23]. In many cases, axioms
describing the effects of actions have a special logical form. In the “two time
instants” notation, the effects of an action are often described by implications
similar to (4): the consequent describes the effects of the action using predicates
with the subscript 1, and the antecedent describes the action (and possibly its
preconditions) using predicates with the subscript 0. Assuming this special logical
form of effect axioms, we may be able to generate, by some syntactic procedure,
the additional assumptions needed for solving the frame problem.

If, for instance, the only effect axiom is (4) then the additional axioms may
look like this:

∀x(¬In0(x) ∧ In1(x) → Enter(x)),
∀x¬(In0(x) ∧ ¬In1(x)).

The former expresses the idea that if the truth value of In has changed from false to
true then there is only one possible explanation: the Enter action was executed.
The latter says that, in the domain under consideration, the truth value of In
cannot change from true to false: there is no action with such an effect.

Additional axioms of this kind are known as “explanation closure” axioms.

7 The Frame Default in 1987

Nineteen eighty-seven was a bad year for the frame default. No attempt had been
made by that time to use the frame default for describing any specific domain.
Its close relative—the idea of minimizing change—had been tested, and found

6



inadequate. There was no software at that time that would help researchers to
investigate properties of the frame default, because reasoning in default theories
had not been automated. And work on explanation closure seemed to suggest
that the complicated theory of defaults and extensions might not be even needed
for solving the frame problem.

On the other hand, 1987 was the year when the relationship between default
logic and the programming language Prolog was discovered. This event, discussed
in the next section, had a profound effect on future work on the frame default.

8 Negation as Failure

A Prolog program consists of rules. For instance, each of the two lines of the
program

p(a).

p(c) :- p(a), \+ p(b).

is a rule. The first rule is a “fact.” The second consists of the head and the body,
separated by the symbol :- (read “if” and resembling the shape of the left arrow).
The body consists of two “subgoals” p(a) and \+ p(b). The latter includes the
“negation as failure” symbol \+ (resembling the shape of the logical symbol 6⊢ ).

Query evaluation in the presence of negation as failure is accomplished by
the process called SLDNF resolution [13, Chapter 3]. Consider, for instance, the
operation of Prolog on the program above and the query

?- p(X).

(In Prolog, capitalized identifiers are variables.) To find the ground instances
of the goal p(X) that can be justified by the rules of the program, Prolog first
matches (“unifies”) p(X) with the fact p(a) and produces the answer X = a.
Then it matches p(X) with the head of the second rule, p(c), and attempts
to evaluate the two subgoals in the body of the rule. The first subgoal p(a)

succeeds, because it is a fact included in the program as one of its rules. To
decide whether the second subgoal \+ p(b) succeeds, Prolog checks whether the
expression following the negation symbol \+ , taken as a goal, would fail; this is
how SLDNF resolution treats subgoals containing negation as failure. This goal,
p(b), indeed fails, because it matches neither the fact p(a) nor the head p(c)

of the second rule. Consequently the goal p(c) succeeds, and Prolog produces a
second answer, X = c.

The key observation made in the groundbreaking paper [2] is that Prolog rules
with negation as failure are similar to Reiter’s defaults. Facts are axioms. Other
rules can be rewritten as defaults in the following way. The head of a rule becomes
the conclusion. The members of the body that do not contain negation as failure

7



become the premises. Each member of the body that does contain negation as
failure is turned into a negative literal by replacing \+ with the logical negation
symbol, and this literal becomes a justification.

For instance, the Prolog program shown at the beginning of this section cor-
responds to the default theory that has the axiom p(a) and one default:

p(a) : M¬p(b)

p(c)
. (12)

This default theory has a single extension, which consists of all sentences that
logically follow from p(a) and p(c). These two atoms are entailed by the default
theory, and the atom p(b) is not entailed. We see that Reiter’s semantics matches
in this case the result of evaluating the query ?- p(X).

9 Prolog Is an Implementation of Default Logic

The correspondence between Prolog programs and default theories discussed in
the previous section shows that Prolog can be viewed as a partial implementation
of default logic. Let T be a default theory corresponding to a Prolog program, and
let A be a ground atom. Consider what happens when we execute the program
on the goal A. If A succeeds then T entails A, that is to say, A belongs to each
of its extensions.3 If A fails then T does not entail A (and, moreover, A does not
belong to any of its extensions). For instance, we can determine that the default
theory with the axiom p(a) and the default (12) entails p(a) and p(c), but does not
entail p(b), by running the Prolog program shown at the beginning of Section 8
on these three queries. And it is possible also that the process of evaluating A

will not terminate.
Our assertion that by 1987 reasoning in default logic had not been automated

(Section 7) was not enirely true, as we can now see. Paradoxically, partial imple-
mentations of default logic—Prolog systems that can handle negation as failure—
were already available at the time of publication of the default logic paper [22].
But it did not occur to anyone at that time that Prolog could be used in this way.

10 Answer Set Semantics

The relationship between logic programming and default logic became even closer
when the answer set semantics was defined [6]. An (extended) logic program
consists of rules of the form

L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln, (13)

3We disregard here the problems related to the occurs check and to floundering [13, Sec-
tions 4, 15].

8



where each Li is a literal, positive (an atom A) or negative (¬A). This syntax
allows a rule to contain two kinds of negation: negation as failure not , familiar
from traditional Prolog, and “strong” (or “classical”) negation ¬, found within a
negative literal. Rule (13) has the same meaning as the default

L1 · · · Lm : M Lm+1 · · · M Ln

L0

(14)

(by L we denote the literal complementary to L). To be more precise, answer
sets of a logic program can be described as extensions for the corresponding set
of defaults (14) intersected with the set of literals. Thus the answer set semantics
allows us to talk about syntactically simple defaults (such that the premises, the
justifications, and the conclusion are literals) and syntactically simple elements of
extensions (literals) using the syntax of logic programs with two kinds of negation.4

For example, the Prolog rules from Section 8 can be viewed as rules (13) in
which all literals Li are positive:

p(a),
p(c) ← p(a),not p(b).

This program has one answer set, {p(a), p(c)}. In the syntax of logic programming,
defaults (6) become

r ← p,not ¬r,

¬r ← p,not r.
(15)

The frame defaults (7) and (8) become

In1(x) ← In0(x),not ¬In1(x),
¬In1(x) ← ¬In0(x),not In1(x),

(16)

and the “minimization default” (11) turns into

¬Ab(x) ← not Ab(x). (17)

Rules (15)–(17) contain strong negation and are different in this sense from Prolog
rules.

11 The Role of Literals

Moving from Reiter’s syntax of defaults (5) to the syntax of logic programs with
two negations (13) has prompted a change in the methodology of representing
knowledge by default theories. Syntactically simple defaults and axioms became

4The definition of an answer set in [6] does not refer to defaults. Instead, it adapts Reiter’s
fixpoint construction to the simpler framework of logic programs.

9



important. A default cannot be written in logic programming notation unless its
premises, justifications, and conclusion are literals. If an axiom is an atom A then
it is essentially identical to the default without premises and justifications that
has A as its conclusion; such an axiom can be treated as a fact. If an axiom is
a conjunction of atoms then it can be thought of as a set of facts. For instance,
the default theory from Section 3 can be written as a logic program consisting of
facts p, q and rules (15). But if an axiom is a disjunction or an implication then
it is not clear how to represent it by rules of the form (13).

For instance, axiom (4), which expresses that any persons who enters the
room will be in the room, contains an implication. If our intention is to restrict
ourselves to default theories corresponding to logic programs then this idea has
to be expressed in a different way. Axiom (4) can be replaced with an inference
rule—a default without justifications [28]:

Enter(x)

In1(x)
. (18)

Instead of the default theory described in Section 3 we will use then the logic
program consisting of facts (1), rules (16), and the rule

In1(x) ← Enter(x) (19)

that represents default (18).

12 Using Prolog to Reason with the Frame Default

Once the default theory from Section 3 is replaced with the logic program (1), (16),
(19), it becomes possible to use Prolog for the automation of reasoning about this
action domain. Since the program contains strong negation, it cannot be processed
by Prolog as is. But consider the result of replacing ¬In0, ¬In1 in this program
with new predicate symbols Out0, Out1:

In0(Alice),
Out0(Bob),

Enter(Bob),
In1(x) ← In0(x),not Out1(x),

Out1(x) ← Out0(x),not In1(x),
In1(x) ← Enter(x).

(20)

The result of eliminating strong negation from a program P in favor of additional
predicate symbols, as in this example, is a program whose answer sets are closely
related to the answer sets of P [6, Proposition 2]. In particular, the answer set of
program (20) is the answer set of program (1), (16), (19) with all negative literals

¬In0(· · ·), ¬In1(· · ·)

10



replaced by the corresponding atoms

Out0(· · ·), Out1(· · ·).

Program (20), rewritten in accordance with the syntactic conventions of Pro-
log, looks like this:

in0(alice). out0(bob). enter(bob).

in1(X) :- enter(X).

in1(X) :- in0(X), \+ out1(X).

out1(X) :- out0(X), \+ in1(X).

Given this program, in response to the query

?- in1(X).

Prolog will calculate the set of individuals who are going to be in the room after
the execution of the action:

X = bob ;

X = alice.

13 Answer Set Solvers

Since Prolog query evaluation may not terminate, the possibilities of Prolog as a
mechanism for anwering queries about answer sets are limited even in the absence
of strong negation. For instance, the program

p ← not q,

q ← not p
(21)

has two answer sets, {p} and {q}. But we cannot get any information about its
answer sets by running Prolog; an attempt to evaluate a query would produce an
error message, such as

Out of local stack.

Fortunately, it turned out that the computational ideas used in the design of
fast satisfiability solvers [7] can be applied also to the problem of generating answer
sets of a logic program. Software systems based on this idea, such as smodels

[19], dlv [11], and clingo [4], are called answer set solvers. Like Prolog systems,
they provide partial implementations of default logic, and in some ways they give
us more power.

Issues involved in designing answer set solvers are related to two main differnces
between logic programs and sets of propositional clauses. First, logic programs

11



are nonmonotonic: they include negation as failure, which corresponds, as we
have seen, to justifications in default theories. Second, logic programs may use
variables. The operation of an answer set solver begins with a series of substi-
tutions that replace variables with judiciously chosen ground terms, intermixed
with equivalent transformations that make the program smaller; this is called
“intelligent instantiation.”

Unlike Prolog, an answer set solver does not expect a query from the user. It
can take a program as input and produce all its answer sets. For intance, given
the input

p :- not q.

q :- not p.

clingo produces the list of all answer sets of program (21):

Answer: 1

p

Answer: 2

q

Answer set solvers can process programs with strong negation. For instance,
the default theory given as an example in Section 3 can be encoded in their input
language as follows:

p. q.

r :- p, not -r.

-r :- p, not r.

Given this input, clingo returns two sets of literals:

Answer: 1

p q r

Answer: 2

p q -r

With an answer set solver available, we do not have to eliminate strong nega-
tion from program (1), (16), (19), as we did in Section 12. Given the input

in0(alice). -in0(bob). enter(bob).

in1(X) :- enter(X).

in1(X) :- in0(X), not -in1(X).

-in1(X) :- -in0(X), not in1(X).

clingo replies:

Answer: 1

in0(alice) -in0(bob) enter(bob) in1(bob) in1(alice)

12



14 Planning as Generating Answer Sets

In Sections 12 and 13 we saw that Prolog systems and answer set solvers allow us
to automate reasoning about a dynamic domain described using the frame default.
The example there involved a single action. Computational problems that involve
a sequence of actions, such as temporal projection (deciding how the world will
change after executing a given sequence of actions) and planning (generating a
sequence of actions that is guaranteed to achieve a given goal), can be approached
in a similar way [3]. But the simplistic “two time instants” notation introduced in
Section 2 has to be replaced in this case by a more sophisticated model of time.

We can think, for instance, of a discrete sequence of instants, and write

Next(t, t1) for “t1 is the time instant that follows t”,
Holds(In(x), t) for “person x is in the room at time t”,

Occurs(Enter(x), t) for “person x enters the room during the interval
between t and the following time instant”.

Then rule (19) will turn into

Holds(In(x), t1) ← Next(t, t1),Occurs(Enter(x), t),

and the first of the frame defaults (16) will become

Holds(In(x), t1) ← Next(t, t1),Holds(In(x), t),not ¬Holds(In(x), t1). (22)

The use of logic programs of this kind for planning is somewhat similar to
the “planning as satisfiability” method [10]. That approach requires that the
domain be described in propositional logic, which can be achieved, for instance,
by grounding a representation formed using the process of explanation closure
(Section 6). When the domain is described by a logic program, the frame default
can be used instead of explanation closure, and an answer set solver takes the
place of a satisfiability solver. Variables are eliminated from the program by the
intelligent instantiation procedure included in the solver. We will say more about
advantages of answer set planning in the next section.

15 The RCS Advisor

The planning method described above became the basis of the logic program
called the RCS Advisor [20]. The RCS, or Reaction Control System, was the
system aboard the Space Shuttle designed to maneuver it while it was in space.
The RCS Advisor was used to verify the possibility of doing that even if several
elements of the system malfunction.

Here is one of the rules from that program:

13



h(value(W,X),T1) :- next(T,T1), signal(X), is_wire(W),

h(value(W,X),T), not nh(value(W,X),T1).

This is a version of the frame default similar to rule (22). The main difference
between the two rules is that the “toy world” condition In(x) is replaced here by
the “real life” condition value(W,X).

Why didn’t the creators of the RCS Advisor use the explanation closure solu-
tion to the frame problem and a satisfiability solver, instead of the frame default
and an answer set solver?

There was a good reason for that. As discussed in Section 6, the process of
explanation closure is applicable when the axioms describing the effects of actions
have certain special logical form. The RCS was a complicated device, and the
effects of actions, such as flipping a switch, had to be described in two steps.
First, the simple direct effect was stated: when you flip the switch, the state
of the switch changes. Then the other effects would logically follow using the
rules describing the RCS that were included in the program. Such indirect, two-
level descriptions of actions become possible when the frame default is used, but
extending the explanation closure method to actions with indirect effects is not
straighforward.

16 Conclusion

As discussed above, in 1987 the future of the frame default was dim. But by 2001
the frame default had been fully exonerated, efficiently implemented, and used in
an important project.

The use of the answer set semantics and answer set solvers for knowledge
representation and search is known as answer set programming [14, 18]. Reasoning
about actions is only one of many areas to which it has been successfully applied
[1, 4, 5, 12].

17 Acknowledgements

Thanks to Yuliya Lierler and to the anonymous referees for comments on a draft
of this paper.

References

[1] Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem
Solving. Cambridge University Press, 2003.

14



[2] Nicole Bidoit and Christine Froidevaux. Minimalism subsumes default logic
and circumscription in stratified logic programming. In Proceedings LICS-87,
pages 89–97, 1987.

[3] Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler. Encoding planning
problems in non-monotonic logic programs. In Sam Steel and Rachid Alami,
editors, Proceedings of European Conference on Planning, pages 169–181.
Springer, 1997.

[4] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving in
Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

[5] Michael Gelfond. Answer sets. In Frank van Harmelen, Vladimir Lifschitz,
and Bruce Porter, editors, Handbook of Knowledge Representation. Elsevier,
2008.

[6] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs
and disjunctive databases. New Generation Computing, 9:365–385, 1991.

[7] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfia-
bility solvers. In Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter,
editors, Handbook of Knowledge Representation, pages 89–134. Elsevier, 2008.

[8] Andrew Haas. The case for domain-specific frame axioms. In Frank M.
Brown, editor, The Frame Problem in Artificial Intelligence, Proceedings 1987
Workshop, 1987.

[9] Steve Hanks and Drew McDermott. Nonmonotonic logic and temporal pro-
jection. Artificial Intelligence, 33(3):379–412, 1987.

[10] Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings of
European Conference on Artificial Intelligence (ECAI), pages 359–363, 1992.

[11] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gott-
lob, Simona Perri, and Francesco Scarcello. The DLV system for knowledge
representation and reasoning. ACM Transactions on Computational Logic,
7(3):499–562, 2006.

[12] Vladimir Lifschitz. What is answer set programming? In Proceedings of
the AAAI Conference on Artificial Intelligence, pages 1594–1597. MIT Press,
2008.

[13] John Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987. Sec-
ond, extended edition.

15



[14] Victor Marek and Miroslaw Truszczynski. Stable models and an alternative
logic programming paradigm. In The Logic Programming Paradigm: a 25-
Year Perspective, pages 375–398. Springer Verlag, 1999.

[15] John McCarthy. Applications of circumscription to formalizing common sense
knowledge. Artificial Intelligence, 26(3):89–116, 1986.

[16] John McCarthy and Patrick Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In B. Meltzer and D. Michie, editors,
Machine Intelligence, volume 4, pages 463–502. Edinburgh University Press,
Edinburgh, 1969.

[17] Erik Mueller. Commonsense reasoning. Elsevier, 2006.

[18] Ilkka Niemelä. Logic programs with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelligence,
25:241–273, 1999.

[19] Ilkka Niemelä and Patrik Simons. Smodels—an implementation of the stable
model and well-founded semanics for normal logic programs. In Proceed-
ings 4th Int’l Conference on Logic Programming and Nonmonotonic Reason-
ing (Lecture Notes in Artificial Intelligence 1265), pages 420–429. Springer,
1997.

[20] Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson,
and Matthew Barry. An A-Prolog decision support system for the Space
Shuttle. In Proceedings of International Symposium on Practical Aspects of
Declarative Languages (PADL), pages 169–183, 2001.

[21] Zenon W. Pylyshyn. Robot’s Dilemma: The Frame Problem in Artificial
Intelligence. Greenwood Publishing Group Inc., Westport, CT, USA, 1987.

[22] Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–
132, 1980.

[23] Raymond Reiter. The frame problem in the situation calculus: a simple so-
lution (sometimes) and a completeness result for goal regression. In Vladimir
Lifschitz, editor, Artificial Intelligence and Mathematical Theory of Compu-
tation: Papers in Honor of John McCarthy, pages 359–380. Academic Press,
1991.

[24] Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying
and Implementing Dynamical Systems. MIT Press, 2001.

[25] Erik Sandewall. Features and Fluents, volume 1. Oxford University Press,
1994.

16



[26] Lenhart Schubert. Monotonic solution of the frame problem in the situation
calculus: an efficient method for worlds with fully specified actions. In H.E.
Kyburg, R. Loui, and G. Carlson, editors, Knowledge Representation and
Defeasible Reasoning, pages 23–67. Kluwer, 1990.

[27] Murray Shanahan. Solving the Frame Problem: A Mathematical Investigation
of the Common Sense Law of Inertia. MIT Press, 1997.

[28] Hudson Turner. Representing actions in logic programs and default theories:
a situation calculus approach. Journal of Logic Programming, 31:245–298,
1997.

17


