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Abstract

Refactoring is modifying a program without changing its external behavior. In this paper, we
make the concept of external behavior precise for a simple answer set programming language.
Then we describe a proof assistant for the task of verifying that refactoring a program in that
language is performed correctly.

1 Introduction

This paper is about the process of refactoring in the context of answer set program-

ming (ASP), that is, about modifying an ASP program without changing its external

behavior. Examples of refactoring ASP programs can be found in papers by Gebser et al.

(2011, Section 3.1) and Buddenhagen and Lierler (2015, Section 3). In this paper we pro-

pose, for a simple ASP language, a precise definition of external behavior and a method

for verifying that two programs exhibit the same external behavior.

Refactoring a program usually involves a series of small changes that improve its

structure or performance. The example below shows that, in ASP, refactoring may serve

also another purpose: to transform a program that a grounder classifies as unsafe into

an equivalent program that it is able to ground. The program

composite(I*J) :- I > 1, J > 1.

prime(I) :- I = a..b, not composite(I).

defines the set of primes in the interval {a, . . . , b}, assuming that a > 1. The grounder

gringo (Gebser et al., 2019) tells us that the program is unsafe. A safe program defining

the same set can be obtained by replacing the first rule with

composite(I*J) :- I = 2..b, J = 2..b.

This is an example of refactoring, because the extent of prime/1 did not change.

We can also refactor the program to improve its performance using the fact that every

composite number in {a, . . . , b} has a divisor in the interval {2, . . . ⌊
√
b⌋}:

sqrt_b(M) :- M = 1..b, M*M <= b, (M+1)*(M+1) > b.

composite(I*J) :- sqrt_b(M), I = 2..M, J = 2..b.

prime(I) :- I = a..b, not composite(I).
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In the Abstract Gringo language (Gebser et al., 2015), a program is defined as a set

of rules, so that a program includes neither directives nor comments. Under this narrow

definition, the program itself does not tell us which predicate symbols are meant to repre-

sent the output, and which symbols are auxiliary. But this difference is essential, because

changing auxiliary predicates does not indicate a mistake in the process of refactoring.

Furthermore, the rules of a program do not show what kind of input is supposed to be

provided for it. Generally, an input for an ASP program can be specified in two ways.

First, some symbolic constants, such as a and b in the programs above, may be meant to

serve as placeholders for elements of the input. Second, some predicate symbols occurring

in the program may occur in the bodies of rules only, not in the heads. The extents of such

predicates may be specified as part of input when we run the program. Some inputs may

not conform to the programmer’s assumptions about the intended use of the program.

For instance, when we run the prime number programs above, the placeholders a and b

are expected to be replaced by integers; the cases when they are replaced by symbolic

constants are not related to external behavior if the programs are used as intended.

To sum up, what we consider external behavior of a set of rules depends on how these

rules are meant to be used. In Sections 3–5, we make this idea precise for the subset of

Abstract Gringo called mini-gringo (Fandinno et al. 2020, Section 2), (Lifschitz 2022,

Sections 2, 3). After that, we describe the proof assistant anthem-p2p,1 which uses the

theorem prover vampire (Kovaćs and Voronkov, 2013) to verify that two mini-gringo

programs have the same external behavior. This proof assistant is built on top of the

system anthem (Fandinno et al., 2020), whose focus is on the related and yet different

task of confirming that an ASP program adheres to its specification. The prime number

programs above are used as a running example. To make the paper more self-contained,

we have reviewed some background material in Appendices A–C.

2 On the syntax of mini-gringo

There are minor syntactic differences between mini-gringo and the input language of

the grounder gringo, explained by the fact that the former is designed for theoretical

studies, and the latter for actual programming. For example, the definition of sqrt_b/1

in the introduction, rewritten in the syntax of mini-gringo, becomes

sqrt b(M)←M = 1 .. b ∧ M ×M ≤ b ∧ (M + 1)× (M + 1) > b.

Overlined symbols, such as 1, are “numerals”—syntactic objects representing integers.

In examples of rules and programs, we will freely switch between the two styles.

In mini-gringo, precomputed terms are numerals, symbolic constants, and the symbols

inf, sup. We assume that a total order on precomputed terms is chosen, such that inf is

its least element, sup is its greatest element, and, for all integers m and n, m < n iff

m < n. A precomputed atom is an expression of the form p(t), where p is a symbolic

constant and t is a tuple of precomputed terms. A predicate symbol is a pair p/n, where p

is a symbolic constant and n is a nonnegative integer. About a rule or another syntactic

expression we say that it contains p/n if it contains an atom of the form p(t1, . . . , tn).

1 Available at https://github.com/ZachJHansen/anthem-p2p/.
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3 External behavior

Definition 1 A user guide is a quadruple

(PH, In,Out,Dom) (1)

where

• PH is a finite set of symbolic constants, called placeholders,

• In and Out are disjoint finite sets of predicate symbols, called input symbols and

output symbols, and

• Dom is a set such that each of its elements is a pair (v, I), where
(i) v is a function that maps elements of PH to precomputed terms that do not

belong to PH, and

(ii) I is a subset of the set of precomputed atoms that contain an input symbol and

do not contain placeholders.

The set Dom is the domain of the user guide, and pairs (v, I) satisfying conditions (i)

and (ii) are called inputs. An input (v, I) represents a way to choose the values of place-

holders and the extents of input predicates: for every placeholder c, specify v(c) as its

value, and add the atoms I to the rules of the program as facts. If Π is a mini-gringo

program then v(Π) stands for the program obtained from Π by replacing every occur-

rence of every constant c in the domain of v by v(c). Using this notation, we can say that

choosing (v, I) as input for Π amounts to replacing Π by the program v(Π) ∪ I.
To use a program in accordance with user guide (1) means to run it for inputs that

belong to Dom. The inputs that do not belong to Dom are not related to the external

behavior of the program when it is used as intended.

Example 1 The intended use of the programs discussed in the introduction can be

described by user guide (1) with PH = {a, b}, In = ∅, Out = {prime/1}, and with the

domain consisting of the inputs (v, ∅) such that v(a), v(b) are numerals. (We could choose

also to include the condition v(b) ≥ v(a) > 1.) This user guide will be denoted by UGp.

Example 2 We would like to describe the meaning of the word orphan by a logic

program (Gelfond and Kahl 2014, Section 4.1.2). The intended use of such a program

can be described by a user guide (1) with

PH = ∅, In = {father/2,mother/2, living/1}, Out = {orphan/1},

and with the domain consisting of all inputs. We will denote this user guide by UGo. In

the next two sections, we examine two possible definitions of orphan/1 and consider the

question of their equivalence with respect to UGo.

User guides are closely related to lp-functions (Gelfond 2002, Section 2), and also to

io-programs (Fandinno et al. 2020, Section 5), reviewed in Appendix C.

An output atom of a user guide UG is a precomputed atom that contains an output

symbol of UG.

Definition 2 Let (v, I) be an input in the domain of a user guide UG, and let Π be

a mini-gringo program such that the heads of its rules do not contain input symbols

of UG. The external behavior of Π for the user guide UG and the input (v, I) is the



4 J. Fandinno, Z. Hansen, Yu. Lierler, V. Lifschitz, N. Temple

collection of all sets that can be represented as the intersection of a stable model of

v(Π) ∪ I with the set of output atoms of UG.

Example 1, continued If Π is one of the three prime number programs from the

introduction, and (v, I) is an input in the domain of UGp, then the program v(Π) ∪ I
is v(Π), and it has a unique stable model. If v is defined by the conditions v(a) = 10,

v(b) = 15, then that stable model includes the atoms prime(11), prime(13), and some

atoms containing composite/1. The external behavior of each of the programs for this

input is {{prime(11), prime(13)}}. For the safe and optimized versions, this external

behavior can be calculated by instructing clingo to find all answers for the file obtained

from the program by appending the directives

#const a = 10. #const b = 15. #show prime/1.

Example 2, continued If Π is the program

parent_living(X) :- father(Y,X), living(Y).

parent_living(X) :- mother(Y,X), living(Y).

orphan(X) :- living(X), not parent_living(X).

(2)

and (v, I) is an input in the domain of UGo, then the program v(Π)∪ I is Π∪ I, and it

has a unique stable model. If I is

{father(jacob, joseph),mother(rachel, joseph),

living(jacob), living(rachel), living(joseph)}, (3)

then that stable model includes the atoms orphan(jacob), orphan(rachel), and some

atoms containing predicate symbols other than orphan/1. The external behavior of this

program for UGo and input (3) is

{{orphan(jacob), orphan(rachel)}}. (4)

It can be calculated by instructing clingo to find all answers for the file obtained from

program (2) by appending the facts

father(jacob,joseph).

mother(rachel,joseph).

living(jacob). living(rachel). living(joseph).

and the directive #show orphan/1.

In the special case when UG has neither placeholders nor input symbols, and its set

of output symbols includes all predicate symbols occurring in Π, the external behavior

of Π with respect to UG and (∅, ∅) is the set of stable models of Π. In this sense, the

concept of external behavior is a generalization of the stable model semantics.

4 Equivalence

Definition 3 Let UG be a user guide, and let Π1, Π2 be mini-gringo programs such

that the heads of their rules do not contain input symbols of UG. We say that Π1 is

equivalent to Π2 with respect to UG if, for every input (v, I) in the domain of UG, the

external behavior of Π1 for UG and (v, I) is the same as the external behavior of Π2.
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Example 1, continued The three programs from the introduction are equivalent to

each other with respect to UGp. As discussed in Section 6, this claim can be verified

using the automated reasoning tools anthem-p2p and vampire.

Example 2, continued Perhaps surprisingly, the one-rule program

orphan(X) :- living(X), father(Y,X), mother(Z,X),

not living(Y), not living(Z).
(5)

is not equivalent to (2) with respect to UGo. Indeed, the external behavior of this program

with respect to UGo and input (3) is {∅}, which is different from (4). We will see that

anthem-p2p can help us clarify the relationship between programs (2) and (5).

We understand refactoring a mini-gringo program with respect to a user guide UG

as replacing it by a program that is equivalent to it with respect to UG.

This equivalence relation is essentially an example of relativized uniform equivalence

with projection (Oetsch and Tompits, 2008), except that the language discussed in that

paper includes neither arithmetic operations nor placeholders. It is uniform equivalence,

because the programs are extended by adding facts, rather than more complex rules;

relativized, because these facts I are assumed to be atoms containing input symbols,

not arbitrary atoms; with projection, because we look at the output atoms in the stable

model, not the entire model.

5 Formal notation for user guides

To design software for verifying the equivalence of programs with respect to a user guide,

we need to represent user guides in formal notation. The format that we chose for user

guide files is similar to the format of specification files, defined by Fandinno et al. (2020)

within their work on the system anthem. Placeholders and input symbols are represented

by input statements, for instance:

input: n.

input: living/1, father/2, mother/2.

Output symbols are represented by output statements:

output: prime/1.

There can be several statements of both kinds in a user guide file, in any order.

The question of representing the domain Dom by a string of characters is more difficult,

because the domain is a set of inputs, which is generally infinite. Our approach is to

define “assumptions” as sentences of an appropriate first-order language, and characterize

the domain by a list of assumptions; an input belongs to the domain iff it satisfies all

assumptions on that list.

For any set P of predicate symbols, by σ0(P) we denote the subsignature of the two-

sorted signature σ0, described in Appendix A, in which the set of predicate symbols is

limited to the comparison symbols and the symbols from P. In this paper, an assumption

is a sentence over the signature σ0(In). Besides input and output statements, a user

guide file may include one or more statements consisting of the word assume followed by

an assumption.
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To use assumptions as conditions on an input, we need to relate inputs to interpreta-

tions in the sense of first-order logic. If v is a function that maps elements of some set PH

of symbolic constants to symbolic constants, and I is a subset of the set of precomputed

atoms that contain a predicate symbol from P, then there exists a unique interpretation I

of σ0(P) such that

(a) the domain of the sort general in I is the set of all precomputed terms;

(b) the domain of the sort integer in I is the set of all numerals;

(c) I interprets every symbolic constant c in PH as v(c);

(d) I interprets every precomputed term t that does not belong to PH as t;

(e) I interprets the symbols for arithmetic operations as usual in arithmetic;

(f) if p/n is a predicate constant from P, and c is an n-tuple of precomputed atoms,

then I interprets p(c) as true iff p(c) ∈ I;
(g) I interprets the comparison symbols as in the definition of mini-gringo.

We will denote that interpretation by I(v, I). The domain of the user guide defined by a

set of assumptions is the set of inputs (v, I) such that the interpretation I(v, I) of σ0(In)

satisfies all assumptions in that set.

Example 1, continued The user guide UGp can be described by the statements

input: a, b.

assume: exists N (a = N) and exists N (b = N).

output: prime/1.

The first two lines can be written more concisely as

input: a -> integer, b -> integer.

Example 2, continued The user guide UGo can be described by the statements

input: living/1, father/2, mother/2.

output: orphan/1.
(6)

The absence of assume statements here shows that the domain is the set of all inputs.

6 Functionality of anthem-p2p

The proof assistant anthem-p2p uses the theorem prover vampire to verify that two

mini-gringo programs have the same external behavior with respect to a given user

guide. We can verify, for instance, that the first two versions of the prime number program

from the introduction are equivalent with respect to the user guide UGp by running

anthem-p2p on three files: the unsafe program

composite(I*J) :- I > 1, J > 1.

prime(I) :- I = a..b, not composite(I).
(7)

the safe program

composite(I*J) :- I = 2..b, J = 2..b.

prime(I) :- I = a..b, not composite(I).
(8)
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and the user guide

input: a -> integer, b -> integer.

output: prime/1.
(9)

The system anthem-p2p transforms the task of verifying equivalence with respect to

a user guide (1) into the problem of verifying the provability of a formula in a first-

order theory over the signature σ0(In∪Out), and submits that problem to vampire; see

Sections 7–9 for details.

The user can help vampire organize search more efficiently by supplying anthem-p2p

with “helper” files. Such a file may instruct vampire to prove a series of lemmas before

trying to prove the goal formula. A helper file can suggest also instances of the induction

schema that may be useful for the job at hand. This kind of help is needed, for instance,

for verifying the equivalence of the optimized prime number program to the other two.

The use of anthem-p2p for proving equivalence of programs is, generally, an interactive

process. If vampire does not prove the goal formula in the allotted time then one of the

options is to provide more lemmas and run anthem-p2p again. Alternatively, the user

can look for a counterexample that refutes the equivalence claim, as in Example 2 above.

Sometimes, anthem-p2p can help us clarify the source of a puzzling discrepancy be-

tween two versions of a program if we run it in the presence of additional assume state-

ments. If adding an assumption to the user guide makes the programs equivalent then

it is possible that perceiving that assumption as self-evident is the reason why the dis-

crepancy is puzzling. For instance, we can observe that the anthem-p2p/vampire team

proves the equivalence of program (2) to program (5) if we extend user guide (6) by two

existence and uniqueness assumptions:

assume: forall X exists Y forall Z (father(Z,X) <-> Y=Z).

assume: forall X exists Y forall Z (mother(Z,X) <-> Y=Z).

The limitations of the anthem-p2p algorithm are inherited from the limitations of

anthem and can be described as follows. The predicate dependency graph of a mini-

gringo program Π (Fandinno et al. 2020, Section 6.3) is the directed graph that

• has the predicate symbols contained in Π as its vertices, and

• has an edge from p/n to q/m if some rule of Π contains p/n in the head and q/m

in the body.

The edge from p/n to q/m is positive if there is a rule R in Π such that p/n is contained

in the head of R, and q/m is contained in an atom in the body of R that is not in the

scope of negation. For example, the predicate dependency graph of program (2) has 6

edges; all of them except for the edge from parent_living/1 to orphan/1 are positive.

We say that Π is tight if this graph has no cycles consisting of positive edges.

A vertex p/n of the graph is private for a user guide UG if it is neither an input symbol

nor an output symbol of UG. We say that Π uses private recursion for UG if

• the predicate dependency graph of Π has a cycle such that every vertex in it is a

private symbol, or

• Π includes a choice rule with the head containing a private symbol.
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As discussed in the next two sections, the applicability of the algorithm implemented

in anthem-p2p to a pair of mini-gringo programs and a user guide UG is guaranteed

whenever the programs are tight and do not use private recursion with respect to UG.

We expect that it will be possible to replace the tightness requirement by a significantly

weaker condition using the ideas of a recent paper on “locally tight” programs (Fandinno

and Lifschitz, 2021); this is a topic for future work.

7 Equivalence of tight programs

The theorem stated below relates equivalence of tight programs to the satisfaction rela-

tion of second-order logic. Its statement refers to the concept of second-order completion,

reviewed in Appendix B, and also to the concept of standard interpretations, defined as

follows. An interpretation I of σ0(P) is standard for a set PH of symbolic constants if it

satisfies conditions (a), (b), (d), (e), (g) from Section 5 and the condition

(c′) I interprets every symbolic constant in PH as a term that does not belong to PH.

Theorem Let UG be a user guide (PH,In,Out,Dom) such that its domain is described

by a finite set of assumptions, and let Asm be the conjunction of these assumptions. For

any tight mini-gringo programs Π1, Π2 such that the heads of their rules do not contain

the input symbols of UG, Π1 is equivalent to Π2 with respect to UG iff the sentence

Asm→ (COMP(Π1, In,Out)↔ COMP(Π2, In,Out)) (10)

is satisfied by all interpretations of the signature σ0(In∪Out) that are standard for PH.

This theorem shows that the equivalence of tight programs may be established by

choosing a first-order theory T over the signature σ0(In ∪Out) such that its axioms are

satisfied by all interpretations that are standard for PH, and then exhibiting a derivation

of formula (10) from the axioms of T in classical second-order logic. For programs that do

not use private recursion, the problem of constructing such a derivation can be reduced

to proof search in first-order logic (see Section 8 below), for which many automated

reasoning tools are available. This is the core of the procedure used by anthem-p2p.

The proof of the theorem, including the lemma below, uses terminology related to

io-programs, which is reviewed in Appendix C.

Lemma Let Π be a mini-gringo program such that the heads of its rules do not contain

input symbols of a user guide (PH,In,Out,Dom). For any input (v, I), a set J of output

atoms is an element of the external behavior of Π for (PH,In,Out,Dom) and (v, I) iff

I ∪ J is an io-model of the io-program (Π,PH,In,Out) for (v, I).

Proof For every set J of output atoms, the conditions

• J is the set of all output atoms in some stable modelM of v(Π) ∪ I;
• I ∪ J is the set of all public atoms in some stable modelM of v(Π) ∪ I

are equivalent to each other. Indeed, since the heads of rules of v(Π) do not contain input

atoms, the set of input atoms inM is I.

Proof of the Theorem The condition

Π1 is equivalent to Π2 with respect to UG (11)
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means that for any input (v, I) such that I(v, I) |= Asm and any set J of output atoms,

J is an element of the external behavior of Π1 for UG and (v, I)
iff

J is an element of the external behavior of Π2 for UG and (v, I).
(12)

By the lemma, condition (12) can be reformulated as follows:

I ∪ J is an io-model of the io-program (Π1,PH,In,Out) for (v, I)
iff

I ∪ J is an io-model of the io-program (Π2,PH,In,Out) for (v, I).

By the theorem quoted at the end of Appendix C, this can be further reformulated as

I(v, I ∪ J ) |= COMP(Π1,In,Out)↔ COMP(Π2,In,Out). (13)

Hence, condition (11) is equivalent to requiring that (13) holds for all inputs (v, I) such
that I(v, I) |= Asm and all sets J of output atoms.

Since assumptions do not contain output symbols, I(v, I) |= Asm is equivalent to

I(v, I ∪ J ) |= Asm. It follows that (11) is equivalent to asserting that implication (10)

is satisfied by I(v, I ∪J ) for all inputs (v, I) and all sets J of output atoms. It remains

to observe that an interpretation of the signature σ0(In ∪Out) can be represented in the

form I(v, I ∪ J ) if and only if it is standard for PH.

8 Reduction to first-order logic

If Π1 and Π2 do not use private recursion then the reference to second-order consequences

of the axioms of T in Section 7 can be eliminated in the following way. Represent the

formula COMP(Π1, In,Out) in the form

∃P

(∧
i

Fi(P) ∧ F ′(P)

)
,

where P is a list of distinct predicate variables corresponding to the private symbols

p1, p2, . . . of Π1, and Fi(P) is the formula obtained from the completed definition of pi
in Π1 by replacing each of p1, p2, . . . by the corresponding member of P. (Thus the

conjunctive members of F ′(P) correspond to the completed definitions of the output

symbols and to the constraints of Π1.) Similarly, write COMP(Π2, In,Out) as

∃Q

∧
j

Gj(Q) ∧G′(Q)

 , (14)

where Q is a list of distinct predicate variables corresponding to the private symbols

q1, q2, . . . of Π2, and the formulas Gj(Q) are obtained from the completed definitions of

these symbols in Π2 by replacing them with corresponding variables. Take one half

Asm→ (COMP(Π1, In,Out)→ COMP(Π2, In,Out)) (15)

of condition (10). Since Π2 does not use private recursion, formula (14) is equivalent to

∀Q

∧
j

Gj(Q)→ G′(Q)
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(Fandinno et al. 2020, Theorem 3). It follows that formula (15) is equivalent to

Asm→

∃P(∧
i

Fi(P) ∧ F ′(P)

)
→ ∀Q

∧
j

Gj(Q)→ G′(Q)


and consequently to

∀PQ

Asm ∧
∧
i

Fi(P) ∧
∧
j

Gj(Q)

→ (F ′(P)→ G′(Q))

 (16)

(with the bound variables in P, Q renamed, if necessary, to ensure that they are pairwise

disjoint). Similarly, the second half

Asm→ (COMP(Π2, In,Out)→ COMP(Π1, In,Out))

of condition (10) is equivalent to the formula obtained from (16) by swapping F ′(P) with

G′(Q). Thus (10) can be rewritten as

∀PQ

Asm ∧
∧
i

Fi(P) ∧
∧
j

Gj(Q)

→ (F ′(P)↔ G′(Q))

 .

Finally, observe that this formula is entailed by the axioms of T if and only if the axioms

entail the first-order formulaAsm ∧
∧
i

Fi(p) ∧
∧
j

Gj(q)

→ (F ′(p)↔ G′(q)), (17)

where p, q are lists of fresh predicate constants.

We return to this formula in the description of the design of anthem-p2p below. Note

that its subformulas Fi(p), Gj(q), F
′(p), G′(q) are parts of the first-order completion

formulas of Π1 and Π2, modified by replacing their private symbols p1, p2, . . . , q1, q2, . . .

by members of the lists p and q.

9 Design of anthem-p2p

The system anthem-p2p is a Python program than operates by converting a claim about

the equivalence of two mini-gringo programs into an input for anthem. The system

anthem verifies the correctness of an io-program with respect to a formal specification.

The file describing a specification includes lists of placeholders, input symbols, output

symbols, and assumptions, and also a list of “specs” that describe the intended behavior

of the future program by sentences over the signature σ0(In ∪Out).

Given programs Π1 and Π2 and a user guide (PH,In,Out,Dom) with the domain de-

scribed by assumptions Asm, anthem-p2p constructs the following specification Sp:

(i) the placeholders of Sp are the placeholders PH of the given user guide;

(ii) the input symbols of Sp are the input symbols In of the user guide and the predicate

symbols p corresponding to the private symbols p1, p2, . . . of the program Π1;

(iii) the output symbols of Sp are the output symbols Out of the user guide;
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(iv) the assumptions of Sp are the assumptions Asm of the user guide and the modified

completed definitions Fi(p) of the private symbols of Π1;

(v) the specs of Sp are the remaining conjunctive terms F ′(p) of the modified first-order

completion formula of Π1.

Then anthem-p2p instructs anthem to prove the claim that the io-program

(Π2,PH, In,Out) implements Sp. Providing anthem with such an instruction makes

it look for a derivation of the formulaAsm ∧
∧
i

Fi(p) ∧
∧
j

Gj(q)

→ (G′(q)↔ F ′(p)) (18)

from the axioms of T by invoking the theorem prover vampire (Fandinno et al. 2020,

Section 6.4). This formula is equivalent to (17). Thus, instructing anthem to verify that

the io-program (Π2,PH, In,Out) implements the specification Sp amounts to verifying

the provability of formula (17) in T .

As an example, consider the operation of the anthem-p2p algorithm on programs (7)

and (8) and user guide (9). In each of the programs, the only private predicate is

composite/1; it corresponds to both p1 and q1 in the notation of Section 8. The symbols

composite_1/1 and composite_2/1, generated by anthem-p2p, play the parts of p

and q in formula (17). The file describing the specification Sp is obtained in this case

from user guide (9) by adding three statements. First, in accordance with clause (ii) in

the description of Sp above, anthem-p2p adds the statement

input: composite_1/1.

Second, in accordance with clause (iv), a definition of composite_1/1 is assumed:

assume: forall X (composite_1(X) <->

exists N1, N2 (N1 > 1 and N2 > 1 and X = N1 * N2)).

Finally, in accordance with clause (v), a definition of prime/1 in terms of composite_1/1

is added as a spec:

spec: forall X (prime(X) <->

exists N1 (not composite_1(N1) and

exists N2, N3 (N2 = a and N3 = b and

N2 <= N1 and N1 <= N3) and X = N1)).

Once Sp is generated, anthem calls vampire to prove formula (18) in the theory T ,

first by deriving the specs F ′(p) from the antecedent of (18) and G′(q) (“verification of

specification from translated program”), and then by deriving G′(q) from the antecedent

of (18) and the specs F ′(p) (“verification of translated program from specification”). In

this example, the runtime of vampire will be significantly reduced (a few seconds instead

of a few minutes) if we instruct it to start by proving two lemmas:

lemma: forall I, J (I > 1 and J > 1 -> I < I*J).

lemma: forall X (prime(X) ->

exists N1 (not composite_1(N1) and

exists N2, N3 (N2 = a and N3 = b and

N2 <= N1 and N1 <= N3) and X = N1)).
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10 Conclusion

This paper contributes to the theory of logic programming by defining user guides, ex-

ternal behaviors, and equivalence with respect to a user guide. The theorem proved in

Section 7 relates equivalence of tight programs to program completion.

The problem of checking equivalence between programs arises in many areas of com-

puter science. For example, verifying the correctness of the translation performed by an

optimizing compiler is a problem of this kind. What is special about the verification of

refactoring is that it involves a pair of similar programs written in the same program-

ming language. mediator (Wang et al., 2018) is a tool that uses an SMT solver for the

verification of database refactoring.

The proof assistant anthem-p2p can be used for verifying the correctness of refactoring

an ASP program, and also for comparing alternative solutions to the same programming

problem (for instance, in classroom teaching and in ASP programming contests). To make

this tool more versatile, we plan to make it applicable to programs with aggregates, along

the lines of recent publications (Fandinno et al., 2022; Lifschitz, 2022).
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Appendix A Two-sorted formulas

The signature σ0 has two sorts: the sort general and its subsort integer. Variables of

the first sort are meant to range over arbitrary precomputed terms, and we will identify

them with variables used in mini-gringo rules. Variables of the second sort are meant

to range over numerals—or, equivalently, integers. The signature includes

• all precomputed terms as object constants; an object constant is assigned the sort

integer iff it is a numeral;

• the symbols +, − and × as binary function constants; their arguments and values

have the sort integer ;

• all predicate symbols p/n as n-ary predicate constants; their arguments have the

sort general ;

• the comparison symbols ̸= < > ≤ ≥ as binary predicate constants; their arguments

have the sort general.

An atomic formula (p/n)(t) can be abbreviated as p(t). An atomic formula ≺(t1, t2),
where ≺ is a comparison symbol, can be written as t1 ≺ t2.

In this paper, we adopt the convention that general variables start with U , V , W , X,

Y , and Z; integer variables start with I, J , K, L, M , and N . For example, the formula

∃X(N = X) expresses that the value of N is an object of the sort general ; it is universally

true, because integer is a subsort of general. The formula ∃N(N = X) expresses that the

value of X is an object of the sort integer ; it is generally not true.

Appendix B Second-order completion

Second-order completion (Fandinno et al. 2020, Sections 6.1, 6.2) is a generalization of

Clark’s completion (Clark 1978) that uses bound predicate variables to model auxiliary

(“private”) predicates, such as composite/1 in our prime number programs. The defini-

tion covering the full syntax of mini-gringo is rather lengthy, and in this appendix we

only give an outline and an example.

Let In and Out be disjoint sets of predicate symbols, and let Π be a mini-gringo

program such that atoms in the heads of its rules do not contain predicate symbols

from In. If a predicate symbol p/n

• is contained in an atom that occurs in a rule of Π, and

• belongs neither to In nor to Out,
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then p/n is a private symbol of Π. We denote the set of private symbols of Π by Prv.

The first-order completion of Π is the conjunction of the following first-order sentences

over the signature σ0(In ∪Out ∪ Prv):

• the completed definitions of the predicate symbols from Out ∪ Prv in Π;

• the constraints of Π rewritten in the syntax of first-order logic.

The second-order completion of Π is the sentence over the signature σ0(In ∪ Out) ob-

tained from the first-order completion of Π by replacing all private symbols by predicate

variables and binding these variables by an existential quantifier. We will denote the

second-order completion of Π by COMP(Π, In,Out).

If, for instance, In = ∅, Out = {q/2}, and Π is the program

p(a),

p(b),

q(X,Y )← p(X) ∧ p(Y ),

then Prv = {p/1}, the first-order completion of Π is

∀V (p(V )↔ V = a ∨ V = b)∧
∀V1V2(q(V1, V2)↔ ∃XY (q(V1, V2) ∧ p(X) ∧ p(Y ) ∧ V1 = X ∧ V2 = Y )),

and COMP(Π, In,Out) is

∃P (∀V (P (V )↔ V = a ∨ V = b)∧
∀V1V2(q(V1, V2)↔ ∃XY (q(V1, V2) ∧ P (X) ∧ P (Y ) ∧ V1 = X ∧ V2 = Y ))).

This formula is equivalent to the first-order sentence

∀V1V2(q(V1, V2)↔ (V1 = a ∨ V1 = b) ∧ (V2 = a ∨ V2 = b)).

Appendix C Programs with input and output

A program with input and output, or an io-program, is a quadruple

(Π,PH, In,Out), (C1)

where PH, In and Out are as in the definition of a user guide (Section 3), and Π is a

mini-gringo program such that the heads of its rules do not contain symbols from In

(Fandinno et al. 2020, Section 5.1). Inputs for an io-program are defined in the same way

as inputs for a user guide in Section 3.

A public atom of an io-program (C1) is a precomputed atom that contains a predicate

symbol from In ∪Out .

An io-model of an io-program (C1) for an input (v, I) is a set that can be represented

as the intersection of a stable model of v(Π) ∪ I with the set of public atoms of (C1).

If (v, I) is an input for an io-program (C1), and the program Π is tight, then, for any

set J of output atoms, I∪J is an io-model of (C1) iff the interpretation I(v, I∪J ) of the
signature σ0(In∪Out) satisfies the second-order completion sentence COMP(Π, In,Out)

(Fandinno et al. 2020, Theorem 2).


