
Stable Models and Circumscription

Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz

Abstract

The concept of a stable model provided a declarative semantics for
Prolog programs with negation as failure and became a starting point
for the development of answer set programming. In this paper we
propose a new definition of that concept, which covers many constructs
used in answer set programming and, unlike the original definition,
refers neither to grounding nor to fixpoints. It is based on a syntactic
transformation similar to parallel circumscription.

1 Introduction

Answer set programming (ASP) is a form of declarative logic programming
oriented towards knowledge-intensive search problems, such as product con-
figuration and planning. It was identified as a new programming paradigm
ten years ago [Marek and Truszczyński, 1999, Niemelä, 1999], and it has
found by now a number of serious applications. An ASP program consists
of rules that are syntactically similar to Prolog rules, but the computational
mechanisms used in ASP are different: they use the ideas that have led to
the creation of fast satisfiability solvers for propositional logic [Gomes et al.,
2008].

ASP is based on the concept of a stable model [Gelfond and Lifschitz,
1988]. According to the definition, to decide which sets of ground atoms are
“stable models” of a given set of rules we first replace each of the given rules
by all its ground instances. Then we verify a fixpoint condition that is similar
to the conditions employed in the semantics of default logic [Reiter, 1980]
and autoepistemic logic [Moore, 1985] (see [Lifschitz, 2008, Sections 4, 5] for
details).

In this paper we investigate a new approach to defining the concept of
a stable model. It is based on a syntactic transformation similar to cir-
cumscription [McCarthy, 1980, McCarthy, 1986]. The new definition refers
neither to grounding nor to fixpoints. It turns out to be more general, in a
number of ways, than the original definition.

1

This treatment of stable models may be of interest for several reasons.
First, it provides a new perspective on the place of stable models within
the field of nonmonotonic reasoning. We can distinguish between “fixpoint”
nonmonotonic formalisms, such as default logic and autoepistemic logic, and
“translational” formalisms, such as program completion [Clark, 1978] and
circumscription. In the past, stable models were seen as part of the “fixpoint
tradition.” The remarkable similarity between the new definition of a stable
model and the definition of circumscription is curious from this point of
view.

Second, we expect that the new definition of a stable model will provide
a unified framework for useful answer set programming constructs that have
been defined and implemented by different research groups. For instance,
it may help us combine choice rules in the sense of lparse [Simons et al.,
2002] with aggregates in the sense of dlv [Faber et al., 2004]. A step in this
direction is described in [Lee et al., 2008].

Third, our definition is applicable to non-Herbrand models. In such a
model, different ground terms may have the same value. This may be useful
for knowledge representation purposes; we may wish to write, for instance:

Father(Jack) = Father(Jane).

This possibility is related also to the use of arithmetic functions in ASP,
when different ground terms may have the same value (2 + 2 = 1 + 3).

The new definition of a stable model is introduced in Section 2, and its
relation to the original definition is discussed in Section 3. Several useful
theorems about the new concept are stated in Section 4. Then we extend
the idea of strong equivalence to this framework (Section 5), relate general
stable models to program completion (Section 6), and define “pointwise
stable models,” which are similar to pointwise circumscription (Section 7).
In Section 8, we show how our theory of stable models handles strong (or
classical) negation, and Section 9 discusses related work. Proofs of theorems
are collected in the appendix.

To make the presentation more self-contained, we include brief reviews
of parallel and pointwise circumscription (Sections 2.2 and 7.1) and of two
approaches to the stable model semantics proposed earlier (Section 3.1).

This article is an extended version of the conference paper [Ferraris et
al., 2007].

2

2 Stable Models

2.1 Logic Programs as First-Order Sentences

The concept of a stable model will be defined here for first-order sentences,1

possibly containing function constants and equality. Logic programs are
viewed in this paper as alternative notation for first-order sentences of special
types. For instance, we treat the logic program

p(a, a)
p(a, b)
q(x)← p(x, y)

(1)

as shorthand for

p(a, a) ∧ p(a, b) ∧ ∀xy(p(x, y)→ q(x)). (2)

The constraint
← p(x),not q(x) (3)

is identified with the formula

∀x¬(p(x) ∧ ¬q(x)),

and the disjunctive rule

p(x) ; q(y)← r(x, y)

with
∀xy(r(x, y)→ (p(x) ∨ q(y))).

As another example, take the choice rule

{p(x)} ← q(x).

It says, informally speaking: for every x such that q(x), choose arbitrarily
whether or not to include p(x) in the stable model. We can treat this rule
as shorthand for

∀x(q(x)→ (p(x) ∨ ¬p(x))). (4)

This formula is logically valid, so that appending it as a conjunctive term
to any sentence F would not change the class of models of F . But the class
of stable models of F may change, as we will see, after appending (4).

1A sentence is a formula without free variables.

3

The next example involves an aggregate. The rule

p(x)← #card{y : q(x, y)} < 2

means intuitively: if the cardinality of the set {y : q(x, y)} is less than 2 then
include p(x) in the stable model. We can treat this rule as an abbreviation
for the formula

∀x(¬∃y1y2(q(x, y1) ∧ q(x, y2) ∧ y1 6= y2)→ p(x)). (5)

2.2 Review of Circumscription

Since the new definition of a stable model is similar to the definition of
parallel circumscription, we will begin with a brief review of the latter.

Both definitions use the following notation. If p and q are predicate
constants of the same arity then p ≤ q stands for the formula

∀x(p(x)→ q(x)),

where x is a tuple of distinct object variables. If p and q are tuples p1, . . . , pn

and q1, . . . , qn of predicate constants then p ≤ q stands for the conjunction

(p1 ≤ q1) ∧ · · · ∧ (pn ≤ qn),

and p < q stands for (p ≤ q) ∧ ¬(q ≤ p). In second-order logic, we apply
the same notation to tuples of predicate variables.

Let p be a list of distinct predicate constants.2 The circumscription
operator with the minimized predicates p, denoted by CIRCp, is defined as
follows: for any first-order formula F , CIRCp[F] is the second-order formula

F ∧ ¬∃u((u < p) ∧ F (u)),

where u is a list of distinct predicate variables of the same length as p, and
F (u) is the formula obtained from F by substituting the variables u for the
constants p.3

If the list p is empty then we understand CIRCp[F] as F . We will drop
the subscript in the symbol CIRCp when this does not lead to confusion.

2In this paper, equality is not considered a predicate constant, so that it is not allowed
to be a member of p.

3This definition of the circumscription operator allows F to have free variables, unlike
the definition from [Lifschitz, 1985]. Similarly, the definition of the stable model operator
below is applicable to formulas with free variables, unlike the definition proposed in the
conference paper [Ferraris et al., 2007].

4

For any sentence F , a p-minimal (or simply minimal) model of F is an
interpretation of the underlying signature that satisfies CIRCp[F]. Since
the first conjunctive term of CIRCp[F] is F , it is clear that every minimal
model of F is a model of F .

Example 1 If F is formula (2) then CIRCpq[F] is

∀xy(p(a, a) ∧ p(a, b) ∧ (p(x, y)→ q(x)))
∧¬∃uv(((u, v) < (p, q)) ∧ ∀xy(u(a, a) ∧ u(a, b) ∧ (u(x, y)→ v(x)))).

It can be equivalently rewritten without second-order variables as follows:

∀x(p(x, y)↔ (x = a ∧ y = a) ∨ (x = a ∧ y = b)) ∧ ∀x(q(x)↔ x = a). (6)

Example 2 Let F be the formula

∀xy(p(x, y)→ t(x, y)) ∧ ∀xyz(t(x, y) ∧ t(y, z)→ t(x, z)) (7)

(“p is a subset of t, and t is a transitive relation”). Then CIRCt[F] is

∀xy(p(x, y)→ t(x, y)) ∧ ∀xyz(t(x, y) ∧ t(y, z)→ t(x, z))
∧¬∃u((u < t)

∧∀xy(p(x, y)→ u(x, y)) ∧ ∀xyz(u(x, y) ∧ u(y, z)→ u(x, z))).

This condition cannot be expressed by a first-order formula, but its meaning
is straightforward: it says that t is the transitive closure of p.

If we conjoin (7) with
p(a, b) ∧ p(b, c) (8)

and include both p and t in the list of minimized predicates then the cir-
cumscription formula will become expressible in first-order logic as

∀xy(p(x, y)↔ (x = a ∧ y = b) ∨ (x = b ∧ y = c))
∧ ∀xy(t(x, y)↔ (x = a ∧ y = b) ∨ (x = b ∧ y = c) ∨ (x = a ∧ y = c)).

(9)

2.3 Operator SM

We will now define the stable model operator with the intensional predicates
p, denoted by SMp. Some details of the definition depend on which propo-
sitional connectives and quantifiers are treated as primitives, and which of
them are viewed as abbreviations. Let us decide that the primitives are

⊥ (falsity), ∧, ∨, →, ∀, ∃;

5

¬F is an abbreviation for F → ⊥, > stands for ⊥ → ⊥, and F ↔ G stands
for (F → G) ∧ (G→ F).

Let p be a list of distinct predicate constants p1, . . . , pn. For any first-
order formula F , by SMp[F] we denote the second-order formula

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where u is a list of n distinct predicate variables u1, . . . , un, and F ∗(u) is
defined recursively:

• pi(t)∗ = ui(t) for any tuple t of terms;

• F ∗ = F for any atomic formula F that does not contain members
of p;4

• (F ∧G)∗ = F ∗ ∧G∗;

• (F ∨G)∗ = F ∗ ∨G∗;

• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);

• (∀xF)∗ = ∀xF ∗;

• (∃xF)∗ = ∃xF ∗.

If the list p is empty then we understand SMp[F] as F . We will drop the
subscript in the symbol SMp when this does not lead to confusion.

For any sentence F , a p-stable (or simply stable) model of F is an
interpretation of the underlying signature that satisfies SMp[F].5 Since the
first conjunctive term of SMp[F] is F , it is clear that every stable model
of F is a model of F .

Note that if we drop the second conjunctive term from the clause for
implication in the definition of F ∗(u) then this formula will turn into F (u),
and SM[F] will turn into CIRC[F]. It follows that for any sentence F that
does not contain implication, SM[F] coincides with CIRC[F], and the stable
models of F are identical to the minimal models of F .

In the next section we will see examples when these two formulas are
equivalent to each other even though F does contain implication. We will
see also that there are cases when minimal models are not stable, and when
stable models are not minimal.

4This includes the case when F is ⊥.
5The definition of a stable model used in the conference paper [Ferraris et al., 2007] and

in related publications [Lee and Meng, 2008, Lifschitz et al., 2007] is less general: it treats
all predicate constants occurring in F as intensional. We will see that this additional
degree of generality is convenient (Section 3.2) but not very essential (Section 4.1).

6

2.4 Examples

Example 1, continued Let F be formula (2). As noted above, CIRCpq[F]
is equivalent to (6). Consider the result of applying SMpq to the same
formula. Clearly F ∗(u, v) is

u(a, a) ∧ u(a, b) ∧ ∀xy((u(x, y)→ v(x)) ∧ (p(x, y)→ q(x))),

and SMpq[F] is

p(a, a) ∧ p(a, b) ∧ ∀xy(p(x, y)→ q(x))
∧¬∃uv(((u, v) < (p, q))

∧u(a, a) ∧ u(a, b) ∧ ∀xy((u(x, y)→ v(x)) ∧ (p(x, y)→ q(x)))).

In the presence of the conjunctive term ∀xy(p(x, y)→ q(x)) at the beginning
of the formula, the conjunctive term p(x, y) → q(x) at the end can be
dropped. This simplification turns SMpq[F] into CIRCpq[F]. Consequently,
SMpq[F] is equivalent to (6) as well.

Remark 1 It is easy to see that, more generally, SM[F] is equivalent to
CIRC[F] whenever F is a conjunction such that every conjunctive term

• does not contain implication, or

• is the universal closure of a formula G → H such that G and H do
not contain implication.

Remark 2 The equivalence of SMpq[F] to (6) in Example 1 can be estab-
lished also in another way, without references to circumscription. In Sec-
tions 6.2 and 7.3 we will show how the theory of tight programs [Fages, 1994,
Erdem and Lifschitz, 2003] can be extended to the framework described in
this paper, and we will see that the result of applying the operator SM
can be often turned into a first-order formula using the process of program
completion. This method can be applied, in particular, to formula (2).

Remark 3 According to the original definition of a stable model [Gelfond
and Lifschitz, 1988], the only stable model of program (1) is its minimal
Herbrand model

{p(a, a), p(a, b), q(a)}. (10)

This fact is in agreement with the result of the calculation in Example 1,
in the sense that (10) is the only Herbrand interpretation satisfying (6).
This is an instance of a general theorem about the relationship between the

7

new, general definition of a stable model and the original definition, which
is stated in Section 3 below.

Example 2, continued If F is (7) then SMt[F] is equivalent to CIRCt[F],
according to Remark 1. Consequently, in the t-stable models of (7), t is the
transitive closure of p. Similarly, if F is the conjunction of (7) and (8) then
SMpt[F] is equivalent to CIRCpt[F] and consequently to (9).

It is clear from the definition of circumscription that if sentences F and G
are equivalent to each other then the formulas CIRC[F] and CIRC[G] are
equivalent to each other as well. The following example shows, on the other
hand, that the operator SM, applied to two equivalent formulas, can produce
formulas that are not equivalent to each other.

Example 3 Let us apply SMp to p(a) and to ¬¬p(a). (In logic programming
notation the latter can be written as the constraint ← not p(a).) It is clear
that SMp[p(a)] equals CIRCp[p(a)] and is equivalent to

∀x(p(x)↔ x = a).

On the other hand,

(¬¬p(a))∗ = ((p(a)→ ⊥)→ ⊥)∗

= ((p(a)→ ⊥)∗ → ⊥) ∧ ((p(a)→ ⊥)→ ⊥)
↔ ¬(p(a)→ ⊥)∗ ∧ p(a)
= ¬((u(a)→ ⊥) ∧ (p(a)→ ⊥)) ∧ p(a)
↔ p(a),

and consequently

SMp[¬¬p(a)] ↔ ¬¬p(a) ∧ ¬∃u((u < p) ∧ p(a))
↔ p(a) ∧ ¬∃u(u < p)
↔ p(a) ∧ ∀x¬p(x)
↔ ⊥.

Thus some equivalent transformations do not preserve the class of stable
models of a formula. We will return to this question in Section 5.1.

The following two examples show that sometimes SM is stronger than
CIRC, and sometimes weaker.

Example 4 Let F be the formula

∀x(¬p(x)→ q(x)), (11)

8

corresponding to the rule

q(x)← not p(x).

The circumscription formula CIRCpq[F] is equivalent to

∀x(¬p(x)↔ q(x)).

On the other hand, using the fact that formula (11) is tight, we will show
in Section 6 that SMpq[F] can be written as

∀x(¬p(x) ∧ q(x)). (12)

Thus SMpq[F] is stronger than CIRCpq[F]. In any minimal model of (11), q
is the negation of p; about the stable models of this formula we can say
more: p is identically false, and q is identically true.

Example 5 Let F be formula (4), which represents a choice rule, as dis-
cussed above. Since this formula is logically valid, its p-minimal models are
characterized by the condition

∀x¬p(x)

(“p is empty”). Using the fact that formula (4) is tight, we will show in
Section 6 that the p-stable models of (4) can be described, in accordance
with the intuitive meaning of the choice construct, by the weaker condition

∀x(p(x)→ q(x)) (13)

(“p is a subset of q”).

3 Relation to Other Definitions of a Stable Model

In this section we relate the definition of a stable model in terms of the
operator SM to the original definition of a stable model [Gelfond and Lifs-
chitz, 1988] and to the generalization of that definition proposed in [Ferraris,
2005].

3.1 Review of the 1988 and 2005 Definitions

Recall that a signature is a set of object, function and predicate constants.
A term of a signature σ is formed from object constants of σ and object vari-
ables using function constants of σ. We distinguish here between atoms and

9

atomic formulas, as follows: an atom of a signature σ is an n-ary predicate
constant followed by a list of n terms; atomic formulas of σ are atoms of σ,
equalities between terms of σ, and the 0-place connective ⊥. First-order
formulas of σ are built from atomic formulas of σ using the binary proposi-
tional connectives and quantifiers listed at the beginning of Section 2.3. For
any signature σ containing at least one object constant, an Herbrand inter-
pretation of σ is an interpretation of σ such that (i) its universe is the set
of ground terms of σ, and (ii) every ground term of σ represents itself. As
usual, we identify an Herbrand interpretation with the set of ground atoms
that are satisfied by it.

A traditional program of a signature σ is a set of formulas of the form

A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An → An+1 (14)

(n ≥ m ≥ 0), where each Ai is an atom of σ. If n = 0 then (14) is understood
as A1.

For any traditional program Π of a signature σ and any set X of ground
atoms of σ, the reduct of Π relative to X is the set of formulas obtained
from Π by

• replacing each formula from Π with all its ground instances, followed
by

• removing all formulas (14) such that {Am+1, . . . , An}∩X 6= ∅, followed
by

• removing the conjunctive terms ¬Am+1, . . . ,¬An from the antecedents
of the remaining formulas.

The reduct of Π relative to X is a set of Horn clauses. If its least Herbrand
model equals X then we say that X is a stable model of Π in the sense of
the 1988 definition [Gelfond and Lifschitz, 1988].

The definition from [Ferraris, 2005] is applicable to arbitrary sets of
propositional formulas, and, if we include in it a grounding step, it will
become applicable to arbitrary sets of quantifier-free formulas. For any
set Π of quantifier-free formulas of a signature σ and any set X of ground
atoms of σ, the modified reduct of Π relative to X is the set of formulas
obtained from Π by

• replacing each formula from Π with all its ground instances, followed
by

10

• replacing, in each formula F , all maximal subformulas of F that are
not satisfied by X with ⊥.

If X is a minimal (relative to set inclusion) Herbrand model of the modified
reduct of Π relative to X then we say that X is a stable model of Π in
the sense of the 2005 definition [Ferraris, 2005]. As shown in that paper,
in application to any traditional program the 1988 and 2005 definitions are
equivalent to each other.

Example 6 Signature σ consists of the object constants a, b and the unary
predicate constants p, q, r; Π is

{p(a), p(b), q(a), p(x) ∧ ¬q(x)→ r(x)}; (15)

X is
{p(a), p(b), q(a), r(b)}. (16)

After grounding, Π becomes

{p(a), p(b), q(a), p(a) ∧ ¬q(a)→ r(a), p(b) ∧ ¬q(b)→ r(b)}.

The reduct of Π relative to X is

{p(a), p(b), q(a), p(b)→ r(b)}.

The least Herbrand model of the reduct equals X. Consequently X is a
stable model of Π in the sense of the 1988 definition. The modified reduct
of Π relative to X is

{p(a), p(b), q(a), ⊥ → ⊥, p(b) ∧ ¬⊥ → r(b)}.

Since X is a minimal model of the modified reduct, X is a stable model of Π
in the sense of the 2005 definition.

3.2 Relation to the New Definition

Theorem 1 For any signature σ containing at least one object constant and
finitely many predicate constants, any finite set Π of quantifier-free formulas
of σ, and any Herbrand interpretation X of σ, the following conditions are
equivalent:

• X is a stable model of Π in the sense of the 2005 definition;

• X is a p-stable model of the conjunction of the universal closures of
the formulas from Π, where p is the list of all predicate constants of σ.

11

Corollary 1 For any signature σ containing at least one object constant
and finitely many predicate constants, any finite traditional program Π of σ,
and any Herbrand interpretation X of σ, the following conditions are equiv-
alent:

• X is a stable model of Π in the sense of the 1988 definition;

• X is a p-stable model of the conjunction of the universal closures of
the formulas from Π, where p is the list of all predicate constants of σ.

Example 6, continued The result of applying the operator SMpqr to the
conjunction of the universal closures of formulas (15) can be rewritten, using
the completion method described in Section 6 below, as

∀x(p(x)↔ x = a ∨ x = b)
∧∀x(q(x)↔ x = a)
∧∀x(r(x)↔ p(x) ∧ ¬q(x)).

(17)

The stable model (16) of (15) is the only Herbrand model of this sentence.

In the statement of Theorem 1, the underlying signature is assumed to
contain finitely many predicate constants, and Π is supposed to consist of
finitely many formulas. (The result of grounding Π can be infinite though, if
the signature contains function constants.) The theorem shows that under
these conditions the new definition of a stable model is a generalization of
the 2005 definition, and it is more general in three ways.

First, it is more general syntactically: it is applicable to formulas that
contain both universal and existential quantifiers, such as the “aggregate
formula” (5) or the formula ∃x p(x) (“p is nonempty”). The result of apply-
ing the operator SMp to the latter is the same as the result of applying the
corresponding circumscription operator, and it is equivalent to

∃x∀y(p(y)↔ x = y)

(“p is a singleton”).
Second, it is more general semantically: it is applicable to non-Herbrand

interpretations. For instance, (17) has models in which some elements of the
universe are not represented by any of the constants a, b. That formula has
also models in which a and b represent the same element of the universe. In
such a model, both p and q are singletons, and r is empty.

Third, it allows us to distinguish between intensional predicates and
the other (”extensional”) predicate symbols. This is often useful when we

12

want to describe the intuitive meaning of a group of rules in a precise way.
For instance, the claim that under the stable model semantics formula (7)
expresses the concept of transitive closure is only valid if we treat p as
extensional. (A way to express this claim without the use of extensional
predicates is discussed in the next section.) See [Ferraris et al., 2009] for
other uses of this distinction.

4 Properties of SM

4.1 Changing the Set of Intensional Predicates

The theorem below shows that making the set of intensional predicates
smaller can only make the result of applying the operator SM weaker, and
that this can be compensated by adding “choice rules.” For any predicate
constant p, by Choice(p) we denote the formula ∀x(p(x) ∨ ¬p(x)), where x
is a list of distinct object variables. For any list p of predicate constants,
Choice(p) stands for the conjunction of the formulas Choice(p) for all mem-
bers p of p.

Theorem 2 For any first-order formula F and any disjoint lists p, q of
distinct predicate constants, the following formulas are logically valid:

SMpq[F] → SMp[F],
SMpq[F ∧ Choice(q)] ↔ SMp[F].

It follows that the class of p-stable models of a sentence F contains the
class of pq-stable models of F and coincides with the class of pq-stable
models of F ∧ Choice(q).

We have seen, for instance, that the condition “t is the transitive closure
of p” can be expressed by applying SMt to formula (7). By Theorem 2, it
follows that the same condition can be expressed by applying SMpt to the
conjunction of (7) and ∀x(p(x) ∨ ¬p(x)).

Thus the possibility of distinguishing between intensional and exten-
sional predicates does not really make the concept of a stable model more
general: instead of designating a group q of predicates as extensional, we
can conjoin the formula with Choice(q).

In the rest of the paper we will assume that a list p of distinct predi-
cate constants is chosen, and its members will be referred to as intensional
predicates. The predicate constants that do not belong to p will be called
extensional predicates.

13

4.2 Constraints

In answer set programming, constraints—rules with the empty head, such
as (3)—play an important role in view of the fact that adding a constraint
to a program affects the set of its stable models in a particularly simple way:
it eliminates the stable models that “violate” the constraint. The following
theorem shows that sentences beginning with negation can be viewed as a
counterpart of constraints in the new framework.

Theorem 3 For any first-order formulas F and G, SM[F∧¬G] is equivalent
to SM[F] ∧ ¬G.

It follows that the stable models of a sentence of the form F ∧ ¬G can
be characterized as the stable models of F that satisfy ¬G.

For any predicate constant p, by False(p) we denote the formula ∀x¬p(x),
where x is a list of distinct object variables. By False(p) we denote the con-
junction of the formulas False(p) for all members p of p.

Corollary 2 For any first-order formula G, SM[¬G] is equivalent to

¬G ∧ False(p).

Indeed, if F is > then SM[F ∧ ¬G] is equivalent to SM[¬G], and SM[F]
is equivalent to False(p).

In Section 5.1 we will show that ¬G can be replaced in these two propo-
sitions by formulas of a more general syntactic form.

4.3 Trivial Predicates

In traditional theory of stable models, the predicate constants that do not
occur in the heads of rules are “trivial,” in the sense that no atom containing
such a predicate can belong to a stable model. Theorem 4 shows what form
this idea takes in the new framework.

Theorem 4 For any first-order formula F and any intensional predicate p,
if every occurrence of p in F belongs to the antecedent of an implication then
the formula

SM[F]→ False(p)

is logically valid.

14

Consequently, if every occurrence of p in a sentence F belongs to the
antecedent of an implication then p is identically false in every stable model
of F . For instance, the only occurrence of p in (7) is in the antecedent of an
implication; consequently, in all p-stable models of (7) p is identically false.

Recall that an occurrence of a predicate constant (or any other expres-
sion) in a formula is called positive if the number of implications containing
that occurrence in the antecedent is even, and strictly positive if that num-
ber is 0. The condition “every occurrence of p in F belongs to the antecedent
of an implication” in the statement of the theorem can be also expressed by
saying that F has no strictly positive occurrences of p.

5 Logic of Here-and-There and Strong Equivalence

5.1 System SQHT=

As we saw in Section 2.4, two sentences that are equivalent to each other
may have different stable models. Transformations of formulas that preserve
the class of stable models were studied in [Lifschitz et al., 2007], for the
special case when all predicate constants are intensional. The results of that
paper imply, in particular, that two sentences have the same stable models
whenever they are intuitionistically equivalent.6 We will see that the same
conclusion holds in the more general framework proposed in this paper, with
extensional predicates allowed.

Thus equivalent transformations that are sanctioned by intuitionistic
logic play an important part in the study of stable models. In connection
with Example 3 above we can note, for instance, that the “fact” p(a) and the
“constraint” ¬¬p(a) are equivalent classically, but not intuitionistically; this
is what makes them essentially different under the stable model semantics.
About formula (4), representing a choice rule, we can note that it is not
provable in intuitionistic logic; this is what makes it nontrivial, as far as
stable models are concerned.

The main result of [Lifschitz et al., 2007] is actually about a class of
equivalent transformations that contains more than what intuitionistic logic
accepts. The “logic of here-and-there”7 studied in that paper is intermediate
between intuitionistic and classical logic. By INT= we denote intuitionistic
first-order predicate logic with the usual axioms for equality: x = x and the

6See http://plato.stanford.edu/entries/logic-intuitionistic/ for an introduc-
tion to intuitionistic logic.

7This name is related to the fact that SQHT= can be described by Kripke models
with two worlds (see Section A.5.1), often called Here and There.

15

schema
x = y → (F (x)→ F (y))

for every formula F (x) such that y is substitutable for x in F (x). System
SQHT= (for “static quantified logic of here-and-there with equality”) is
obtained from INT= by adding the axiom schemas

F ∨ (F → G) ∨ ¬G

and
∃x(F (x)→ ∀xF (x)),

and the axiom
x = y ∨ x 6= y.

To illustrate the difference between intuitionistic logic and the logic of here-
and-there, we can note that De Morgan’s law

¬(F ∧G)↔ ¬F ∨ ¬G

and its first-order counterpart

¬∀xF (x)↔ ∃x¬F (x)

are not provable intuitionistically, but are provable in SQHT=.
If the equivalence between two sentences can be proved in SQHT= then

they have the same stable models. We can assert even more:

Theorem 5 For any first-order formulas F and G, if the formula F ↔ G
is derivable in SQHT= from the formulas Choice(q) for the extensional
predicates q then SM[F] is equivalent to SM[G].

For instance, it is easy to see that the equivalence between (4) and the
formula

∀x(p(x) ∨ ¬p(x) ∨ ¬q(x)) (18)

is intuitionistically derivable from Choice(q). The p-stable models of (4) are
the interpretations that interpret p as a subset of q (Section 2.4, Example 5).
It follows that the p-stable models of (18) can be characterized in the same
way.

Intermediate logics, such as SQHT=, differ from classical logic in that
they do not endorse the law of double negation ¬¬F ↔ F in full general-
ity. The following theorem identifies a class of cases when double negation
elimination is admissible under the stable model semantics.

16

Theorem 6 Let F ′ be the formula obtained from a first-order formula F
by inserting ¬¬ in front of a subformula G. If G has no strictly positive
occurrences of intensional predicates then SM[F ′] is equivalent to SM[F].

For instance, in a formula of the form

∀xy(H → x = y) (19)

every occurrence of every predicate constant belongs to the antecedent of
an implication. Consequently, inserting a double negation in front of (19)
within any sentence will not affect the class of stable models no matter how
the set of intensional predicates is chosen. (In the terminology of Section 5.2
below, this is a “strongly equivalent” transformation.)

From Theorem 6 we can conclude that Theorem 3 and Corollary 2 can be
generalized: SM[F∧G] is equivalent to SM[F]∧G, and SM[G] is equivalent to
G∧False(p), whenever G has no strictly positive occurrences of intensional
predicates. For instance, SM[F ∧∀xy(H → x = y)] is equivalent to SM[F]∧
∀xy(H → x = y).

A generalization of Theorem 6 is presented in [Ferraris et al., 2009, Sec-
tion 5].

5.2 Strong Equivalence

About first-order formulas F and G we say that F is strongly equivalent
to G if, for any formula H, any occurrence of F in H, and any list p of
distinct predicate constants, SMp[H] is equivalent to SMp[H ′], where H ′ is
obtained from H by replacing the occurrence of F by G. In this definition, H
is allowed to contain object, function and predicate constants that do not
occur in F , G; Theorem 7 below shows, however, that this is not essential.
It shows also that in the definition of strong equivalence p can be taken to
be the set pFG of all predicate constants that occur in F or G, rather than
an arbitrary set of predicate constants:

Theorem 7 First-order formulas F and G are strongly equivalent to each
other iff for any formula H such that every object, function or predicate
constant occurring in H occurs in F or in G, and for any occurrence of F
in H, SMpFG [H] is equivalent to SMpFG [H ′], where H ′ is obtained from H
by replacing the occurrence of F by G.

It is clear that if F is strongly equivalent to G then SMp[F] is equivalent
to SMp[G] (take H to be F). In particular, if F is strongly equivalent to G
then F is equivalent to G (take p to be empty).

17

Strong equivalence was originally defined, in somewhat different con-
texts, in [Lifschitz et al., 2001] (for propositional rules with nested expres-
sions, without extensional atoms, and assuming that F occurs in H as a
conjunctive term) and in [Lifschitz et al., 2007] (no free variables in F , G;
no extensional predicates; F occurs in H as a conjunctive term). Properties
of this relation are interesting from the perspective of ASP because they
may allow us to simplify a part of a logic program without looking at the
other parts. For instance, replacing the rule p(x) ← x = a in any program
with p(a) does not affect the class of stable models, because the formula

∀x(x = a→ p(x)) (20)

is strongly equivalent to p(a).
The main result of [Lifschitz et al., 2007] can be extended to the new

version of strong equivalence as follows:

Theorem 8 First-order formulas F and G are strongly equivalent to each
other iff formula F ↔ G is provable in SQHT=.

For instance, to prove that (20) is strongly equivalent to p(a) we only
need to observe that these formulas are intuitionistically equivalent.

The definition of strong equivalence can be generalized as follows. For
any list q of predicate constants, we say that F is strongly equivalent to G
excluding q if F ∧ Choice(q) is strongly equivalent to G ∧ Choice(q). It is
immediate from Theorem 8 that F is strongly equivalent to G excluding q
iff F ↔ G is derivable in SQHT= from the formula Choice(q). Theorem 8
is the special case of this corollary when q is empty. Furthermore, it is
clear from Theorem 5 that if F is strongly equivalent to G excluding q then
SMp[F] is equivalent to SMp[G] for any p that is disjoint from q.

An alternative characterization of strong equivalence, similar to the one
proposed in [Lin and Zhao, 2002] for the propositional case, refers to the
formula F ∗(u) that was used in Section 2.3 to define the operator SM. In
the statement of the theorem below, pFG is again the list of all predicate
constants that occur in F or G; q is a list of new, distinct predicate constants
of the same length as pFG.

Theorem 9 F is strongly equivalent to G iff the formula

(q ≤ pFG)→ (F ∗(q)↔ G∗(q))

is logically valid.

18

For instance, we can prove that (20) is strongly equivalent to p(a) by
showing that the implication

(q ≤ p)→ (∀x((x = a→ q(x)) ∧ (x = a→ p(x)))↔ q(a))

is logically valid.

6 Completion

As indicated in Section 2.4, the process of completing a logic program, in-
vented by Keith Clark [Clark, 1978], allows us in many cases to rewrite
SM[F] as a first-order formula.

6.1 Clark Normal Form

The completion process involves a series of preliminary transformations fol-
lowed by the main step—replacing implications by equivalences. For in-
stance, completing program (1) can be described as follows. Step 1: in
the representation (2) of the program in the syntax of first-order logic, we
rewrite each conjunctive term as an implication with the consequent in a
canonical form—a predicate constant followed by a list of distinct variables:

∀xy(x = a ∧ y = a→ p(x, y)) ∧ ∀xy(x = a ∧ y = b→ p(x, y))
∧∀xy(p(x, y)→ q(x)).

Step 2: we combine implications with the same predicate constant in the
consequent into one:

∀xy(((x = a ∧ y = a) ∨ (x = a ∧ y = b))→ p(x, y))
∧∀xy(p(x, y)→ q(x)).

Step 3: we identify, in each implication, the variables that occur in its
antecedent but do not occur in the consequent, and minimize the scopes of
the corresponding quantifiers:

∀xy(((x = a ∧ y = a) ∨ (x = a ∧ y = b))→ p(x, y))
∧∀x(∃y p(x, y)→ q(x)).

(21)

Step 4: we replace all implications by equivalences:

∀xy(p(x, y)↔ (x = a ∧ y = a) ∨ (x = a ∧ y = b))
∧∀x(q(x)↔ ∃y p(x, y)).

(22)

19

Steps 1–3 are intuitionistically equivalent transformations, so that for-
mula (21) has the same stable models as the formula (2) that we started
with. Step 4 gives us in this case, and in many others, a first-order formula
equivalent to the result of applying the operator SM.

This idea can be made precise using the following definitions. About a
first-order formula we will say that it is in Clark normal form (relative to
the list p of intensional predicates) if it is a conjunction of formulas of the
form

∀x(G→ p(x)), (23)

one for each intensional predicate p, where x is a list of distinct object
variables. The completion of a formula F in Clark normal form, denoted by
Comp[F], is obtained from it by replacing each conjunctive term (23) with

∀x(p(x)↔ G). (24)

For instance, (11) can be written in Clark normal form relative to pq as
follows:

∀x(⊥ → p(x)) ∧ ∀x(¬p(x)→ q(x)). (25)

The completion of this formula is

∀x(p(x)↔ ⊥) ∧ ∀x(q(x)↔ ¬p(x)). (26)

Some formulas can be converted to Clark normal form by strongly equivalent
transformations different from those described in [Clark, 1978]. For instance,
formula (4) is strongly equivalent to

∀x(q(x) ∧ ¬¬p(x)→ p(x)), (27)

because F ∨ ¬G is equivalent to ¬¬G→ F in SQHT=. Formula (27) is in
Clark normal form relative to p. Its completion is

∀x(p(x)↔ q(x) ∧ ¬¬p(x)), (28)

or, equivalently, (13).
We are interested in the relationship between Comp[F] and SM[F]. In

traditional theory of stable models, every stable model of a logic program is
an Herbrand model of its completion; the converse, however, can be asserted
only under some syntactic conditions of F , such as tightness [Fages, 1994,
Erdem and Lifschitz, 2003]. Here is the counterpart of the first of these two
facts in the new framework:

20

Theorem 10 For any formula F in Clark normal form, the implication

SM[F]→ Comp[F]

is logically valid.

To illustrate the fact that Comp[F] can be weaker than SM[F], consider
the following formula, which is intuitionistically equivalent to (7):

∀xy(p(x, y) ∨ ∃z(t(x, z) ∧ t(z, y))→ t(x, y)). (29)

It is in Clark normal form, provided that t is taken to be the only inten-
sional predicate. Its completion is weaker than the result of applying the
operator SMt to (7)—the latter, as we know, is not expressible in first-order
logic.

6.2 Tight Formulas

We will now define tightness for formulas in Clark normal form. In Sec-
tion 7.3 this definition will be extended to arbitrary first-order formulas.

We say that an occurrence of a predicate constant in a formula is negated
if it belongs to a subformula of the form ¬F (that is, F → ⊥), and non-
negated otherwise.

For any formula F in Clark normal form, the predicate dependency graph
of F is the directed graph that

• has all intensional predicates as its vertices, and

• has an edge from p to q if the antecedent G of the conjunctive term (23)
of F with p in the consequent has a positive nonnegated occurrence
of q.

We say that F is tight if the predicate dependency graph of F is acyclic.
For example, (21) is tight: its predicate dependency graph has only one

edge, from q to p. Formulas (25) and (27) are tight as well: their predicate
dependency graphs have no edges. (The antecedent in (27) has a positive
occurrence of p, but that occurrence is negated.) On the other hand, (29)
is not tight: the only edge of its predicate dependency graph is a self-loop.

Theorem 11 For any tight formula F in Clark normal form, SM[F] is
equivalent to the completion of F .

21

In particular, the stable models of a tight sentence in Clark normal form
can be characterized as models of its completion.

This theorem shows, for instance, that the result of applying the operator
SMpq to (2) is equivalent to formula (22). Since that formula can be equiv-
alently rewritten as (6), we have justified the claim regarding Example 1
made in Section 2.4.

Similarly, the result of applying SMpq to (11) is equivalent to (26). Since
that formula can be equivalently rewritten as (12), we have justified the
claim made there regarding Example 4.

Similarly, the result of applying SMp to (4) is equivalent to (28). Since
that formula can be equivalently rewritten as (13), we have justified the
claim made there regarding Example 5.

These examples illustrate the process that sometimes allows us to rewrite
SM[F] as a first-order formula:

• turn F into a tight formula in Clark normal form using strongly equiv-
alent transformations, and

• form its completion (and simplify the result).

This process can be generalized in several ways. First, translating F into
a tight formula F1 in Clark normal form can employ transformations that
are strongly equivalent excluding the extensional predicates; then the equiv-
alence F ↔ F1 will be derivable in SQHT= from the formulas Choice(q)
for extensional predicates q, and that is enough to guarantee that SM[F] is
equivalent to SM[F1] (Theorem 5). Second, if we turned F into a conjunction
of the form F1∧¬G, where F1 is in Clark normal form, then Theorem 3 can
be used to “factor out” ¬G. Finally, if F is turned into a formula in Clark
normal form that is not tight then in some cases tightness can be achieved
by an additional transformation based on Theorem 6. For instance, the
predicate dependency graph of a formula containing the conjunctive term

∀x(((p(x)→ q(x))→ r(x))→ p(x))

has a self-loop at p. But if the predicate r is extensional then that term can
be replaced with

∀x(¬¬((p(x)→ q(x))→ r(x))→ p(x))

without changing the class of stable models. The self-loop is eliminated.

22

7 Pointwise Stable Models

The pointwise circumscription operator [Lifschitz, 1987] is a modification
of circumscription that reflects the idea of “pointwise minimality”: it is
impossible to make the minimized predicates stronger by changing the truth
value of exactly one of them at exactly one point. In this section, we define
a similar modification of the operator SM and show that it is closely related
to the process of completion discussed above.8

7.1 Review of Pointwise Circumscription

The definition of pointwise circumscription uses the following notation. If p

and q are predicate constants of the same arity k then p
1
< q stands for the

formula
∃x(q(x) ∧ ∀y(p(y)↔ (q(y) ∧ x 6= y))),

where x, y are disjoint tuples of distinct object variables x1, . . . , xk, y1, . . . , yk,
and x 6= y is shorthand for

¬(x1 = y1 ∧ · · · ∧ xk = yk).

The formula p
1
< q expresses that the extent of p can be obtained from the

extent of q by removing one element. If p and q are tuples p1, . . . , pn and

q1, . . . , qn of predicate constants then p
1
< q stands for the disjunction

∨
1≤i≤n

(pi
1
< qi) ∧

∧
1≤j≤n, j 6=i

(pj = qj)

 ,
and similarly for tuples of predicate variables.

Let p be a list of distinct predicate constants. The pointwise circum-
scription operator with the minimized predicates p, denoted by PCIRCp, is
defined as follows: for any first-order formula F , PCIRCp[F] stands for

F ∧ ¬∃u
(

(u
1
< p) ∧ F (u)

)
,

where u and F (u) are as in the definition of circumscription (Section 2.2).
For any sentence F , a pointwise p-minimal model of F is an interpretation
of the underlying signature that satisfies PCIRCp[F].

8In propositional case, an analogy between pointwise circumscription and completion
was noted in [Lee and Lin, 2006].

23

It is clear that every minimal model is pointwise minimal. But the
converse is not true. For instance, let F be p(a) ↔ p(b). An interpretation
that makes p true at two distinct points a, b and false in the rest of the
universe is not minimal—it can be “improved” by making p identically false.
But it is pointwise minimal, because changing the value of p at one of the
points a, b would not produce a model of F .

Unlike CIRC[F], the pointwise circumscription formula PCIRC[F] can
be equivalently rewritten without second-order quantifiers. We will describe
this process in terms of predicate expressions λxF (x), where x is a list of
distinct object variables, and F (x) is a formula. For any formula H(u),
where u is a predicate variable, by H(λxF (x)) we denote the formula ob-
tained from H(u) by replacing each atomic subformula of the form u(t),
where t is a tuple of terms, with F (t). For instance, if H(u) is u(a) ∨ u(b)
then H(λx¬p(x)) stands for ¬p(a) ∨ ¬p(b).

For any predicate variable v and any formula H(v), by H(1)
v (v) we denote

the formula
∃x(v(x) ∧H(λy(v(y) ∧ x 6= y))),

where x and y are disjoint lists of distinct variables. It is easy to see that
this formula is equivalent to

∃u
((

u
1
< v

)
∧H(u)

)
.

Indeed,

∃u
((

u
1
< v

)
∧H(u)

)
= ∃u(∃x(v(x) ∧ ∀y(u(y)↔ (v(y) ∧ x 6= y))) ∧H(u))
↔ ∃u∃x(v(x) ∧ ∀y(u(y)↔ (v(y) ∧ x 6= y)) ∧H(u))
↔ ∃x(v(x) ∧ ∃u(∀y(u(y)↔ (v(y) ∧ x 6= y)) ∧H(u)))
↔ H

(1)
v (v).

To generalize this construction to tuples of distinct predicate variables, we
define H(1)

v1···vn as shorthand for

H(1)
v1
∨ · · · ∨H(1)

vn
.

The following calculation shows that H(1)
v (v) is equivalent to

∃u
((

u
1
< v

)
∧H(u)

)

24

(to simplify notation, we assume that n = 2):

∃u1u2

((
(u1, u2)

1
< (v1, v2)

)
∧H(u1, u2)

)
↔ ∃u1u2

((((
u1

1
< v1

)
∧ (u2 = v2)

)
∨
(

(u1 = v1) ∧
(
u2

1
< v2

)))
∧H(u1, u2)

)
↔ ∃u1u2

(((
u1

1
< v1

)
∧ (u2 = v2)

)
∧H(u1, u2)

)
∨∃u1u2

((
(u1 = v1) ∧

(
u2

1
< v2

))
∧H(u1, u2)

)
↔ ∃u1

((
u1

1
< v1

)
∧H(u1, v2)

)
∨ ∃u2

((
u2

1
< v2

)
∧H(v1, u2)

)
↔ H

(1)
v1 (v1, v2) ∨H(1)

v2 (v1, v2)
= H

(1)
v1v2(v1, v2).

Consequently, PCIRCp[F] is equivalent to

F ∧ ¬F (1)
u (p),

which is a first-order formula. For instance, this translation turns

PCIRCp[p(a)↔ p(b)]

into the first-order formula

(p(a)↔ p(b)) ∧ ¬∃x(p(x) ∧ ((p(a) ∧ x 6= a)↔ (p(b) ∧ x 6= b))),

which can be further rewritten as

∀x¬p(x) ∨ (a 6= b ∧ ∀x(p(x)↔ x = a ∨ x = b)).

7.2 Operator PSM

The pointwise stable model operator with the intensional predicates p, de-
noted by PSMp, is defined as follows: for any first-order formula F , PSMp[F]
stands for

F ∧ ¬∃u((u
1
< p) ∧ F ∗(u)),

where u and F ∗(u) are as in the definition of the stable model operator
(Section 2.3). For any sentence F , a pointwise p-stable model of F is an
interpretation of the underlying signature that satisfies PSMp[F].

Every stable model is pointwise stable, but the converse is generally not
true. Furthermore, PSM[F] is equivalent to the first-order formula

F ∧ ¬(F ∗)(1)
u (p).

25

We see that there is a similarity between properties of PSM and proper-
ties of completion. Indeed, for any sentence F in Clark normal form, every
stable model of F satisfies the completion of F (Theorem 10), but the con-
verse is generally not true; the completion of F is a first-order formula. The
difference is, of course, that the definition of PSM is more general—it is not
limited to sentences in Clark normal form.

Theorem 12(b) below shows that this is more than a similarity: PSM
can be viewed as a generalization of completion.

About a sentence in Clark normal form we say that it is pure if, for each
of its conjunctive terms (23), G has no strictly positive occurrences of p. For
instance, every tight sentence is pure. Any formula in Clark normal form can
be made pure using auxiliary predicates. For instance, formula (29) is not
pure, but we can make it pure using the auxiliary predicate t′, “synonymous”
with t:

∀xy((p(x, y) ∨ ∃z(t(x, z) ∧ t(z, y))→ t′(x, y)) ∧ ∀xy(t′(x, y)→ t(x, y)).

Theorem 12 For any formula F in Clark normal form, (a) the implication

PSM[F]→ Comp[F]

is logically valid; (b) if F is pure then PSM[F] is equivalent to Comp[F].

When applied to a formula in Clark normal form that is not pure, PSM
provides, generally, a better approximation to SM than the completion op-
erator.

7.3 Tight Formulas Revisited

As the final comment on the concept of a pointwise stable model, we will
show how to extend the tightness condition from formulas in Clark normal
form to arbitrary formulas so that a counterpart of Theorem 11 will hold: for
a tight formula F , SM[F] will be equivalent to PSM[F] (and consequently
equivalent to a first-order formula).

A rule of a first-order formula F is a strictly positive occurrence of an
implication in F . For instance, the only rule of (2) is p(x, y)→ q(x). (Note
that the first two conjunctive terms of (2) are not rules, according to our
definition.) If F is a formula in Clark normal form then its rules are the
implications G → p(x) from its conjunctive terms (23). The rules of the
formula

(p(x)→ (q(x)→ r(x))) ∨ ((p(y)→ q(y))→ r(y))

26

are
p(x)→ (q(x)→ r(x)), q(x)→ r(x), (p(y)→ q(y))→ r(y).

For any first-order formula F , the predicate dependency graph of F
(relative to the list p of intensional predicates) is the directed graph that

• has all intensional predicates as its vertices, and

• has an edge from p to q if, for some rule G→ H of F ,

– p has a strictly positive occurrence in H, and

– q has a positive nonnegated occurrence in G.

We say that F is tight (relative to p) if its predicate dependency graph is
acyclic.

In application to formulas in Clark normal form, the new definition of
tightness is equivalent to the definition from Section 6.2. But it allows us
to talk, for instance, about the predicate dependency graph of formula (2)
itself, without converting it to Clark normal form, and say that (2) itself
is tight. Incidentally, this formula and its normal form (21) have the same
predicate dependency graph, and this is a general phenomenon: strongly
equivalent transformations involved in converting a sentence to its Clark
normal form do not usually change its predicate dependency graph, and
consequently do not affect its tightness.

Theorem 13 For any tight formula F , PSM[F] is equivalent to SM[F].

Corollary 3 For any tight formula F , SM[F] is equivalent to a first-order
formula.

8 Strong Negation

Some applications of answer set programming are facilitated by the use of a
second kind of negation, called “strong” or “classical” [Gelfond and Lifschitz,
1991].

Strong negation can be incorporated in the framework of this paper as
follows. We distinguish between intensional predicates of two kinds, positive
and negative, and assume that each negative intensional predicate has the
form ∼p, where p is a positive intensional predicate. Under this approach to
strong negation, the symbol ∼ is, syntactically, not a connective; it occurs
within atomic formulas. An interpretation of the underlying signature is

27

coherent if the extent of every negative predicate ∼ p in it is disjoint from
the extent of the corresponding positive predicate p. In other words, an
interpretation is coherent if it satisfies the formula

¬∃x(p(x)∧ ∼p(x)), (30)

where x is a list of distinct object variables, for each negative predicate ∼p.
By Theorem 3, the coherent stable models of a sentence F can be char-

acterized as the stable model of the conjunction of F with all formulas (30).
Strong negation allows us to distinguish between two kinds of exceptions

to defaults: when the default is not applicable, so that the property asserted
by the default is not guaranteed to hold, and when we know that the property
indeed does not hold. For instance, the formula

∀x(¬ab(x)→ p(x)) ∧ ab(c1) ∧ ab(c2)∧ ∼p(c2) (31)

employs the “abnormality predicate” ab to express that

• by default, any object is presumed to have property p,

• this default is applicable neither to c1 nor to c2,

• c2 does not have property p.

The completion method (Section 6) can be used to characterize the stable
models of this formula, with all predicate constants treated as intensional,
by a first-order formula:

∀x(ab(x) ↔ x = c1 ∨ x = c2)∧
∀x(p(x) ↔ x 6= c1 ∧ x 6= c2)∧
∀x(∼p(x) ↔ x = c2).

According to this formula, all objects other than c1 and c2 have property p
(line 2); as to c1 and c2, it is not known whether the former has property p,
but the latter certainly doesn’t (line 3).

All stable models of (31) are coherent. But this will change if we drop
the conjunctive term ab(c2) from that formula, that is to say, if we assert ∼
p(c2) but do not restrict accordingly the default that leads to the opposite
conclusion. The completion formula will turn then into

∀x(ab(x) ↔ x = c1)∧
∀x(p(x) ↔ x 6= c1)∧
∀x(∼p(x) ↔ x = c2).

This sentence has no coherent models satisfying c1 6= c2.

28

9 Related Work

Propositional equilibrium logic [Pearce, 1997] extends the stable model se-
mantics from traditional programs to propositional formulas, and the defi-
nition of a stable model for first-order sentences proposed in this paper is a
natural next step. It is closely related to the extension of equilibrium logic
to first-order formulas described in Sections A.5.1 and A.5.2.

Theorem 5 from [Lin, 1991] relates stable models of traditional programs
to circumscription using a translation that introduces auxiliary predicate
constants. Our approach to stable models is closer, however, to two more
recent publications: [Pearce et al., 2001], which shows how to express the
semantics of propositional equilibrium logic by quantified Boolean formulas,
and [Lin and Zhou, 2007], which translates equilibrium logic into the logic
of knowledge and justified assumptions from [Lin and Shoham, 1992].

Non-Herbrand stable models, at least for traditional programs, can be
defined on the basis of several characterizations of the stable model semantics
proposed earlier, including [Lin, 1991, Wallace, 1993, Lin and Reiter, 1997].

Extensional predicates are similar to input predicates in the sense of [Oikari-
nen and Janhunen, 2008].

10 Conclusion

The approach to stable models proposed in this paper is more general than
the traditional definition because it is applicable to syntactically complex
formulas, because it covers non-Herbrand models, and because it allows us
to distinguish between intensional and extensional predicates. Syntactically
complex formulas are useful in the context of the stable model semantics in
view of their relation to aggregates. Non-Herbrand models are related to
the use of arithmetic functions in logic programs. Extensional predicates
provide a useful technical device, as discussed in [Ferraris et al., 2009].

Acknowledgements

We are grateful to Pedro Cabalar, Martin Gebser, Michael Gelfond, Fangzhen
Lin, David Pearce and Hudson Turner for useful discussions related to the
topic of this paper. This work was partially supported by the National Sci-
ence Foundation under Grants IIS-0712113, IIS-0839821, and IIS-0916116.

29

A Appendix: Proofs of Theorems

A.1 Proof of Theorem 1

Given a formula F without variables and a set X of ground atoms, by FX

we denote the modified reduct of F relative to X (Section 3.1), that is, the
result of replacing all maximal subformulas of F that are not satisfied by X
with ⊥. Similar notation will be used for sets of ground formulas.

[Ferraris and Lifschitz, 2005, Lemma 22]
Lemma 1 X |= FX iff X |= F .

Proof. Immediate from the definition of FX .

[Ferraris and Lifschitz, 2005, Lemma 23]
Lemma 2 (a) (F ∧ G)X is equivalent to FX ∧ GX ; (b) (F ∨ G)X is
equivalent to FX ∨GX .

Proof. (a) If X satisfies F ∧ G then the formulas (F ∧ G)X and FX ∧
GX are equal to each other; otherwise, each of them is equivalent to ⊥.
(b) Similar.

The following lemma is a key to the proof of Theorem 1. It relates
the modified reduct operator to the operator F 7→ F ∗(u) introduced in
Section 2.3. In the statement of the lemma,

• H(x) is a quantifier-free formula, x is the list of all its variables, and t
is a list of ground terms of the same length as x;

• p is the list of all predicate constants occurring in H(x), and q is a
list of new predicate constants of the same length as p;

• X is a set of ground atoms that contain a predicate constant from p,
Y is a subset of X, and Y p

q is the set of ground atoms obtained from Y
by substituting the members of q for the corresponding members of p.

Lemma 3 The Herbrand interpretation Y satisfies H(t)X iff the Herbrand
interpretation X∪Y p

q satisfies the sentence H∗(q, t) obtained from H∗(u,x)
by substituting q for the predicate variables u and t for the object variables x.

30

Proof. By induction on H. Case 1: H(x) has the form t1(x) = t2(x).
Then H∗(q, t) is t1(t) = t2(t); X ∪ Y p

q satisfies this sentence iff t1(t) equals
t2(t). On the other hand, H(t)X is t1(t) = t2(t) if t1(t) equals t2(t), and ⊥
otherwise. Case 2: H(x) has the form p(t′(x)), where t′(x) is a tuple of
terms. Then H∗(q, t) is q(t′(t)), where q is the member of q corresponding
to the member p of p; X ∪ Y p

q satisfies this sentence iff p(t′(t)) belongs
to Y . On the other hand, H(t)X is p(t′(t)) if this atom belongs to X,
and ⊥ otherwise. Since Y ⊆ X, Y satisfies H(t)X iff p(t′(t)) belongs to Y .
Case 3: H(x) is ⊥; trivial. Case 4: H(x) is a conjunction or a disjunction;
use Lemma 2. Case 5: H(x) is H1(x)→ H2(x). Then H∗(q, t) is

H(t) ∧ (H∗1 (q, t)→ H∗2 (q, t)). (32)

Case 5.1: X |= H(t). Then the Herbrand interpretation X ∪ Y p
q satisfies

the conjunction (32) iff it satisfies its second term H∗1 (q, t)→ H∗2 (q, t). On
the other hand, H(t)X is in this case H1(t)X → H2(t)X , and it remains to
apply the induction hypothesis. Case 5.2: X 6|= H(t). Then X ∪ Y p

q does
not satisfy (32), and H(t)X is ⊥.

Theorem 1 For any signature σ containing at least one object constant and
finitely many predicate constants, any finite set Π of quantifier-free formulas
of σ, and any Herbrand interpretation X of σ, the following conditions are
equivalent:

• X is a stable model of Π in the sense of the 2005 definition;

• X is a p-stable model of the conjunction of the universal closures of
the formulas from Π, where p is the list of all predicate constants of σ.

Proof. Let Πg be the set of all ground instances of the formulas from Π, let x
be the list of all variables occurring in Π, and let F (x) be the conjunction
of all formulas from Π. In view of Lemma 1, X is a stable model of Π in the
sense of the 2005 definition iff

(i) X satisfies Πg, and

(ii) no proper subset Y of X satisfies ΠX
g .

On the other hand, X is a p-stable model of ∀xF (x) iff

(i′) X satisfies ∀xF (x), and

(ii′) X does not satisfy ∃u((u < p) ∧ ∀xF ∗(u,x)).

31

It is clear that (i) is equivalent to (i′). By Lemma 2(a), Condition (ii) can
be reformulated as follows: no proper subset Y of X satisfies all of the
formulas (F (t))X for arbitrary tuples t of ground terms. Condition (ii′) can
be reformulated in terms of a tuple of new predicate constants q: there is no
proper subset Y of X such that, for every tuple t of ground terms, X ∪ Y p

q

satisfies F ∗(q, t). By Lemma 3, it follows that (ii) is equivalent to (ii′).

A.2 Proof of Theorem 2

Lemma 4 For any list p of predicate constants, Choice(p)∗(u) is equivalent
to p ≤ u.

Proof: (∀x(p(x) ∨ ¬p(x)))∗ is

∀x(u(x) ∨ (¬u(x) ∧ ¬p(x)));

p ≤ u is
∀x(p(x)→ u(x)).

Theorem 2 For any first-order formula F and any disjoint lists p, q of
distinct predicate constants, the following formulas are logically valid:

SMpq[F] → SMp[F],
SMpq[F ∧ Choice(q)] ↔ SMp[F].

The proof is not long, but there is a notational difficulty that we need
to overcome before we can present it. The notation F ∗(u) introduced in
Section 2.3 does not take into account the fact that the construction of this
formula depends on the choice of the list p of intensional predicates. Since
the dependence on p is essential in the proof of Theorem 2, we use here the
more elaborate notation F ∗[p](u). For instance, if F is p(x) ∧ q(x) then

F ∗[p](u) is u(x) ∧ q(x),
F ∗[pq](u, v) is u(x) ∧ v(x).

It is easy to verify by induction on F that for any disjoint lists p, q of
distinct predicate constants,

F ∗[p](u) = F ∗[pq](u,q). (33)

Proof of Theorem 2. (i) In the notation introduced above, SMp[F] is

F ∧ ¬∃u((u < p) ∧ F ∗[p](u)).

32

By (33), this formula can be written also as

F ∧ ¬∃u((u < p) ∧ F ∗[pq](u,q)),

which is equivalent to

F ∧ ¬∃u(((u,q) < (p,q)) ∧ F ∗[pq](u,q)).

On the other hand, SMpq[F] is

F ∧ ¬∃uv(((u,v) < (p,q)) ∧ F ∗[pq](u,v)).

To prove (ii), note that, by (33) and Lemma 4, the formula

∃uv(((u,v) < (p,q)) ∧ F ∗[pq](u,v) ∧ Choice(q)∗[pq](u,v))

is equivalent to

∃uv(((u,v) < (p,q)) ∧ F ∗[pq](u,v) ∧ (q = v)).

It follows that it can be also equivalently rewritten as

∃u((u < p) ∧ F ∗[pq](u,q)).

By (33), the last formula can be represented as

∃u((u < p) ∧ F ∗[p](u)).

A.3 Proof of Theorem 3

Lemma 5 The formula

(u ≤ p) ∧ F ∗(u)→ F

is logically valid.

Proof: by induction on F .

Lemma 6 Formula

u ≤ p→ ((¬F)∗(u)↔ ¬F)

is logically valid.

33

Proof: immediate from Lemma 5.

Theorem 3 For any first-order formulas F and G, SM[F∧¬G] is equivalent
to SM[F] ∧ ¬G.

Proof. By Lemma 6,

SMp[F ∧ ¬G] = F ∧ ¬G ∧ ¬∃u((u < p) ∧ (F ∧ ¬G)∗(u))
⇔ F ∧ ¬G ∧ ¬∃u((u < p) ∧ F ∗(u) ∧ ¬G)
⇔ F ∧ ¬∃u((u < p) ∧ F ∗(u)) ∧ ¬G
= SMp[F] ∧ ¬G.

A.4 Proof of Theorem 4

Lemma 7 Assume that the set of intensional predicates is divided into two
parts p, q so that every occurrence of every predicate constant from p in F
belongs to the antecedent of an implication. Then the formula

(u ≤ p)→ (F ∗(u,q)↔ F)

is logically valid.

(Lemma 6 is the special case of this assertion when F has the form ¬G,
and q is empty.)

Proof. By induction on F . We will consider the case when F is G→ H; the
other cases are straightforward. Assume u ≤ p. By Lemma 5, it follows that
G∗(u,q)→ G; by the induction hypothesis, H∗(u,q)↔ H. Consequently

F ∗(u,q) = (G∗(u,q)→ H∗(u,q)) ∧ (G→ H)
⇔ (G∗(u,q)→ H) ∧ (G→ H)
⇔ (G∗(u,q) ∨G)→ H
⇔ G→ H
= F.

Theorem 4 For any first-order formula F and any intensional predicate p,
if every occurrence of p in F belongs to the antecedent of an implication then
the formula

SM[F]→ False(p)

34

is logically valid.

Proof. Let q be the set of all intensional predicates other than p. The
formula to be proved can be written as

F ∧ ¬False(p)→ ∃uv(((u,v) < (p,q)) ∧ F ∗(u,v)). (34)

Assume F ∧¬False(p), and take u such that u < p. By Lemma 7, it follows
that F ∗(u,q). Hence

((u,q) < (p,q)) ∧ F ∗(u,q),

which implies the consequent of (34).

A.5 Proofs of Theorems 5–8

It is convenient to prove Theorems 7 and 8 before Theorems 5 and 6. As
a preliminary step, in Lemma 9 below we extend the work on the relation-
ship between stable models and propositional equilibrium logic described
in [Pearce, 1997] to the first-order case.

A.5.1 Kripke Semantics for SQHT=

Notation: the universe of an interpretation I is denoted by |I|; for any signa-
ture σ and any set U , σU stands for the extension of σ obtained by adding
distinct new symbols ξ∗, called names, for all ξ ∈ U as object constants.
We will identify an interpretation I of σ with its extension to σ|I| defined
by I(ξ∗) = ξ. By σf we denote the part of σ consisting of its object and
function constants.

An HT-interpretation of σ is a triple I = 〈I f , Ih, It〉, where

• I f is an interpretation of σf , and

• Ih, It are sets of atomic formulas formed using predicate constants
from σ and the names of elements of |I f | such that Ih ⊆ It.

The symbols h (“here”) and t (“there”) are called worlds; they are or-
dered by the relation h<t. The value that I f assigns to a ground term t of
signature σf

|If | will be denoted by tI .
The satisfaction relation |=

ht
between an HT-interpretation I, a world w,

and a first-order sentence F of the signature σ|I
f |, is defined recursively:

• I, w |=
ht
p(t1, . . . , tk) if p

((
tI1

)∗
, . . . ,

(
tIk

)∗)
∈ Iw;

35

• I, w |=
ht
t1 = t2 if tI1 = tI2 ;

• I, w 6|=
ht
⊥;

• I, w |=
ht
F ∧G if I, w |=

ht
F and I, w |=

ht
G;

• I, w |=
ht
F ∨G if I, w |=

ht
F or I, w |=

ht
G;

• I, w |=
ht
F → G if, for every world w′ such that w ≤ w′,

I, w′ 6|=
ht
F or I, w′ |=

ht
G;

• I, w |=
ht
∀xF (x) if, for each ξ ∈ |I f |, I, w |=

ht
F (ξ∗);

• I, w |=
ht
∃xF (x) if, for some ξ ∈ |I f |, I, w |=

ht
F (ξ∗).

We say that I satisfies F , and write I |=
ht
F , if I, h |=

ht
F . It is easy to check

by induction on F that this condition implies I, t |=
ht
F .

As shown in [Lifschitz et al., 2007], system SQHT= is sound and com-
plete relative to this semantics: for any set Γ of sentences, a sentence F is
derivable from Γ in SQHT= iff F is satisfied by every HT-interpretation
that satisfies all formulas from Γ.

An interpretation I (in the sense of classical logic) of a signature σ can
be represented as a pair 〈J,X〉, where J is the restriction of I to σf , and X is
the set of the atomic formulas, formed using predicate constants from σ and
the names of elements of |I|, which are satisfied by I. The lemma below uses
this notation to describe the relationship between the satisfiability relation
for HT-interpretations and the transformation F 7→ F ∗(u) introduced in
Section 2.3. We assume that σ contains finitely many predicate constants,
and the list of these constants is denoted by p. By σ+ we denote the
signature obtained from σ by adding new predicate constants q, one per
each member of p. About an atomic formula formed using a predicate
constant from σ+ and names of elements of |I| we say that it is a p-atom
if its predicate constant belongs to p, and that it is a q-atom otherwise.
As in Section A.1, for any set X of p-atoms we denote by Xp

q the set of
the q-atoms that are obtained from the elements of X by replacing their
predicate constants by the corresponding predicate constants from q.

Lemma 8 For any HT-interpretation I and any first-order sentence F of
the signature σ|I

f |,

(i) I, t |=
ht
F iff 〈I f , It〉 |= F iff 〈I f , (Ih)pq ∪ It〉 |= F ;

36

(ii) I,h |=
ht
F iff 〈I f , (Ih)pq ∪ It〉 |= F ∗(q).

Proof. Each part is easy to check by induction on the size of F . Consider,
for instance, the proof of (ii) for the case of implication. We will write I for
〈I f , (Ih)pq ∪ It〉. By the induction hypothesis,

I,h |=
ht
F iff I |= F ∗(q),

I,h |=
ht
G iff I |= G∗(q).

By part (i) of the lemma,

I, t |=
ht
F iff I |= F,

I, t |=
ht
G iff I |= G.

Consequently

I, h |=
ht
F → G

iff [I,h 6|=
ht
F or I,h |=

ht
G] and [I, t 6|=

ht
F or I, t |=

ht
G]

iff [I 6|= F ∗(q) or I |= G∗(q)] and [I 6|= F or I |= G]
iff I |= F ∗(q)→ G∗(q) and I |= F → G
iff I |= (F ∗(q)→ G∗(q)) ∧ (F → G)
iff I |= (F → G)∗(q).

A.5.2 First-Order Equilibrium Logic and Stable Models

An HT-interpretation 〈I f , Ih, It〉 is total if Ih = It. A total HT-interpretation
〈I,X,X〉 is an equilibrium model of a sentence F of the signature σ|I| if

(i) 〈I,X,X〉 |=
ht
F , and

(ii) for any proper subset Y of X, 〈I, Y,X〉 6|=
ht
F .

It is easy to check by induction on F that condition (i) above is equivalent
to 〈I,X〉 |= F .

In the following lemma, σ is a signature containing finitely many predi-
cate constants.

Lemma 9 For any total HT-interpretation 〈I,X,X〉 of σ and any first-
order sentence F of σ|I|, 〈I,X,X〉 is an equilibrium model of F iff 〈I,X〉 is
a p-stable model of F , where p is the list of all predicate constants of σ.

37

Proof. From Lemma 8(ii) we conclude that condition (ii) from the defini-
tion of an equilibrium model can be reformulated as follows: for any proper
subset Y of X,

〈I, Y p
q ∪X〉 6|= F ∗(q).

This is equivalent to saying that there is no set Y of p-atoms such that

〈I, Y p
q ∪X〉 |= (q < p) ∧ F ∗(q),

and consequently equivalent to the condition

〈I,X〉 |= ¬∃u((u < p) ∧ F ∗(u)).

It follows that 〈I,X,X〉 is an equilibrium model of F iff

〈I,X〉 |= F ∧ ¬∃u((u < p) ∧ F ∗(u)).

A.5.3 Proof of the Theorems 7 and 8

The assertions of Theorems 7 and 8 (Section 5.2) can be jointly reformulated
as follows:

For any first-order formulas F and G, the following conditions are equiv-
alent:

(i) F is strongly equivalent to G,

(ii) for any formula H such that every object, function or predicate con-
stant occurring in H occurs in F or in G, and for any occurrence of F
in H, SMpFG [H] is equivalent to SMpFG [H ′], where H ′ is obtained
from H by replacing the occurrence of F by G,

(iii) formula F ↔ G is provable in SQHT=.

The proof repeats, with minor modifications, the argument from [Lifs-
chitz et al., 2007].

From (i) to (ii): obvious.

From (ii) to (iii): By x we will denote the list of variables that are free
in F or in G, and we will write F as F (x), and G as G(x). Our goal is to
show that F (x)↔ G(x) is provable in SQHT=. Without loss of generality,
we can assume that every predicate constant in the underlying signature σ

38

belongs to pFG. Take an HT-interpretation I and a tuple c of names of the
same length as x. We need to show that I satisfies F (c) iff I satisfies G(c).
Assume, for instance, that I |=

ht
F (c), and denote the formula Choice(pFG)

by C. Case 1: I is total. By (ii),

SMpFG [F (x) ∧ C] is equivalent to SMpFG [G(x) ∧ C],

and consequently

SMpFG [F (c) ∧ C] is equivalent to SMpFG [G(c) ∧ C].

By Lemma 9, it follows that the sentences

F (c) ∧ C, G(c) ∧ C (35)

have the same equilibrium models. Since I is total and satisfies F (c), I is
an equilibrium model of the first of the formulas (35). Consequently, it is an
equilibrium model of the second, so that I |=

ht
G(c). Case 2: I is not total.

Let J be the total HT-interpretation 〈I f , It, It〉. From the assumption
I |=

ht
F (c) we can conclude that I, t |=

ht
F (c), and, by Lemma 8(i), that

J |=
ht
F (c). Furthermore, by reasoning as in Case 1 with J in place of I, we

conclude that J |=
ht
G(c). By (ii),

SMpFG [F (x) ∧ (G(x)→ C)]

is equivalent to
SMpFG [G(x) ∧ (G(x)→ C)],

and consequently
SMpFG [F (c) ∧ (G(c)→ C)]

is equivalent to
SMpFG [G(c) ∧ (G(c)→ C)].

By Lemma 9, it follows that the sentences

F (c) ∧ (G(c)→ C), G(c) ∧ (G(c)→ C) (36)

have the same equilibrium models. The latter can be rewritten as

G(c) ∧ C. (37)

Since J is a total HT-interpretation satisfying G(c), it is an equilibrium
model of (37). Consequently, J is an equilibrium model of the first of the

39

formulas (36). Hence that formula is not satisfied by I. Since its first
conjunctive term F (c) is satisfied by I, we conclude that I does not satisfy
the second term G(c) → C. Since I, t |=

ht
C, this is only possible when

I,h |=
ht
G(c), that is, I |=

ht
G(c).

From (iii) to (i): Let H ′ be obtained from H by replacing an occurrence
of F by G, and let p be a list of predicate constants. We will denote by x
the list of variables that are free in at least one of the formulas H, H ′,
and we will write H as H(x), and H ′ as H ′(x). Our goal is to show that
SMp[H(x)] is equivalent to SMp[H ′(x)]. Without loss of generality we can
assume that every predicate constant in the underlying signature σ occurs
in H(x) or H ′(x), so that the set of predicate constants in σ is finite. Let q
be the list of predicate constants from σ that do not belong to p. By Theo-
rem 2, it is sufficient to prove that SMpq[H ′(x)∧Choice(q)] is equivalent to
SMpq[H(x) ∧ Choice(q)]. Take an interpretation 〈I,X〉 of σ and a tuple c
of names, of the same length as x. We need to show that H ′(c)∧Choice(q)
and H(c) ∧ Choice(q) have the same pq-stable models. By Lemma 9, this
is equivalent to saying that these two sentences have the same equilibrium
models. It remains to note that the equivalence between these two sentences
is provable in SQHT=, and consequently these sentences are satisfied by the
same HT-interpretations.

A.5.4 Proof of Theorem 5

Theorem 5 For any first-order formulas F and G, if the formula F ↔ G
is derivable in SQHT= from the formulas Choice(q) for the extensional
predicates q then SM[F] is equivalent to SM[G].

Proof. Let p be the list of intensional predicates, and let q be the list of all
other predicate constants occurring in F or in G. Since F ↔ G is derivable
in SQHT= from Choice(q), the formula

F ∧ Choice(q)↔ G ∧ Choice(q)

is provable in SQHT=. By Theorem 8, it follows that the left-hand side
is strongly equivalent to the right-hand side. It follows that SMpq[F ∧
Choice(q)] is equivalent to SMpq[G ∧ Choice(q)]. By Theorem 2, we can
conclude that SMp[F] is equivalent to SMp[G].

40

A.5.5 Proof of Theorem 6

Lemma 10 If a formula G has no strictly positive occurrences of predicate
constants from a list p then G ↔ ¬¬G is derivable in SQHT= from the
formulas Choice(q) for the predicate constants q that occur in G but do not
belong to p.

Proof: by induction on G, using the fact that the equivalences

¬¬(F ∧G) ↔ ¬¬F ∧ ¬¬G,
¬¬(F ∨G) ↔ ¬¬F ∨ ¬¬G,
¬¬(F → G) ↔ F → ¬¬G

are provable in SQHT=.

Theorem 6 Let F ′ be the formula obtained from a first-order formula F
by inserting ¬¬ in front of a subformula G. If G has no strictly positive
occurrences of intensional predicates then SM[F ′] is equivalent to SM[F].

Proof: immediate from Lemma 10 and Theorem 5.

A.6 Proof of Theorem 9

Theorem 9 F is strongly equivalent to G iff the formula

(q ≤ pFG)→ (F ∗(q)↔ G∗(q)) (38)

is logically valid.
Proof. Without loss of generality, we can assume that every predicate

constant in the underlying signature σ belongs to pFG. By x we will denote
the list of variables that are free in F or in G, and we will write F as F (x),
G as G(x), F ∗(q) as F ∗(q,x), G∗(q) as G∗(q,x), and pFG as p.

By Theorem 8, the condition

F (x) is strongly equivalent to G(x)

is equivalent to the condition

F (x)↔ G(x) is provable in SQHT=.

It can be further reformulated as follows:

for any HT-interpretation 〈I, Y,X〉
and for any tuple c of names of the same length as x,

〈I, Y,X〉 |=
ht
F (c) iff 〈I, Y,X〉 |=

ht
G(c).

41

By Lemma 8(ii), the last line can be equivalently rewritten as

〈I, Y p
q ∪X〉 |= F ∗(q, c) iff 〈I, Y p

q ∪X〉 |= G∗(q, c).

Consequently F (x) is strongly equivalent to G(x) iff

for any interpretation I of σf , any sets X and Y of p-atoms,
and any tuple c of names of the same length as x,

〈I, Y p
q ∪X〉 |= q ≤ p ∧ F ∗(q, c) iff 〈I, Y p

q ∪X〉 |= q ≤ p ∧G∗(q, c).

This condition is equivalent to the logical validity of (38).

A.7 Proof of Theorems 10 and 12

Theorem 10 follows from part (a) of Theorem 12, so that we only need to
prove the latter. Let the intensional predicates be p1, . . . , pn. By ei(xi) we
denote the tuple

p1, . . . , pi−1, λyi(pi(yi) ∧ yi 6= xi), pi+1, . . . , pn,

where yi is a tuple of new distinct variables.

Lemma 11 For any formula F , the implications

F ∗(ei(xi))→ F (i = 1, . . . , n)

are logically valid.

Proof: Immediate from Lemma 5.

Lemma 12 If a formula F does not contain strictly positive occurrences
of pi then F ∗(ei(xi)) is equivalent to F .

Proof: Immediate from Lemma 7 with pi as p.

Recall that a formula in Clark normal form can be written as
n∧

i=1

∀xi(Gi → pi(xi)), (39)

where each xi is a list of distinct variables.

42

Lemma 13 If F is (39) then PSM[F] is equivalent to

F ∧
n∧

i=1

∀xi(pi(xi)→ G∗i (ei(xi))).

Proof. As discussed in Section 7.2, PSM[F] is equivalent to the first-order
formula

F ∧ ¬(F ∗)(1)
u (p).

Formula (F ∗)(1)
u (p) can be written as∨

i

(∃xi(pi(xi) ∧ F ∗(ei(xi)))).

Consequently, PSM[F] can be equivalently rewritten as

F ∧
∧
i

∀xi(pi(xi)→ ¬F ∗(ei(xi))).

To prove the assertion of the lemma, it remains to derive the equivalence
between

¬F ∗(ei(xi)) (40)

and
G∗i (ei(xi)) (41)

from assumption F .
Formula F ∗(u) can be rewritten, under assumption F , as the conjunction

of the formulas
∀yj(G∗j (u)→ uj(yj))

for all j = 1, . . . , n. The j-th term of the tuple ei(xi) is λyi(pi(yi)∧yi 6= xi)
if j = i, and pj otherwise. Consequently, the j-th conjunctive term of
F ∗(ei(xi)) is

∀yi(G∗i (ei(xi))→ (pi(yi) ∧ yi 6= xi)), (42)

if j = i, and
∀yj(G∗j (ei(xi))→ pj(yj)) (43)

otherwise. Lemma 11 shows that in the presence of the conjunctive term

∀yj(Gj → pj(yj))

43

of F , the conjunctive term (42) of F ∗(ei(xi)) can be rewritten as

∀yi(G∗i (ei(xi))→ yi 6= xi), (44)

and the other conjunctive terms (43) can be dropped altogether. We con-
clude that formula (40) can be written as

¬∀yi(G∗i (ei(xi))→ yi 6= xi),

which is equivalent to

∃yi(G∗i (ei(xi)) ∧ yi = xi), (45)

and consequently to (41).

Theorem 12 For any formula F in Clark normal form, (a) the implication

PSM[F]→ Comp[F]

is logically valid; (b) if F is pure then PSM[F] is equivalent to Comp[F].

Proof. If F is (39) then Comp[F] is equivalent to

F ∧
∧
i

∀xi(pi(xi)→ Gi). (46)

On the other hand, by Lemma 13, PSM[F] is equivalent to

F ∧
∧
i

∀xi(pi(xi)→ G∗i (ei(xi))).

Claim (a) follows by Lemma 11. To prove claim (b), note that when F is
pure then G∗i (ei(xi)) is equivalent to Gi by Lemma 12.

A.8 Proofs of Theorems 11 and 13

Since every tight program is pure, Theorem 11 follows from Theorem 12(b)
and Theorem 13. Consequently we only need to prove Theorem 13.

In the following lemma, F is a first-order formula, p is the list of inten-
sional predicates p1, . . . , pn, and u is a tuple of distinct predicate variables
u1, . . . , un.

44

Lemma 14 Let S be the set of i’s such that pi has a strictly positive occur-
rence in F . The formula(

(u ≤ p) ∧
∧
i∈S

(ui = pi)

)
→ (F ↔ F ∗(u))

is logically valid.

Proof. By induction on F . We will consider the case when F is G→ H; the
other cases are straightforward. It is sufficient to derive the implication

(G→ H)→ (G∗(u)→ H∗(u)) (47)

from the assumption
(u ≤ p) ∧

∧
i∈S

(ui = pi). (48)

Since every i such that pi has a strictly positive occurrence in H belongs
to S, it follows from the induction hypothesis that the implication(

(u ≤ p) ∧
∧
i∈S

(ui = pi)

)
→ (H ↔ H∗(u)) (49)

is logically valid. By Lemma 5, the implication

(u ≤ p) ∧G∗(u)→ G (50)

is logically valid also. It remains to observe that (47) is a propositional
consequence of (48), (49), and (50).

Recall that an occurrence of a predicate constant in a formula is called
positive if the number of implications containing that occurrence in the an-
tecedent is even (Section 4.3); if that number is odd then the occurrence
is negative. Negative occurrences should be distinguished from negated
occurrences—those belonging to a subformula of the form F → ⊥ (Sec-
tion 6.2). In the following lemmas, v is a tuple of distinct predicate variables
disjoint from u.

Lemma 15 Let S+ be the set of i’s such that pi has a positive nonnegated
occurrence in F , and let S− be the set of i’s such that pi has a negative
nonnegated occurrence in F . The formulas

(a) ((u ≤ v) ∧ (v ≤ p) ∧
∧

i∈S+(ui = pi))→ (F ∗(v)→ F ∗(u)),

45

(b) ((u ≤ v) ∧ (v ≤ p) ∧
∧

i∈S−(ui = pi))→ (F ∗(u)→ F ∗(v))

are logically valid.

Proof. Both parts are proved simultaneously by induction on F . We will
only consider the proof of (a) in the case when F is an implication G→ H.
Case 1: H is ⊥, so that F is ¬G. By Lemma 6, the formulas

u ≤ p→ (F ∗(u)↔ F),
v ≤ p→ (F ∗(v)↔ F)

are logically valid. Consequently formula (a) is logically valid also. Case 2:
H is different from ⊥. Then each pi that has a nonnegated occurrence in G
or H has a nonnegated occurrence in F as well. Denote the antecedent of (a)
by Ant; then (a) can be written as

Ant→ ((F ∧ (G∗(v)→ H∗(v)))→ (F ∧ (G∗(u)→ H∗(u)))). (51)

By part (b) of the induction hypothesis applied to G, the formula

Ant→ (G∗(u)→ G∗(v)) (52)

is logically valid. By part (a) of the induction hypothesis applied to H, the
formula

Ant→ (H∗(v)→ H∗(u)) (53)

is logically valid. It remains to observe that (51) is a propositional conse-
quence of (52) and (53).

Lemma 16 Let D be the set of edges of the predicate dependency graph
of F . The formula(u ≤ v) ∧ (v ≤ p) ∧

∧
i,j : (pi,pj)∈D

(uj = pj ∨ vi = pi)

→ (F ∗(u)→ F ∗(v))

is logically valid.

Proof. By induction on F . We will only consider the case when F is an
implication G→ H. Let Ant be the antecedent

(u ≤ v) ∧ (v ≤ p) ∧
∧

i,j : (pi,pj)∈D

(uj = pj ∨ vi = pi)

46

of the formula in question, and let S be the set of i’s such that pi has
a strictly positive occurrence in F . It is sufficient to establish the logical
validity of the formulas(

Ant ∧
∧
i∈S

vi = pi

)
→ (F ∗(u)→ F ∗(v)) (54)

and
(Ant ∧ vi 6= pi)→ (F ∗(u)→ F ∗(v)) (i ∈ S). (55)

From Lemma 14 we conclude that the formula(
Ant ∧

∧
i∈S

vi = pi

)
→ (F ↔ F ∗(v))

is logically valid; (54) is a propositional consequence of this formula, in
view of the fact that F is a conjunctive term of F ∗(u). Formula (55) is a
propositional consequence of

(Ant ∧ vi 6= pi)→ ((G∗(u)→ H∗(u))→ (G∗(v)→ H∗(v))), (56)

so that the proof will be completed if we establish the logical validity of the
latter for each i ∈ S.

Note first that every edge of the dependency graph of H is an edge of
the dependency graph of F . Consequently the induction hypothesis implies
that the formula

Ant→ (H∗(u)→ H∗(v)) (57)

is logically valid. Furthermore, it is clear from the definition of Ant that the
formula

(Ant ∧ vi 6= pi)→
∧

j : (pi,pj)∈D

uj = pj

is a tautology. Let S+ be the set of j’s such that pj has a positive non-
negated occurrence in G. By the definition of the predicate dependency
graph, (pi, pj) ∈ D whenever i ∈ S and j ∈ S+. Consequently

(Ant ∧ vi 6= pi)→
∧

j∈S+

uj = pj

is a tautology also. In view of Lemma 15(a), it follows that the formula

(Ant ∧ vi 6= pi)→ (G∗(v)→ G∗(u)) (58)

47

is logically valid. It remains to observe that (56) is a propositional conse-
quence of (57) and (58).

Theorem 13 For any tight formula F , PSM[F] is equivalent to SM[F].

Proof. We only need to prove the implication left-to-right. Since F is
tight, we can assume without loss of generality that the members p1, . . . , pn

of p are ordered in such a way that i < j for all edges (pi, pj) of the depen-
dency graph of F . Assume PSM[F] and u < p; we need to derive ¬F ∗(u).
Let m be the largest i such that ui 6= pi. Take x such that pm(x)∧¬um(x).
Choose v as follows: vi is λy(pi(y) ∧ x 6= y) if i = m, and pi otherwise.
Then

(u ≤ v) ∧ (v ≤ p) ∧
∧

i,j : (pi,pj)∈D

(uj = pj ∨ vi = pi). (59)

Indeed, the conjunctive terms u ≤ v and v ≤ p are immediate, as well as the
second disjunctive term of uj = pj∨vi = pi for any i different from m. Any j
such that (pm, pj) ∈ D is greater than m; by the choice of m, we get the
first disjunctive term uj = pj . From (59) and the formula from Lemma 16,

F ∗(u)→ F ∗(v).

On the other hand, v
1
< p, so that, in view of PSM[F], we can conclude

that ¬F ∗(v). Consequently ¬F ∗(u).

References

[Clark, 1978] Keith Clark. Negation as failure. In Herve Gallaire and Jack
Minker, editors, Logic and Data Bases, pages 293–322. Plenum Press,
New York, 1978.

[Erdem and Lifschitz, 2003] Esra Erdem and Vladimir Lifschitz. Tight logic
programs. Theory and Practice of Logic Programming, 3:499–518, 2003.

[Faber et al., 2004] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Re-
cursive aggregates in disjunctive logic programs: Semantics and complex-
ity.9 In Proceedings of European Conference on Logics in Artificial Intel-
ligence (JELIA), 2004.
9Revised version: http://www.wfaber.com/research/papers/jelia2004.pdf .

48

[Fages, 1994] François Fages. Consistency of Clark’s completion and exis-
tence of stable models. Journal of Methods of Logic in Computer Science,
1:51–60, 1994.

[Ferraris and Lifschitz, 2005] Paolo Ferraris and Vladimir Lifschitz. Mathe-
matical foundations of answer set programming. In We Will Show Them!
Essays in Honour of Dov Gabbay, pages 615–664. King’s College Publi-
cations, 2005.

[Ferraris et al., 2007] Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz.
A new perspective on stable models. In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI), pages 372–379, 2007.

[Ferraris et al., 2009] Paolo Ferraris, Joohyung Lee, Vladimir Lifschitz, and
Ravi Palla. Symmetric splitting in the general theory of stable models.
In Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI), pages 797–803, 2009.

[Ferraris, 2005] Paolo Ferraris. Answer sets for propositional theories. In
Proceedings of International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR), pages 119–131, 2005.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The
stable model semantics for logic programming. In Robert Kowalski and
Kenneth Bowen, editors, Proceedings of International Logic Programming
Conference and Symposium, pages 1070–1080. MIT Press, 1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Clas-
sical negation in logic programs and disjunctive databases. New Genera-
tion Computing, 9:365–385, 1991.

[Gomes et al., 2008] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and
Bart Selman. Satisfiability solvers. In Frank van Harmelen, Vladimir Lif-
schitz, and Bruce Porter, editors, Handbook of Knowledge Representation,
pages 89–134. Elsevier, 2008.

[Lee and Lin, 2006] Joohyung Lee and Fangzhen Lin. Loop formulas for
circumscription. Artificial Intelligence, 170(2):160–185, 2006.

[Lee and Meng, 2008] Joohyung Lee and Yunsong Meng. On loop formulas
with variables. In Proceedings of the International Conference on Knowl-
edge Representation and Reasoning (KR), pages 444–453, 2008.

49

[Lee et al., 2008] Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. A re-
ductive semantics for counting and choice in answer set programming. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
pages 472–479, 2008.

[Lifschitz et al., 2001] Vladimir Lifschitz, David Pearce, and Agustin
Valverde. Strongly equivalent logic programs. ACM Transactions on
Computational Logic, 2:526–541, 2001.

[Lifschitz et al., 2007] Vladimir Lifschitz, David Pearce, and Agustin
Valverde. A characterization of strong equivalence for logic programs
with variables. In Procedings of International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR), 2007.

[Lifschitz, 1985] Vladimir Lifschitz. Computing circumscription. In Proceed-
ings of International Joint Conference on Artificial Intelligence (IJCAI),
pages 121–127, 1985.

[Lifschitz, 1987] Vladimir Lifschitz. Pointwise circumscription. In Matthew
Ginsberg, editor, Readings in nonmonotonic reasoning, pages 179–193.
Morgan Kaufmann, San Mateo, CA, 1987.

[Lifschitz, 2008] Vladimir Lifschitz. Twelve definitions of a stable model. In
Proceedings of International Conference on Logic Programming (ICLP),
pages 37–51, 2008.

[Lin and Reiter, 1997] Fangzhen Lin and Raymond Reiter. Rules as actions:
A situation calculus semantics for logic programs. Journal of Logic Pro-
gramming, 31:299–330, 1997.

[Lin and Shoham, 1992] Fangzhen Lin and Yoav Shoham. A logic of knowl-
edge and justified assumptions. Artificial Intelligence, 57:271–289, 1992.

[Lin and Zhao, 2002] Fangzhen Lin and Yuting Zhao. ASSAT: Computing
answer sets of a logic program by SAT solvers. In Proceedings of National
Conference on Artificial Intelligence (AAAI), pages 112–117. MIT Press,
2002.

[Lin and Zhou, 2007] Fangzhen Lin and Yi Zhou. From answer set logic
programming to circumscription via logic of GK. In Proceedings of Inter-
national Joint Conference on Artificial Intelligence (IJCAI), 2007.

[Lin, 1991] Fangzhen Lin. A Study of Nonmonotonic Reasoning. PhD thesis,
Stanford University, 1991.

50

[Marek and Truszczyński, 1999] Victor Marek and Miros law Truszczyński.
Stable models and an alternative logic programming paradigm. In The
Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer Verlag, 1999.

[McCarthy, 1980] John McCarthy. Circumscription—a form of non-mono-
tonic reasoning. Artificial Intelligence, 13:27–39,171–172, 1980.

[McCarthy, 1986] John McCarthy. Applications of circumscription to for-
malizing common sense knowledge. Artificial Intelligence, 26(3):89–116,
1986.

[Moore, 1985] Robert Moore. Semantical considerations on nonmonotonic
logic. Artificial Intelligence, 25(1):75–94, 1985.

[Niemelä, 1999] Ilkka Niemelä. Logic programs with stable model seman-
tics as a constraint programming paradigm. Annals of Mathematics and
Artificial Intelligence, 25:241–273, 1999.

[Oikarinen and Janhunen, 2008] Emilia Oikarinen and Tomi Janhunen.
Achieving compositionality of the stable model semantics for Smodels
programs. Theory and Practice of Logic Programming, 5–6:717–761, 2008.

[Pearce et al., 2001] David Pearce, Hans Tompits, and Stefan Woltran. En-
codings for equilibrium logic and logic programs with nested expres-
sions. In Proceedings of Portuguese Conference on Artificial Intelligence
(EPIA), pages 306–320, 2001.

[Pearce, 1997] David Pearce. A new logical characterization of stable models
and answer sets. In Jürgen Dix, Luis Pereira, and Teodor Przymusinski,
editors, Non-Monotonic Extensions of Logic Programming (Lecture Notes
in Artificial Intelligence 1216), pages 57–70. Springer-Verlag, 1997.

[Reiter, 1980] Raymond Reiter. A logic for default reasoning. Artificial
Intelligence, 13:81–132, 1980.

[Simons et al., 2002] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Ex-
tending and implementing the stable model semantics. Artificial Intelli-
gence, 138:181–234, 2002.

[Wallace, 1993] Mark Wallace. Tight, consistent and computable comple-
tions for unrestricted logic programs. Journal of Logic Programming,
15:243–273, 1993.

51

