
Developing a De
larative Rule Language forAppli
ations in Produ
t Con�gurationTimo Soininen1 and Ilkka Niemel�a21 Helsinki University of Te
hnology, TAI Resear
h Center and Lab. of InformationPro
essing S
ien
e, P.O.Box 9555, FIN-02015 HUT, FinlandTimo.Soininen�hut.fi2 Helsinki University of Te
hnology, Dept. of Computer S
ien
e and Eng.,Laboratory for Theoreti
al Computer S
ien
e,P.O.Box 5400, FIN-02015 HUT, FinlandIlkka.Niemela�hut.fi



 Springer-Verlag. To appear in the Pro
eedings of the First InternationalWorkshop on Pra
ti
al Aspe
ts of De
larative Languages (PADL'99). Jan 18{19,1999, San Antonio, Texas. Le
ture Notes in Computer S
ien
e, Springer-Verlag.

Abstra
t. A rule-based language is proposed for produ
t 
on�gurationappli
ations. It is equipped with a de
larative semanti
s providing formalde�nitions for main 
on
epts in produ
t 
on�guration, in
luding 
on�gu-ration models, requirements and valid 
on�gurations. The semanti
s usesHorn 
lause derivability to guarantee that ea
h element in a 
on�gura-tion has a justi�
ation. This leads to favorable 
omputational properties.For example, the validity of a 
on�guration 
an be de
ided in linear timeand other 
omputational tasks remain in NP. It is shown that CSP anddynami
 CSP 
an be embedded in the proposed language whi
h seems tobe more suitable for representing 
on�guration knowledge. The rule lan-guage is 
losely related to normal logi
 programs with the stable modelsemanti
s. This 
onne
tion is exploited in the �rst implementation whi
his based on a translator from rules to normal programs and on an exist-ing high performan
e implementation of the stable model semanti
s, theSmodels system.1 Introdu
tionProdu
t 
on�guration has been a fruitful topi
 of resear
h in arti�
ial intelligen
efor the past two de
ades (see, e.g. [10, 15, 1, 8℄). In the last �ve years produ
t
on�guration has also be
ome a 
ommer
ially su

essful appli
ation of arti�
ialintelligen
e te
hniques. Knowledge-based systems (KBS) employing te
hniquessu
h as 
onstraint satisfa
tion (CSP) [19℄ have been applied to produ
t 
on�g-uration. However, the produ
t 
on�guration problem exhibits dynami
 aspe
tswhi
h are diÆ
ult to 
apture in, e.g., the CSP formalism. The 
hoi
es form
hains where previous 
hoi
es a�e
t the set of further 
hoi
es that need to bemade. In addition, making a 
hoi
e needs to be justi�ed by a 
hain of previous
hoi
es. This has led to the development of extensions of the CSP formalism,su
h as dynami
 
onstraint satisfa
tion (DCSP) [11℄ and generative 
onstraintsatisfa
tion (GCSP) [7℄.In this paper, whi
h is a revised version of [17℄, we present work-in-progresson developing a logi
 programming like rule language for produ
t 
on�guration



appli
ations. The rule language is de�ned with the goal that relevant knowledgein the 
on�guration domain 
an be represented 
ompa
tly and 
onveniently.We provide a simple de
larative semanti
s for the language whi
h guarantees ajusti�
ation for ea
h 
hoi
e.We study the 
omplexity of the relevant 
omputational tasks for this lan-guage. The main result is that the task of �nding a 
on�guration isNP-
ompleteand that the validity of a 
on�guration 
an be 
he
ked in linear time. We alsoshow that our language 
an be seen as a generalization of the CSP and DCSPformalisms. There are lo
al and linear solution preserving mappings from theCSP and DCSP formalisms to the language, but mapping in the other dire
tionis diÆ
ult. This is due to the diÆ
ulty of 
apturing justi�
ations in CSP and tomore expressive rules that seem diÆ
ult to 
apture in DCSP.The semanti
s of the rule language is 
losely related to the de
larative seman-ti
s of logi
 programs. This relation is exploited in developing the �rst implemen-tation of the language. We present a solution preserving lo
al and polynomialtranslation from the rule language to normal logi
 programs with the stablemodel semanti
s [6℄. Our implementation is based on an existing high perfor-man
e implementation of the stable model semanti
s for normal logi
 programs,the Smodels system [12, 13℄. For the implementation it is enough to build afront-end to the Smodels system realizing the translation to normal programs.In order to estimate the feasibility of our approa
h we study two simple 
on�g-uration problems. We observe that su
h examples are straightforward to modelin our language and that our implementation exhibits reasonable performan
e.2 Produ
t Con�guration DomainProdu
t 
on�guration is roughly de�ned as the problem of produ
ing a spe
i�
a-tion of a produ
t individual as a 
olle
tion of prede�ned 
omponents. The inputsof the problem are a 
on�guration model, whi
h des
ribes the 
omponents that
an be in
luded in the 
on�guration and the rules on how they 
an be 
ombinedto form a working produ
t, and requirements that spe
ify some properties thatthe produ
t individual should have. The output is a 
on�guration, an a

urateenough des
ription of a produ
t individual to be manufa
tured. The 
on�gura-tion must satisfy the requirements and be valid in the sense that it does notbreak any of the rules in the 
on�guration model and it 
onsists only of the
omponents that have justi�
ations in terms of the 
on�guration model.This de�nition of produ
t 
on�guration does not adequately 
apture all as-pe
ts of 
on�guration problems. Missing features in
lude representing and rea-soning about attributes, stru
ture and 
onne
tions of 
omponents, resour
e pro-du
tion and use by 
omponents [15, 1, 7℄ and optimality of a 
on�guration. Ourde�nition is a simpli�
ation that nonetheless 
ontains the 
ore aspe
ts of 
on-�guration problem solving. It is intended as the foundation on whi
h furtheraspe
ts of produ
t 
on�guration 
an be de�ned. Correspondingly, we use theterm element to mean any relevant pie
e of information on a 
on�guration. Anelement 
an be a 
omponent or information on, e.g., the stru
ture of a produ
t.



A produ
t 
on�gurator is a KBS that is 
apable of representing the knowledgein
luded in 
on�guration models, requirements and 
on�gurations. In addition,it is 
apable of (i) 
he
king whether a 
on�guration is valid with respe
t to the
on�guration model and satis�es a set of requirements and/or (ii) generating oneor all valid 
on�guration(s) for a 
on�guration model and a set of requirements.Example 1. As an example of a 
on�gurable produ
t, 
onsider a PC. The 
om-ponents in a typi
al 
on�guration model of a PC in
lude di�erent types of dis-play units, hard disks, CD ROM drives, 
oppy drives, extension 
ards and soon. These have rules on how they 
an be 
ombined with ea
h other to form aworking produ
t. For example, a PC would typi
ally be de�ned to have a massstorage whi
h must be 
hosen from a set of alternatives, e.g. an IDE hard disk,SCSI hard disk and a 
oppy drive. A 
omputer would also need a keyboard,whi
h 
ould have either a Finnish or United Kingdoms layout. Having a SCSIhard disk in the 
on�guration of a PC would typi
ally require that an additionalSCSI 
ontroller is in
luded in the 
on�guration as well. In addition, a PC mayoptionally have a CD ROM drive. A 
on�guration model for a PC might alsode�ne that unless otherwise spe
i�ed, an IDE hard disk will be the default 
hoi
efor mass storage.The fundamental form of knowledge in a 
on�guration model is that of a
hoi
e [18℄. There are basi
ally two types of 
hoi
es. Either at least one or exa
tlyone of alternative elements must be 
hosen. Whether a 
hoi
e must be made maydepend on some set of elements. Other forms of 
on�guration knowledge in
ludethe following:{ A set of elements in the 
on�guration requires some set of elements to be inthe 
on�guration as well [18, 8℄.{ A set of elements are in
ompatible with ea
h other [18, 8℄.{ An element is optional. Optional elements 
an be 
hosen into a 
on�gurationor they 
an be left out.{ An element is a default. It is in the 
on�guration unless otherwise spe
i�ed.3 Con�guration Rule LanguageIn this se
tion we de�ne a 
on�guration rule language CRL for representing
on�guration knowledge. The idea is to fo
us on intera
tions of the elementsand not on details of a parti
ular 
on�guration knowledge modeling language.For simpli
ity, we have kept the number of primitives in the language low byfo
using on 
hoi
es and requires and in
ompatibility intera
tions. Extending thelanguage with optional and default 
hoi
es is straightforward (see Example 4).The basi
 
onstru
tion blo
ks of the language are propositional atoms, whi
hare 
ombined through a set of 
onne
tives into rules. We assume for simpli
itythat atoms 
an be used to represent elements adequately. We de�ne a 
on�gu-ration model and requirements as sets of CRL rules. A 
on�guration is de�nedas a set of atoms.



The syntax of CRL is de�ned as follows. The alphabet of CRL 
onsists ofthe 
onne
tives \,", \ ", \j", \�", \not", parentheses and atomi
 propositions.The 
onne
tives are read as \and", \requires", \or", \ex
lusive or" and \not",respe
tively. The rules in CRL are of the forma1� � � � �al  b1; : : : ; bm; not(
1); : : : ; not(
n)where � 2 fj;�g, a1,. . . ,al, b1,. . . ,bm, 
1,. . . ,
n are atoms and l � 0, m � 0,n � 0. We refer to the subset of a set of rules R with exa
tly one atom in thehead as requires-rules, Rr, rules with more than one atom in the head separatedby \j" as 
hoi
e-rules, rules with more than one atom in the head separatedby \�" as ex
lusive 
hoi
e-rules Re, and rules with no atoms in the head asin
ompatibility-rules, Ri. In the de�nitions below we treat requires-rules as aspe
ial 
ase of 
hoi
e-rules with only one alternative in the head.Example 2. A very simple 
on�guration model RPC of the PC in Example 1(without the optional CD-ROM and default mass storage) 
ould 
onsist of thefollowing rules:
omputer IDEdisk j SCSIdisk j floppydrive 
omputerF innishlayoutKB� UKlayoutKB 
omputerSCSI
ontroller  SCSIdiskNext we de�ne when a 
on�guration satis�es a set of rules and is valid withrespe
t to a set of rules. We say that a 
on�guration satis�es requirements if itsatis�es the 
orresponding set of rules.De�nition 1. A 
on�guration C satis�es a set of rules R in CRL, denoted byC j= R, i� the following 
onditions hold:(i) If a1 j � � � j al  b1; : : : ; bm; not(
1); : : : ; not(
n) 2 Rr[R
, fb1; : : : ; bmg �C, and f
1; : : : 
ng \ C = ;, then fa1; : : : ; alg \ C 6= ;.(ii) If a1�� � ��al  b1; : : : ; bm; not(
1); : : : ; not(
n) 2 Re, fb1; : : : ; bmg � C,and f
1; : : : 
ng \ C = ;, then for exa
tly one a 2 fa1; : : : ; alg, a 2 C.(iii) If  b1; : : : ; bm; not(
1); : : : ; not(
n) 2 Ri, then it is not the 
ase thatfb1; : : : ; bmg � C and f
1; : : : 
ng \ C = ; hold.In order to de�ne the validity of a 
on�guration, we employ an operator RC thatis a transformation of a set of rules R in CRL.De�nition 2. Given a 
on�guration C and a set of rules R in CRL, we denoteby RC the set of rulesfai  b1; : : : ; bm : a1� � � � �al  b1; : : : ; bm; not(
1); : : : ; not(
n) 2 R; � 2 fj;�g;ai 2 C; 1 � i � l; f
1; : : : 
ng \ C = ;gThe result of the transformation is a set of Horn 
lauses if we interpret the sym-bols \ \ and \," as 
lassi
al impli
ation and 
onjun
tion, respe
tively. Underthis interpretation the redu
t RC has a unique least model, whi
h we denote by



MM(RC). Noti
e that the least model of a set of Horn 
lauses 
oin
ides with theset of atoms logi
ally entailed by them and also with the set of atoms derivableby interpreting them as inferen
e rules. The intuition behind the transformationis that, given a 
hoi
e-rule, if any of the alternatives in the head of the rule are
hosen, then the redu
t of the transformation in
ludes a rule that 
an justifythe 
hoi
e (if the body of the rule 
an be justi�ed). If some alternative is not
hosen, then there is no need for the 
hoi
e to be justi�ed and 
onsequently no
orresponding rules are in
luded. The default negation \not(�)" is handled usinga te
hnique similar to that in the stable model semanti
s of logi
 programs [6℄.De�nition 3. Given a 
on�guration C and a set of rules R in CRL, C isR-valid i� C = MM(RC) and C j= R.The idea of the de�nition is as follows: the �rst �x-point 
ondition guaranteesthat a 
on�guration must be justi�ed by the rules. All the things in the 
on�g-uration are derivable from (the redu
t of) the 
on�guration rules. On the otherhand, everything that 
an be derived using (the redu
t of) the rules must be inthe 
on�guration. The se
ond 
ondition ensures that all the ne
essary 
hoi
eshave been made and all the requires and in
ompatibility-rules are respe
ted.Example 3. Consider the 
on�guration model RPC in Example 2, the simple setof requirements fFinnishlayoutKB g and the 
on�gurationsC1 = f
omputer; SCSIdisk; UKlayoutKBgC2 = f
omputer; IDEdisk; F innishlayoutKB; SCSI
ontrollergC3 = f
omputer; SCSIdisk; F innishlayoutKB; SCSI
ontrollergThe 
on�guration C1 does not satisfy the 
on�guration model nor the require-ments a

ording to De�nition 1 and thus it is not RPC-valid, either. The 
on�g-uration C2 does satisfy the 
on�guration model and the requirements. However,it is not RPC-valid be
ause the redu
t RPCC2 isf
omputer  ; IDEdisk  
omputer;FinnishlayoutKB 
omputer;SCSI
ontroller  SCSIdiskgThe minimal model MM(RPCC2) = f
omputer; IDEdisk; F innishlayoutKBgdoes not 
ontain SCSI
ontroller and thus it is not equal to C2. The 
on�gura-tion C3 is RPC -valid and satis�es the requirements.Example 4. Consider the following sets of rules:R1 :a j b 

 R2 :a j b 

� 
0  dd R3 :a j b 

� 
0  da not(b); dd The valid 
on�gurations with respe
t to R1 are f
; ag, f
; bg and f
; a; bg. Theredu
ts of R1 with respe
t to these 
on�gurations are fa 
; 
 g, fb 
; 
 g



and fa  
; b  
; 
  g, respe
tively. Clearly, the minimal models of theseredu
ts 
oin
ide with the 
on�gurations and the 
on�gurations satisfy the rulesin R1. On the other hand, if the latter rule is omitted, the only valid 
on�gurationis the empty 
on�guration fg, sin
e a and b 
annot have a justi�
ation.Although CRL does not in
lude primitives for some typi
al forms of 
on�g-uration knowledge su
h as optional 
hoi
es and default alternatives, they 
an be
aptured fairly straightforwardly. The �rst two rules in R2 demonstrate how torepresent an optional 
hoi
e-rule whose head 
onsists of the atoms a and b andwhose body is d. The valid 
on�gurations with respe
t to R2 are f
0; dg, fa; 
; dg,fb; 
; dg and fa; b; 
; dg. In this example either 
 or 
0 must be in a 
on�guration.These additional atoms represent the 
ases where the 
hoi
e is made and notmade, respe
tively. Now, 
onsider the rule set R3 obtained by adding the rulea not(b); d to R2. The valid 
on�gurations are now f
0; a; dg, f
; a; dg, f
; b; dgand f
; a; b; dg. This rule set represents a default 
hoi
e (a is the default) whi
his made unless one of the alternatives is expli
itly 
hosen.4 Relationship to Logi
 Programming Semanti
sThe 
on�guration rule language CRL resembles disjun
tive logi
 programs anddedu
tive databases. The main synta
ti
 di�eren
e is that two disjun
tive oper-ators are provided whereas in disjun
tive logi
 programming typi
ally only oneis o�ered. The semanti
s is also similar to logi
 programming semanti
s. Themain di�eren
e is that leading disjun
tive semanti
s (see, e.g., [3, 5℄) have min-imality of models as a built-in property whereas our semanti
s does not implysubset minimality of 
on�gurations. The rule set R1 above is an example of this.However, there are semanti
s allowing non-minimal models and, in fa
t, if we
onsider the sub
lass with one disjun
tive operator, i.e. ordinary 
hoi
e-rules,our notion of a valid 
on�guration 
oin
ides with possible models introdu
ed bySakama and Inoue [14℄ for disjun
tive programs. They observed that possiblemodels of disjun
tive programs 
an be 
aptured with stable models of normalprograms by a suitable translation of disjun
tive programs to non-disjun
tiveprograms [14℄. Here we extend this idea to ex
lusive 
hoi
e-rules and present aslightly di�erent, more 
ompa
t and 
omputationally oriented translation.Given a set of rules R inCRL the 
orresponding normal logi
 program is 
on-stru
ted as follows. The requires-rules Rr are taken as su
h. The in
ompatibility-rules Ri are mapped to logi
 program rules with the same body but a head f anda new rule f 0  not(f 0); f is in
luded where f; f 0 are new atoms not appearingin R. For ea
h 
hoi
e-rulea1 j � � � j al  b1; : : : ; bm; not(
1); : : : ; not(
n)in R
 we in
lude a rule f  b1; : : : ; bm; not(
1); : : : ; not(
n); â1; : : : ; âl and for alli = 1; : : : ; l, two rulesai  not(âi); b1; : : : ; bm; not(
1); : : : ; not(
n) and âi  not(ai)



where â1; : : : ; âl are new atoms. Ea
h ex
lusive 
hoi
e-rule is translated the sameway as an ordinary 
hoi
e-rule ex
ept that we in
lude additionally the set of rulesof the form f  b1; : : : ; bm; not(
1); : : : ; not(
n); a0; a00 where a0 = ai; a00 = aj forsome i; j, 1 � i < j � l. Note that the number of the additional rules is quadrati
in the number of head atoms, but for ordinary 
hoi
e-rules the translation islinear. Now the stable models of the program provide the valid 
on�gurationsfor the rules. The 
lose 
orresponden
e implies that an implementation of thestable model semanti
s 
an be used for 
on�guration tasks.5 Complexity IssuesIn this se
tion we brie
y 
onsider the 
omplexity of the following key de
isionproblems in 
on�guration: (i) C-SAT: de
ide whether a 
on�guration satis�esa set of rules, (ii) EXISTS: determine whether there is a valid 
on�guration fora set of rules, and (iii) QUERY: de
ide whether there is a valid 
on�gurationC for a set of rules satisfying a set of requirements Q (C j= Q).First, we observe that C-SAT is de
idable in linear time. Se
ond, we notethat 
he
king whether a set of atoms is a valid 
on�guration 
an be done inlinear time. This holds as for a set of rules and a 
andidate 
on�guration, theredu
t 
an be 
omputed in linear time and, similarly, the unique least model of aset of Horn 
lauses is 
omputable in linear time [4℄. This implies that the major
omputational tasks in 
on�guration using our semanti
s are in NP.For EXISTS and QUERY, we 
onsider some sub
lasses of CRL to showthe boundary for NP-
ompleteness. For example, CRLr is the subset whereonly requires-rules are allowed, CRLrd permits additionally default negations,CRLre allows ex
lusive 
hoi
e-rules in addition to requires-rules andCRLr
i ad-mits requires-rules, 
hoi
e-rules and in
ompatibility-rules. The results are sum-marized in Table 1. They are fairly straightforward to demonstrate (see [17℄ formore details). Most of the results 
an also be established from the 
omplexityresults for the possible model semanti
s [14, 5℄.Table 1. Complexity results for 
on�guration tasksLanguage C-SAT EXISTS QUERYCRLr Poly Poly PolyCRLri Poly Poly PolyCRLr
 Poly Poly NP-
ompl.CRLrd Poly NP-
ompl. NP-
ompl.CRLre Poly NP-
ompl. NP-
ompl.CRLr
i Poly NP-
ompl. NP-
ompl.



6 Relation to Constraint Satisfa
tionCon�guration is often 
ast as a 
onstraint satisfa
tion or dynami
 
onstraintsatisfa
tion problem. In this se
tion we aim to show that CRL 
ontains CSPand DCSP as spe
ial 
ases and is an extension of these two approa
hes. We notethat for all the formalisms dealt with in this se
tion the problem 
orrespondingto generating a 
on�guration is NP-
omplete.6.1 Mapping Constraint Formalisms to CRLWe �rst re
all that a CSP 
onsists of a set of variables, a set of possible valuesfor ea
h variable, 
alled the domain of the variable, and a set of 
onstraints.We assume in the following that the domains are �nite. A 
onstraint de�nes theallowed 
ombinations of values for a set of variables by spe
ifying a subset ofthe Cartesian produ
t of the domains of the variables. A solution to a CSP is anassignment of values to all variables su
h that the 
onstraints are satis�ed, i.e.,the value 
ombinations are allowed by at least one tuple of ea
h 
onstraint.A DCSP is an extension of a CSP that also has of a set of variables, domains,and 
onstraints (
alled here 
ompatibility 
onstraints). However, all the variablesneed not be given a value, i.e., be a
tive in a solution. A DCSP additionallyde�nes a set of initial variables that must be a
tive in every solution and aset of a
tivity 
onstraints. An a
tivity 
onstraint states either that if a given
ondition is true then a 
ertain variable is a
tive, or that if a given 
ondition istrue, then a 
ertain variable must not be a
tive. The 
ondition may be expressedas a 
ompatibility 
onstraint (require and require not a
tivity 
onstraints) or itmay state that some other variable is a
tive (always require and always requirenot a
tivity 
onstraints). A solution to a DCSP is an assignment of values tovariables su
h that it (i) ful�lls the 
ompatibility and a
tivity 
onstraints, (ii)
ontains assignments for the initial variables, and (iii) is minimal.We next de�ne a mapping from the DCSP formalism to CRL. We notethat as CSP is a spe
ial 
ase of DCSP with no a
tivity 
onstraints and withall variables in the set of initial variables, the same mapping 
an be used for aCSP. In the mapping from a DCSP to CRL representation we introdu
e (i) anew distin
t atom for ea
h variable, vi, to en
ode its a
tivity, (ii) a new distin
tatom sat(
i) for ea
h 
ompatibility 
onstraint 
i, and (iii) a new distin
t atomvi(vali;j) for ea
h variable vi and value vali;j in the domain of vi.Ea
h initially a
tive variable vi is mapped to a fa
t vi  . Ea
h variable viand its domain fvali;1; : : : ; vali;ng is mapped to an ex
lusive 
hoi
e-rule of thefollowing form: vi(vali;1) � � � � � vi(vali;n)  vi. A 
ompatibility 
onstraint onvariables v1; : : : ; vn is represented using a set of requires-rules of form sat(
i) v1(val1;j); v2(val2;k); � � � ; vn(valn;l), one rule for ea
h allowed value 
ombinationval1;j ; : : : ; valn;l. An in
ompatibility-rule of the form  v1; : : : ; vn; not(sat(
i))is in
luded to enfor
e the 
onstraint.Example 5. Given a CSP with two variables, pa
kage and frame with do-mains fluxury; deluxe; standardg and f
onvertible; sedan; hat
hba
kg, respe
-tively, and a 
onstraint 
1 = ffluxury; 
onvertibleg; fstandard; hat
hba
kgg on



pa
kage and frame, the following rule set is produ
ed by the mapping:pa
kage frame pa
kage(luxury)� pa
kage(deluxe)� pa
kage(standard) pa
kageframe(
onvertible)� frame(sedan)� frame(hat
hba
k) framesat(
1) pa
kage(luxury); frame(
onvertible)sat(
1) pa
kage(standard); frame(hat
hba
k) pa
kage; frame; not(sat(
1))An always require a
tivity 
onstraint is mapped to a requires-rule v2  v1where v2 is the a
tivated variable and v1 is the 
ondition variable. An alwaysrequire not a
tivity 
onstraint is mapped to an in
ompatibility-rule  v1; v2where v1 and v2 are the 
ondition and dea
tivated variables, respe
tively. A re-quire variable a
tivity 
onstraint is mapped to a set of requires-rules, one ruleof the form u  v1(val1;j); : : : ; vn(valn;k) for ea
h allowed value 
ombinationfval1;j ; : : : ; valn;kg of variables v1; : : : ; vn, where u is the a
tivated variable. A re-quire not a
tivity 
onstraint is mapped to a set of in
ompatibility-rules, one ruleof the form  u; v1(val1;j); : : : ; vn(valn;k) for ea
h allowed value 
ombinationfval1;j ; : : : ; valn;kg of variables v1; : : : ; vn where u is the dea
tivated variable.Example 6. Given a DCSP with two variables, pa
kage and sunroof , whosedomains are fluxury; deluxe; standardg and fsr1; sr2g, respe
tively, a set ofinitial variables fpa
kageg and a require a
tivity 
onstraint that if pa
kage hasvalue luxury, then sunroof is a
tive, the following rule set is produ
ed:pa
kage pa
kage(luxury)� pa
kage(deluxe)� pa
kage(standard) pa
kagesunroof(sr1)� sunroof(sr2) sunroofsunroof  pa
kage(luxury)It is easy to see that ea
h valid 
on�guration is a solution to the DCSP andvi
e versa. The minimality of solutions 
an be shown by noting that the rulesthat 
an 
ause a variable to be a
tive 
an be translated to normal logi
 programs.For this sub
lass of rules the 
on�gurations 
oin
ide with stable models whi
hare subset minimal [6℄. The size of the resulting rule set is linear in the size ofthe DCSP problem instan
e. The mapping is lo
al in the sense that ea
h variableand its domain, initial variable, 
ompatibility 
onstraint and a
tivity 
onstraint
an be mapped separately from the other elements of the problem instan
e.6.2 Expressiveness of CRL vs. CSPNext we argue that CRL is stri
tly more expressive than CSP by using the
on
ept of modularity. A modular representation in some formalism is su
h thata small, lo
al 
hange in the knowledge results in a small 
hange in the represen-tation. This property is important for easy maintenan
e of a knowledge base.



We show that under mild assumptions the CSP formalism 
annot modularly
apture the justi�
ations of a 
on�guration. We say that CRL is modularlyrepresentable by CSP i� for every set of CRL rules there is a CSP su
h thatrules are represented in the CSP independent of the representation of the basi
fa
ts (i.e. requires-rules with empty bodies) so that a 
hange in the fa
ts doesnot lead to a 
hange involving both additions and removals of either allowedtuples, 
onstraints, variables or values. In addition, the solutions to the CSPmust agree with the CRL 
on�gurations in that (i) the truth values of theatoms in a 
on�guration 
an be read from the values of Boolean CSP variablesrepresenting the atoms and (ii) these variables have the same truth values as the
orresponding atoms.Theorem 1. CRL is not modularly representable by CSP.Proof. Consider the set of rules R = f
  bg and assume that it 
an be mod-ularly represented by a CSP. Hen
e, there is a CSP T(R) su
h that in all thesolutions of T(R) the variables representing atoms b and 
 in the 
on�gurationlanguage have the value false as R has the empty set as its unique valid 
on-�guration. Consider now a set of fa
ts F = fb  g. The 
on�guration modelR [ F has a unique valid 
on�guration fb; 
g. This means that T(R) updatedwith F must not have a solution in whi
h variables en
oding b and 
 have thevalue false. In addition, T(R) updated with F must have at least one solu-tion in whi
h the atoms en
oding b and 
 have the value true. It 
an be shownthat 
hanges in
luding either only additions or only removals of either allowedtuples, 
onstraints, variables or values 
annot both add solutions and removethem, whi
h is a 
ontradi
tion and hen
e the assumption is false.The fa
t that there is no modular representation of CRL in the CSP for-malism is 
aused by the justi�
ation property of CRL whi
h introdu
es a non-monotoni
 behavior. A similar argument 
an therefore be used for showing a sim-ilar result for, e.g., propositional logi
 [17℄. We note that the question whetherthere is a modular representation of a 
on�guration model given in CRL asa DCSP is open. The DCSP formalism exhibits a non-monotoni
 behavior, soa similar argument 
annot be used for this 
ase. It 
an be used, however, toshow that there is no modular representation of a DCSP as a CSP. RepresentingCRL as DCSP does not seem straightforward, as the DCSP approa
h does notdire
tly allow a
tivity 
onstraints that have a 
hoi
e among a set of variables toa
tivate or default negation in the 
ondition part.7 ImplementationIn this se
tion we des
ribe brie
y our implementation of CRL, demonstrate theuse of CRL with a 
ar 
on�guration problem from [11℄ and provide informationon performan
e of the implementation for the 
ar problem.Our implementation of CRL is based on the translation of CRL to normallogi
 programs presented in Se
t. 4 and on an existing high performan
e im-plementation of the stable model semanti
s, the Smodels system [12, 13℄. This



system seems to be the most eÆ
ient implementation of the stable model se-manti
s 
urrently available. It is 
apable of handling large programs, i.e. over100 000 ground rules, and has been applied su

essfully in a number of areasin
luding planning [2℄, model 
he
king for distributed systems [9℄, and proposi-tional satis�ability 
he
king [16℄.We have built a front-end to Smodels whi
h takes as input a slightly modi�ed(see below) set of CRL rules and transforms it to a normal logi
 program whosestable models 
orrespond to valid 
on�gurations. Then Smodels is employed forgenerating stable models. The implementation 
an generate a given number of
on�gurations, all of them, or the 
on�gurations that satisfy requirements givenas a set of literals.Smodels is publi
ly available at http://www.t
s.hut.fi/pub/smodels/.The front-end is in
luded in the new parser of Smodels, lparse, whi
h a

eptsin addition to normal program rules (requires-rules) also \in
lusive" 
hoi
e-rulesand in
ompatibility-rules. Ex
lusive 
hoi
e-rules are supported by rules of theform  nfa1; : : : ; alg where n is an integer. The rule a
ts like an integrity 
on-straint eliminating models, i.e. 
on�gurations, with n or more of the atoms fromfa1; : : : ; alg. This allows a su

in
t 
oding of, e.g., ex
lusiveness without thequadrati
 overhead whi
h results when using normal rules. Hen
e, an ex
lusive
hoi
e-rule a1 � � � � � al  Body 
an be expressed as a 
ombination of an \in-
lusive" 
hoi
e-rule a1 j � � � j al  Body and the rule  Body; 2fa1; : : : ; alg.Our �rst example, CAR, was originally de�ned as a DCSP [11℄. In Fig. 1the problem is translated to CRL using the mappings de�ned in the previousse
tion with the ex
eption that the 
ompatibility 
onstraints are given a simplerule form similar to that in [11℄. There are several 
hoi
es of pa
kages, frames,engines, batteries and so on for a 
ar. At least a pa
kage (pa
k), frame and enginemust be 
hosen from the alternatives spe
i�ed for them. Choosing a parti
ularalternative in a 
hoi
e-rule 
an make other 
hoi
es ne
essary. For example, ifthe pa
kage is 
hosen to be luxury (l), then a sunroof and an air
onditioner(air
ond) must be 
hosen as well. In addition, some 
ombinations of alternativesare mutually ex
lusive, e.g., the luxury alternative for pa
kage 
annot be 
hosenwith the a
1 alternative for air
onditioner. The se
ond example, CARx2, ismodi�ed from CAR by doubling the size of the domain of ea
h variable. Inaddition, for ea
h new value and ea
h 
ompatibility and a
tivity 
onstraint inthe original example a new similar 
onstraint referring to the new value is added.We did some experiments with the two problems inCRL form. The tests wererun on a Pentium II 233 MHz with 128MB of memory, Linux 2.0.35 operatingsystem, smodels version 1.12 and lparse version 0.9.19. The test 
ases are avail-able at http://www.t
s.hut.fi/pub/smodels/tests/padl99.tar.gz. Table 2presents the timing results for 
omputing one and all valid 
on�gurations, thenumber of valid 
on�gurations found and the size of the initial sear
h spa
ewhi
h is 
al
ulated by multiplying the number of alternatives for ea
h 
hoi
e.The exe
ution times in
lude reading and parsing the set of input rules, its trans-lation to a normal program as well as outputting the 
on�gurations in a �le. Thetimes were measured using the Unix time 
ommand and they are the sum of



pa
k(l)� pa
k(dl)� pa
k(std) pa
kframe(
onv)� frame(sedan)� frame(hb) frameengine(s)� engine(m)� engine(l) enginebattery(s)� battery(m)� battery(l) batterysunroof(sr1)� sunroof(sr2) sunroofair
ond(a
1)� air
ond(a
2) air
ondglass(tinted)� glass(nottinted) glassopener(auto)� opener(manual) openerbattery(m) opener(auto); air
ond(a
1)battery(l) opener(auto); air
ond(a
2) sunroof(sr1); air
ond(a
2); glass(tinted) pa
k(std); air
ond(a
2) pa
k(l); air
ond(a
1) pa
k(std); frame(
onv)
pa
k frame engine sunroof  pa
k(l)air
ond pa
k(l)sunroof  pa
k(dl)opener sunroof(sr2)air
ond sunroof(sr1)glass sunroofbattery enginesunroof  openersunroof  glass sunroof(sr1); opener frame(
onv); sunroof battery(s); engine(s);air
ondFig. 1. Car 
on�guration exampleuser and system time. The test results show that for this small problem instan
ethe 
omputation times are a

eptable for intera
tive appli
ations. For example,in the larger test 
ase it takes on average less than 0.0004 s to generate a 
on-�guration. We are not aware of any other reported test results for solving thisproblem in the DCSP or any other form.Table 2. Results from the 
ar exampleProblem Initial Valid one allsear
h spa
e 
on�gurationsCAR 1 296 198 0.06 s 0.15 sCARx2 331 776 44456 0.1 s 15.5 s8 Previous Work on Produ
t Con�gurationIn Se
t. 6 we 
ompared our approa
h to the CSP and DCSP formalisms. In thisse
tion we provide brief 
omparisons with several other approa
hes.The generative CSP (GCSP) [7℄ approa
h introdu
es �rst-order 
onstraintson a
tivities of variables, on variable values and on resour
es. Constraints usingarithmeti
 are also in
luded. Resour
es are aggregate fun
tions on intensionallyde�ned sets of variables. They may restri
t the set of variables a
tive in a solutionor generate new variables into a solution, thus providing a justi�
ation for thevariables. In addition, a restri
ted form of DCSP a
tivity 
onstraints is usedto provide justi�
ations for a
tivity of variables. CRL allows more expressive



a
tivity 
onstraints than DCSP and a uniform representation of a
tivity andother 
onstraints. However, �rst-order rules, arithmeti
 and resour
e 
onstraintsare still missing from CRL.Our approa
h �ts broadly within the framework of 
onstru
tive problem solv-ing (CPS) [8℄. In CPS the 
on�gurations are 
hara
terized as (possibly partial)Herbrand models of a theory in an appropriate logi
 language. The CPS ap-proa
h does not require that elements in a 
on�guration must have justi�
ationsbut the need for a meta-level minimality 
riterion is mentioned.Some implementations of 
on�gurators based on logi
 programming systemshave been presented [15, 1℄. In these approa
hes, similarly to our approa
h, a
on�guration domain oriented language is de�ned and the problem solving taskis implemented on a variant of Prolog based on a mapping from the high-levellanguage to Prolog. The languages are more 
omplex and better suited for realmodeling tasks. However, they are not provided a 
lear de
larative semanti
s andthe implementations use non-logi
al extensions of pure Prolog su
h as obje
t-oriented Prolog and the 
ut. In 
ontrast, we provide a simple de
larative seman-ti
s and a sound and 
omplete implementation for CRL.9 Con
lusions and Future WorkWe have de�ned a rule-based language for representing typi
al forms of 
on-�guration knowledge, e.g., 
hoi
es, dependen
ies between 
hoi
es and in
om-patibilities. The language is provided with a de
larative semanti
s based on astraightforward �x-point 
ondition employing a simple transformation operator.The semanti
s indu
es formal de�nitions for the main 
on
epts in produ
t 
on-�guration, i.e., 
on�guration models, requirements, 
on�gurations, valid 
ondig-urations and 
on�gurations that satisfy requirements. A novel feature of thesemanti
s is that justi�ability of a 
on�guration (i.e., that ea
h element in a
on�guration has a justi
ation in terms of the 
on�guration rules) is 
apturedby Horn 
lause derivability but without resorting to a minimality 
ondition on
on�gurations. This approa
h has not been 
onsidered in previous work on prod-u
t 
on�guration. The semanti
s is 
losely related to well-known non-monotoni
formalisms su
h as the stable model semanti
s [6℄ and the possible model se-manti
s [14℄.Avoiding minimality 
onditions in the semanti
s has a favorable e�e
t onthe 
omplexity of the 
on�guration tasks. The basi
 problems, i.e. validity ofa 
on�guration and whether a 
on�guration satis�es a set of requirements, arepolynomially de
idable. This is important for pra
ti
al 
on�guration problems.It also implies that the other relevant de
ision problems are in NP.We argue that the rule language is more expressive than 
onstraints by show-ing that it 
annot be modularly represented as CSP. The diÆ
ulty lies in 
aptur-ing the justi�
ations for a 
on�guration using 
onstraints. In addition, we showthat the dynami
 
onstraint satisfa
tion formalism 
an be embedded in our lan-guage but note that there is no obvious way of representing default negation andin
lusive 
hoi
es of CRL in that formalism.



There are indi
ations that the proposed formal model provides a basis forsolving pra
ti
ally relevant produ
t 
on�guration problems. An implementationof the rule language based on a translator to normal logi
 programs with thestable model semanti
s was tested on a small 
on�guration problem. The resultssuggest that this approa
h is worth further resear
h. Moreover, experien
es inother domains show that eÆ
ient implementations of the stable model semanti
sare 
apable of handling tens of thousands of ground rules. Compiling a pra
ti
allyrelevant 
on�guration model from a high level representation into our languagewould seem to generate rule sets of approximately that size. Further resear
h isneeded to determine how our implementation s
ales for larger problems.It may be possible to develop a more eÆ
ient algorithm that avoids the over-head in
urred by the additional atoms and loss of information on the stru
tureof the rules 
aused by the mapping to normal programs. Devising su
h an al-gorithm is an interesting subje
t of further work. A pra
ti
ally important taskwould be to identify additional synta
ti
ally restri
ted but still useful subsets ofthe language that would allow more eÆ
ient 
omputation. Intera
tive produ
t
on�guration where user makes hard de
isions and 
omputer only tra
table onesmay be the only feasible alternative for very large or 
omplex problems. Thistype of 
on�guration would be fa
ilitated by devising polynomially 
omputableapproximations for valid 
on�gurations in CRL. Su
h approximations 
ould alsobe used to prune the sear
h spa
e in an implemention of CRL.It should be noted that the model does not adequately 
over all the aspe
ts ofprodu
t 
on�guration. Further work should in
lude generalizing the rules to the�rst-order 
ase, adding arithmeti
 operators to the language and de�ning 
on-stru
ts important for the domain su
h as optional 
hoi
e dire
tly in the language.These extensions are needed to 
onveniently represent resour
e 
onstraints, at-tributes, stru
ture and 
onne
tions of 
omponents. Another important extensionwould be to de�ne the notion of an optimal 
on�guration (su
h as subset mini-mal, 
ardinality minimal or resour
e minimal 
on�guration) and to analyze the
omplexity of optimality-related de
ision problems.A
knowledgements. The work of the �rst author has been supported by theHelsinki Graduate S
hool in Computer S
ien
e and Engineering (HeCSE) andthe Te
hnology Development Centre Finland and the work of the se
ond authorby the A
ademy of Finland through Proje
t 43963. We thank Tommi Syrj�anenfor implementing the translation of CRL to normal logi
 programs.Referen
es1. T. Axling and S. Haridi. A tool for developing intera
tive 
on�guration appli
a-tions. Journal of Logi
 Programming, 19:658{679, 1994.2. Y. Dimopoulos, B. Nebel, and J. Koehler. En
oding planning problems in non-monotoni
 logi
 programs. In Pro
eedings of the Fourth European Conferen
e onPlanning. Springer-Verlag, 1997.



3. J. Dix. Semanti
s of logi
 programs: Their intuitions and formal properties. InLogi
, A
tion and Information | Essays on Logi
 in Philosophy and Arti�
ialIntelligen
e, pages 241{327. DeGruyter, 1995.4. W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satis�abilityof propositional Horn formulae. Journal of Logi
 Programming, 3:267{284, 1984.5. T. Eiter and G. Gottlob. On the 
omputational 
ost of disjun
tive logi
 pro-gramming: Propositional 
ase. Annals of Mathemati
s and Arti�
ial Intelligen
e,15:289{323, 1995.6. M. Gelfond and V. Lifs
hitz. The stable model semanti
s for logi
 programming.In Pro
eedings of the 5th International Conferen
e on Logi
 Programming, pages1070{1080. The MIT Press, 1988.7. A. Haselb�o
k and M. Stumptner. An integrated approa
h for modelling 
omplex
on�guration domains. In Pro
eedings of the 13th International Conferen
e onExpert Systems, AI, and Natural Language, 1993.8. R. Klein. A logi
-based des
ription of 
on�guration: the 
onstru
tive problemsolving approa
h. In Con�guration|Papers from the 1996 AAAI Fall Symposium.Te
hni
al Report FS-96-03, pages 111{118. AAAI Press, 1996.9. X. Liu, C Ramakrishnan, and S. Smolka. Fully lo
al and eÆ
ient evaluation ofalternating �xed points. In Pro
eedings of 4th International Conferen
e on Toolsand Algorithms for the Constru
tion and Analysis of Systems, pages 5{19. Springer-Verlag, 1998.10. J. M
Dermott. R1: a rule-based 
on�gurer of 
omputer systems. Arti�
ial Intel-ligen
e, 19(1):39{88, 1982.11. S. Mittal and B. Falkenhainer. Dynami
 
onstraint satisfa
tion problems. In Pro
.of the Eighth National Conferen
e on Arti�
ial Intelligen
e (AAAI-90), pages 25{32. AAAI, MIT Press, 1990.12. I. Niemel�a and P. Simons. EÆ
ient implementation of the well-founded and sta-ble model semanti
s. In Pro
eedings of the Joint International Conferen
e andSymposium on Logi
 Programming, pages 289{303. The MIT Press, 1996.13. I. Niemel�a and P. Simons. Smodels { an implementation of the stable modeland well-founded semanti
s for normal logi
 programs. In Pro
eedings of the 4thInternational Conferen
e on Logi
 Programming and Non-Monotoni
 Reasoning,pages 420{429. Springer-Verlag, 1997.14. C. Sakama and K. Inoue. An alternative approa
h to the semanti
s of disjun
tivelogi
 programs and dedu
tive databases. Journal of Automated Reasoning, 13:145{172, 1994.15. D. Searls and L. Norton. Logi
-based 
on�guration with a semanti
 network.Journal of Logi
 Programming, 8(1):53{73, 1990.16. P. Simons. Towards 
onstraint satisfa
tion through logi
 programs and the stablemodel semanti
s. Resear
h report A47, Helsinki University of Te
hnology, Helsinki,Finland, 1997. Available at http://saturn.hut.�/pub/reports/A47.ps.gz.17. T. Soininen and I. Niemel�a. Formalizing 
on�guration knowledge using rules with
hoi
es. Resear
h report TKO-B142, Helsinki University of Te
hnology, Helsinki,Finland, 1998. Presented at the Seventh International Workshop on Nonmonotoni
Reasoning (NM'98), 1998.18. J. Tiihonen, T. Soininen, T. M�annist�o, and R. Sulonen. State-of-the-pra
ti
e inprodu
t 
on�guration|a survey of 10 
ases in the Finnish industry. In KnowledgeIntensive CAD, volume 1, pages 95{114. Chapman & Hall, 1996.19. E. Tsang. Foundations of Constraint Satisfa
tion. A
ademi
 Press, London, 1993.


