
Automatic Prefetching by Traversal
Profiling in Object Persistence Architectures

Ali Ibrahim & William R. Cook

Department of Computer Sciences, University of Texas at Austin
{aibrahim,wcook}@cs.utexas.edu

Abstract. Object persistence architectures support transparent access
to persistent objects. For efficiency, many of these architectures support
queries that can prefetch associated objects as part of the query result.
While specifying prefetch manually in a query can significantly improve
performance, correct prefetch specifications are difficult to determine and
maintain, especially in modular programs. Incorrect prefetching is diffi-
cult to detect, because prefetch is only an optimization hint. This paper
presents AutoFetch, a technique for automatically generating prefetch
specifications using traversal profiling in object persistence architectures.
AutoFetch generates prefetch specifications based on previous execu-
tions of similar queries. In contrast to previous work, AutoFetch can
fetch arbitrary traversal patterns and can execute the optimal number of
queries. AutoFetch has been implemented as an extension of Hibernate.
We demonstrate that AutoFetch improves performance of traversals in
the OO7 benchmark and can automatically predict prefetches that are
equivalent to hand-coded queries, while supporting more modular pro-
gram designs.

1 Introduction

Object persistence architectures allow programs to create, access, and mod-
ify persistent objects, whose lifetime extends beyond the execution of a single
program. Examples of object persistence architectures include object-relational
mapping tools [10, 6, 28, 24], object-oriented databases [8, 21], and orthogonally
persistent programming languages [25, 2, 19, 22].

For example, the Java program in Figure 1 uses Hibernate to print the names
of employees, their managers, and the projects they work on. This code is typical
of industrial object-persistence models: a string representing a query is passed to
the database for execution, and a set of objects is returned. This query returns
a collection of employee objects whose first name is “John”. The fetch keyword
indicates that related objects should be loaded along with the main result ob-
jects. In this query, both the manager and multiple projects are prefetched for
each employee.

1 This work was supported by the National Science Foundation under Grant No.
0448128.

2 Ali Ibrahim & William R. Cook

1 String query = ”from Employee e
2 left join fetch e.manager left join fetch e. projects
3 where e.firstName = ’John’ order by e.lastName”;
4 Query q = sess.createQuery(query);
5 for (Employee emp : q. list ()) {
6 print (emp.getName() + ": " + emp.getManager().getName());
7 for (Project proj : emp.getProjects()) {
8 printProject (prog);
9 }
10 }

Fig. 1. Java code using fetch in a Hibernate query

While specifying prefetch manually in a query can significantly improve per-
formance, correct prefetch specifications are difficult to write and maintain man-
ually. The prefetch definitions (line 2) in the query must correspond exactly to
the code that uses the results of the query (lines 6 through 8).

It can be difficult to determine exactly what related objects should be prefetched.
Doing so requires knowing all the operations that will be performed on the results
of a query. Modularity can interfere with this analysis. For example, the code
in Figure 1 calls a printProject method which can cause additional navigations
from the project object. It may not be possible to statically determine which
related objects are needed. This can happen if class factories are used to create
operation objects with unknown behavior, or if classes are loaded dynamically.

As a program evolves, the code that uses the results of a query may be
changed to include additional navigations, or remove navigations. As a result, the
query must be modified to prefetch the objects required by the modified program.
This significantly complicates evolution and maintenance of the system. If a
common query is reused in multiple contexts, it may need to be copied in order
to specify different prefetch behaviors in each case.

Since the prefetch annotations only affect performance, it is difficult to test
or validate that they are correct – the program will compute the same results
either way, although performance may differ significantly.

In this paper we present and evaluate AutoFetch, which uses traversal
profiling to automate prefetch in object persistence architectures. AutoFetch
records which associations are traversed when operating on the results of a query.
This information is aggregated to create a statistical profile of application behav-
ior. The statistics are used to automatically prefetch objects in future queries.

In contrast, previous work focused on profiling application behavior in the
context of a single query. While this allowed systems such as PrefetchGuide [13]
to prefetch objects on the initial execution of query, AutoFetch has several
advantages. AutoFetch can prefetch arbitrary traversal patterns in addition
to recursive and iterative patterns. AutoFetch can also execute fewer queries
once patterns across queries are detected. AutoFetch’s disadvantage of not

Automatic Prefetching by Traversal Profiling 3

optimizing initial query executions can be eliminated by combining AutoFetch
with previous work.

When applied to an unoptimized version of the Torpedo benchmark, Aut-
oFetch performs as well as a hand-tuned version. For the OO7 benchmark,
AutoFetch eliminates up to 99.8% of queries and improves performance by up
to 99.7%. We also examined the software engineering benefits of AutoFetch,
by showing that a modular version of a web-based resume application using
AutoFetch performs as well as a less-modular, hand-optimized version.

2 Background

The object persistence architectures examined in this paper combine elements of
orthogonal persistence [1] with the pragmatic approach of relational data access
libraries, also known as call level interfaces [30].

Orthogonal persistence states that persistence behavior is independent of
(orthogonal to) all other aspects of a system. In particular, any object can be
persistent, whether an object is persistent does not affect its other behaviors,
and an object is persistent if it is reachable from a persistent root. Orthogonal
persistence has been implemented, to a degree, in a variety of programming
languages [25, 2, 19, 22].

A key characteristic of orthogonal persistence is that objects are loaded when
needed. Using a reference in an object is called traversing the reference, or nav-
igating between objects – such that the target object is loaded if necessary. We
use the term navigational query to refer to queries that are generated implicitly
as a result of navigation.

Relational data access libraries are a pragmatic approach to persistence: they
allow execution of arbitrary SQL queries, and the queries can return any com-
bination of data that can be selected, projected, or joined via SQL. Examples
include ODBC [15] and JDBC [12]. The client application determines how the
results of a query are used – each row of the query result may be used as is,
or it may be mapped to objects. Since data is never loaded automatically, the
programmer must specify in a query all data required for an operation – the
concept of prefetching data that might be loaded automatically does not apply.

The object persistence architectures considered in this paper are hybrids of
orthogonal persistence and data access libraries. Examples include EJB [24],
JDO [28], Hibernate [6], and Toplink [10]. They support automatic loading of
objects as needed. But they also include query languages and the ability to man-
ually prefetch related objects. While query languages can significantly increase
performance, they reduce orthogonality because they are special operations that
only apply to persistent data.

For example, in EJB 2.1, a query can return objects or a value:

select object(p) from Person p where p.firstName="John"

The set of objects loaded by a query are called root objects. Use of the root
objects may result in navigation to related objects, each of which will require an
additional query to load.

4 Ali Ibrahim & William R. Cook

In client-server architectures, the cost of executing a query, which involves a
round-trip to a database, typically dominates other performance measures. This
is because the latency cost of communicating with the database is significantly
greater than the cost of processing the query or producing results [4]. Other fac-
tors, like number of joins or subqueries, or the number of columns returned form
a query, are insignificant compared to latency. The relative impact of latency on
system performance is likely to increase, given that improvements in latency lag
improvements in bandwidth and processing power [27]. As a result, number of
queries will increasingly dominate all other concerns. In effect, overall response
time is directly related to the number of queries executed in a task.

Object persistence architectures have developed a variety of mechanisms
for avoiding navigational queries, by allowing programmers to manually spec-
ify prefetch of related objects. Prefetch of related objects is especially important
in addressing the n + 1 select problem in which a related object is accessed for
each result of a query. Without prefetch, if there are n results for a query, then
there will be n + 1 loads. Most JDO vendors extended the standard to allow
prefetch to be specified at the class level. Hibernate, and now EJB 3.0, allow
prefetch to be specified within each query using the fetch keyword. Using fetch ,
a query can specify which related objects to load along with the root objects.
These related objects can be either single objects or collections of related objects,
depending on whether the association is single- or multi-valued. For example,
this EJB 3.0 query returns a collection of persons where the children have been
fetched as well:

select distinct p from Person p left join fetch p. children
where p.firstName=John

Previous versions of Hibernate only allowed one collection prefetch, however,
Hibernate 3.1 allows multiple collections prefetches. Hibernate executes a query
with a prefetch by augmenting the query with an appropriate join. This strat-
egy causes the data for the container object to be replicated when a collection
association is fetched. For a nested collection, the root container is replicated
once for each combination of subcollection and sub-subcollection items. Thus
replication is multiplied with each level of subcollection. Independent fetch col-
lections are especially expensive because they cause the result set to include the
cross-product of independent collection hierarchy elements. If Hibernate used a
different query strategy that allowed for multiple SQL queries to be executed,
while correlating the results in the client, then this problem could be eliminated.

Safe Query Objects are a type-safe alternative to string-based query inter-
faces [7]. Safe queries use methods in standard object-oriented languages to spec-
ify query criteria and sorting, so that a query is simply a class. Unlike string-
based query languages, there is no natural place to specify prefetch in a Safe
Query. Thus Safe Queries would benefit significantly from automatic prefetch-
ing.

Automatic Prefetching by Traversal Profiling 5

3 Automating Prefetch

In this section we present AutoFetch, a solution to the problem of manual
prefetch in object persistence architectures. Instead of the programmer manually
specifying prefetches, AutoFetch adds prefetch specifications automatically.
By profiling traversals on query results, AutoFetch determines the prefetches
that can help reduce the number of navigational queries, i.e. queries executed as
a program traverses an association.

To formalize this approach, we define type and object graphs as an abstract
representation of persistent data. A type graph represents the class model, or
structure of the database. Object graphs represent data. A complete database
is represented as an object graph. Queries are functions whose range is a set of
subgraphs of the database object graph.

Traversals represent the graph of objects and associations that are actually
used in processing each result of a query. These traversals are aggregated into
traversal profiles, which maintain statistics on the likelihood of traversing specific
associations. Queries are classified into query classes based on a heuristic that
groups queries that are likely to have similar traversals.

For each query executed, AutoFetch computes a prefetch specification
based on the traversal profile for the query class. The prefetch specification
is incorporated into the query and executed by the underlying database.

3.1 Profiling Traversals

In this section we develop a model for profiling the traversals performed by
an object-oriented application. The concept of profiling is well known [3, 11];
it involves collecting statistics about the behavior of a program. Profiling is
typically used to track control flow in an application – to find hot spots or
compute code coverage. In this paper, profiling is used to track data access
patterns – to identify what subset of a database is needed to perform a given
operation.

We develop a formal model for types, objects, queries, and traversals. The
type and object models are derived from work on adaptive programming [18].

Type Graph: Let T be the finite set of type names and F be the finite set of
field names. A type graph is a directed graph GT = (T,A).

– T is a set of types.
– A is a partial function T × F

?→ T × {single, collection} representing a set
of associations between types. Given types t and t′ and field f , if A(t, f) =
(t′,m) then there is an association from t to t′ with name f and cardinality
m, where m indicates whether the association is a single- or multi-valued
association.

Inheritance is not modeled in our type graph because it is orthogonal to
prefetch. Bi-directional associations are supported through two uni-directional

6 Ali Ibrahim & William R. Cook

associations. Figure 2 shows a sample type graph. There are three types: Em-
ployee, Department, and Company. Each company has a set of departments and
a CEO, each department has a set of employees, and each employee may have a
supervisor. The formal representation is:

T = {Department, Employee, Company}
F = {employees, departments, CEO, supervisor}
A(Department, employees) 7→ (Employee, collection)
A(Company, departments) 7→ (Department, collection)
A(Company, CEO) 7→ (Employee, single)
A(Employee, supervisor) 7→ (Employee, single)

Fig. 2. Simple Type Graph with three types: Employee, Department, and Company.
Solid lines represent single associations, while dashed lines represent collection associ-
ations.

Object Graph: Let O be the finite set of object names. An object graph is a
directed graph GO = (O, E, GT = (T,A),Type). GT is a type graph and Type is
a unary function that maps objects to types. The following constraints must be
satisfied in the object graph GO:

– O represents a set of objects.
– Type : O → T . The type of each object in the object graph must exist in

the type graph.
– E : O×F

?→ powerset(O), the edges in the graph are a partial function from
an object and field to a set of target objects.

– ∀o, f : E(o, f) = S
• A(Type(o), f) = (T ′,m)
• ∀o′ ∈ S,Type(o′) = T ′.
• if m = single, then |S| = 1.

Each edge in the object graph corresponds to an edge in the type graph,
single associations have exactly one target object.

An example object graph is shown in Figure 3 which is based on the type
graph in Figure 2. Edges that contain a dark oval represent collection associa-
tions. Null-valued single associations are not represented by edges in the object

Automatic Prefetching by Traversal Profiling 7

graph, however, empty collection associations are represented as edges whose
target is an empty set. We chose this representation because most object persis-
tence architectures represent associations as a reference to a single target object
or collection. A null-valued association is usually represented as a special ref-
erence in the source object. This means that the persistence architecture can
tell if a single-valued association is null without querying the database. On the
other hand, the persistence architecture will query the database if a collection
association reference is empty, because the collection reference does not have any
information on the cardinality of the collection. The ability to represent traver-
sals to empty collections is important when we discuss traversals in Section 3.1,
because it allows AutoFetch to represent navigational queries that load empty
collections.

Fig. 3. An example of an object graph based on the type graph in Figure 2. Collection
associations contain an oval in the middle of the edge.

Queries A query is a function that returns a subgraph of the database object
graph. The subgraph consists of a set of connected object graphs each of which
has a distinguished root object. The definition of every query includes an extent
type and criteria. The extent type is the type of all the root objects. The criteria
are the conditions that an object satisfies to be returned as a root object.

Our approach to prefetching is independent of a particular query language,
however, the query language must support an object-oriented view of persistent
data, and the underlying persistence data store must allow prefetching associa-
tions of the extent type.

8 Ali Ibrahim & William R. Cook

Queries are executed by the program to return their results. However, queries
are first-class values, because they can be dynamically constructed or passed or
returned from procedures. A single program point could execute different queries,
depending on the program flow.

Traversals A traversal captures how the program navigates the object graphs
that the query returns. A program may traverse all the objects and associations
in the result of the query, or it may traverse more or less. Only program navi-
gations that would result in a database load for the query without prefetch are
included in the traversal.

A traversal is represented as a forest where each tree’s root is a root object
in the result of a query and each tree is a subgraph of the entire object graph.
Let R denote a single tree from the traversal on the object graph GO = (O, E).

R = O × (F → {R}) where (o, (f, r)) ∈ R implies |E(o, f)| = |r|

If the program navigates to the same object multiple times in a traversal, only
the shortest path from the root of the traversal is included in R. Figure 4 shows
a sample traversal on the object graph in Figure 3 for a query which returned 3
departments: d1, d2, d3. Edges with dark ovals represent collection associations.

If a program navigates an association, it may not be included in the traversal
if it would not result in database load. An association navigation does not result
in a database load in three cases:

– The association is a null-valued single association.
– The association is a single valued association whose target had already been

navigated to from the root object with a shorter path.
– The association’s target was cached by the program.

If a program navigates an empty collection association, there will be a data-
base query and the navigation will be included in the traversal. The last item
illustrates an interesting link between caching and query execution; AutoFetch
is able to adapt to the caching mechanism of the application by adjusting query
prefetch to ignore associations that are likely to be cached.

An important point is that a single query may be used in different contexts
that generate different traversals. This will commonly happen if a library func-
tion runs a query to load a set of objects, but this library function is called
from multiple transactions. Each transaction will have a different purpose and
therefore may traverse different associations.

Traversal Profiles A traversal profile represents the aggregation of the tra-
versals for a set of queries. Each traversal profile is a tree representation of all
the previous traversals mapped to the type graph. Let P represent a traversal
profile for a type graph GT = (T,A):

P = T ×N ×N × (F → P)

Automatic Prefetching by Traversal Profiling 9

Fig. 4. An example of a traversal on the object graph in Figure 3. Collection associa-
tions contain an oval in the middle of the edge.

such that for all (t, used , potential , (f, p)) ∈ P

1. A(t, f) is defined
2. used ≤ potential .

Each node in the tree contains statistics on the traversals to this node: the
number of times this node needed to be loaded from the database (used), and the
number of opportunities the program had to load this node from the database
(potential), i.e. the number of times the program had a direct reference to an
object representing this node.

Algorithm 1 combine((o,AO), (used , potential , t,AP))
for all (f, (used , potential , t, A)) ∈ AO do

w(f) = (used , potential + 1, t, A)
end for
for all f, P ∈ AP do

for all r ∈ AO(f) do
w(f) = combine(r, w(f));

end for
end for
return (used + 1, potential , t, w)

The traversal, a forest of object trees R, is combined with a traversal profile
by combining each object tree R in the traversal with the profile using a function
combine (R × P → P). The combination algorithm is straightforward. Given a
traversal and traversal profile, combine increments the used statistic for the root
of the traversal profile and the potential statistic for all the children of the root.
The combine method is then recursively called for each child traversal profile and

10 Ali Ibrahim & William R. Cook

Fig. 5. Traversal profile for query class after traversal in Figure 4. Statistics are repre-
sented as (used/potential).

its matching (same association) children of the root node in R. The statistics
for the root node of the traversal profile are ignored since they represent the
statistics for the root objects returned by a query and AutoFetch assumes
those objects should always be fetched. Figure 5 shows a traversal profile updated
from an empty traversal profile and the traversal in Figure 4. The traversal profile
statistics are given above each type as (used/potential).

3.2 Query Classification

Query classification determines a set of queries that share a traversal profile. The
aim of query classification is to group queries which are likely to have similar
traversals. A simple classification of queries is to group all queries that have the
same query string. There are several reasons why this is not effective.

First, a given query may be used to load data for several different operations.
Since the operations are different, the traversals for these operations may be dif-
ferent as well. This situation typically arises when query execution is centralized
in library functions that are called from many parts of a program. Classifying
based only on the criteria will not distinguish between these different uses of
a query, so that very different traversals may be classified as belonging to the

Automatic Prefetching by Traversal Profiling 11

same class. This may lead to poor prediction of prefetch. The classification in
this case is too coarse.

A second problem is that query criteria are often constructed dynamically. If
each set of criteria is classified as a separate query, then commonality between
operations may not be identified. At the limit, every query may be different,
leading to a failure to gather sufficient data to predict prefetch.

Queries may also be classified by the program state when the query is exe-
cuted. This is motivated by the observation that traversals are determined by
the control flow of the program after query execution. Program state includes
the current code line, variable values, library bindings, etc. Classifying queries
based on the entire program state is infeasible as the program state may be very
large and will likely be different for every query. However, a set of salient features
of the program state can be reasonable both in memory and computation. Com-
putation refers to cost of computing the program state features when a query is
invoked.

The line number where a query is executed is a simple feature of the program
state to calculate and has a small constant memory size, however, it does not
capture enough of the program state to accurately determine the traversal of the
query results. Specifically the problem is that line number where the query is
executed does not provide enough information on how the results of the query
will be used outside of the invoking method.

The natural extension to the using the line number where the query is exe-
cuted is using the entire call stack when the query is executed. Our hypothesis is
that the call stack gives more information about the future control flow, because
it is highly likely that the control flow will return through the methods in the
call stack. The call stack as the salient program state feature is easy to compute
and bounded in size. In the programs we have considered, we have found that
the call stack classifies queries at an appropriate granularity for prefetch.

Unfortunately, a call stack with line numbers will classify 2 queries with
different extent types together if the 2 queries occur on the same line. To address
this, AutoFetch uses the pair of the query string and the call stack when the
query is executed to classify queries. This limits AutoFetch’s ability to prefetch
for dynamic queries. Optimally, the call stack would contain information on the
exact program statement being executed at each frame.

3.3 Predicting Traversals

Given that an operation typically traverses a similar collection of objects, it is
possible to predict future traversals based on the profiling of past traversals. The
predicted traversal provides a basis to compute the prefetch specification. The
goal of the prefetch specification is to minimize the time it will take to perform
the traversal. A program will be most efficient if each traversal is equal to the
query result object graph, because in this case only one round-trip to the data-
base will be required and the program will not load any more information from
the database than is needed. The heuristic used in AutoFetch is to prefetch

12 Ali Ibrahim & William R. Cook

any node in the traversal profile for which the probability of traversal is above
a certain threshold.

Before each query execution, AutoFetch finds the traversal profile associ-
ated with the query class. If no traversal profile is found, a new traversal profile
is created and no prefetches are added to the query. Otherwise, the existing
traversal profile is used to compute the prefetch specification.

First, the traversal profile is trimmed such that the remaining tree only con-
tains the associations that will be loaded with high probability (above a set
threshold) given that the root node of the traversal profile has been loaded. For
each node n and its parent node p(n) in the traversal profile, the probability that
the association between n and p(n) will be traversed given that p(n) has been
loaded can be estimated as used(n)/potential(n). Using the rules of conditional
probability, the probability that the association is navigated given that the root
node is loaded is:

f(n) = (used(n)/potential(n)) ∗ f(p(n))

The base case is that the f(root) in the traversal profile is 1. A depth first
traversal can calculate this probability for each node without recomputing any
values. This calculation ensures that traversal profile nodes are prefetched only
if their parent node is prefetched, because f(n) ≤ f(p(n)).

Second, if there is more than one collection path in the remaining tree, an
arbitrary collection path is chosen and other collection paths are removed. Col-
lection paths are paths from the root node to a leaf node in the tree that contain
at least 1 collection association. This is to avoid creating a query which joins
multiple many-valued associations.

The prefetch specification is a set of prefetch directives. Each prefetch direc-
tive corresponds to a unique path in the remaining tree. For example, given the
traversal profile in Figure 5 and the prefetch threshold of 0.5, the prefetch spec-
ification would be: (employees, employees.supervisor, company). The query is
augmented with the calculated prefetch specification. Regardless of the prefetch
specification, profiling the query results remains the same.

4 Implementation

The implementation of AutoFetch is divided into a traversal profile module
and an extension to Hibernate 3.1, an open source Java ORM tool.

4.1 Traversal Profile Module

The traversal profile module maintains a 1-1 mapping from query class to tra-
versal profile. When the hibernate extension asks for the prefetch specification
for a query, the module computes the query class which is used to lookup the
traversal profile which is used to compute the prefetch specification. The module
computes the query class as the pair of the query string and the current program

Automatic Prefetching by Traversal Profiling 13

stack trace and uses this as the key to lookup the traversal profile. To decrease
the memory requirements for maintaining the set of query classes, each stack
trace contains a maximum number of frames. If a stack trace is larger than this
limit, AutoFetch removes top-level frames until the stack trace is under the
limit. Each frame is a string containing the name of a method and a line number.
If a traversal profile does not exist for a query class, the module adds a mapping
from that query class to an empty traversal profile. Finally, the module computes
a prefetch specification for the query using the traversal prediction algorithm in
Section 3.3 applied to the traversal profile.

4.2 Hibernate

Hibernate was modified to incorporate prefetch specifications and to profile tra-
versals of its query results. The initial AutoFetch implementation used Hiber-
nate 3.0 which did not support multiple collection prefetches. Fortunately, Hi-
bernate 3.1 contains support for multiple collection prefetches and AutoFetch
was migrated to this version. Support for multiple collection prefetches turns out
to be critical for improving performance in some of the evaluation benchmarks.

Hibernate obtains the prefetch specification for a query from the traversal
profile module. The code in Figure 6 illustrates how a HQL query is modified to
include prefetches and the SQL generated by Hibernate. Queries which already
contain a prefetch specification are not modified or profiled allowing the program-
mer to manually specify prefetch. The hibernate extensions profile traversals by
instrumenting each persistent object with a dynamically generated proxy. The
proxy intercepts all method calls to the object and if any object state is accessed
that will require a database load, the proxy increments the appropriate node in
the traversal profile for the query class. Hibernate represents single association
references with a key. Therefore, accessing the key is not considered as an object
access because it never requires a database query. Collections are instrumented
by modifying the existing Hibernate collection classes. Although there is a per-
formance penalty for this type of instrumentation, we found that this penalty
was not noticeable in executing queries in our benchmarks. This performance
penalty may be ameliorated through sampling, i.e. only instrumenting a certain
percentage of queries. The AutoFetch prototype does not support all of Hi-
bernate’s features. For example, AutoFetch does not support prefetching or
profiling for data models which contain weak entities or composite identifiers.
Support for these features was omitted for simplicity.

5 Evaluation

We evaluated AutoFetch using the Torpedo and OO7 benchmarks. The Tor-
pedo benchmark measures on the number of queries that an ORM tool executes
in a simple auction application, while the OO7 benchmark examines the per-
formance of object-oriented persistence mechanisms for an idealized CAD (com-
puter assisted design) application. We also examined the software engineering
benefits of avoiding manual specification of prefetches in a resume application.

14 Ali Ibrahim & William R. Cook

Original query
HQL:

from Department d where d.name = ’foo’

SQL:

select ∗ from Department as d where d.name = ’foo’

Query with a single prefetch
HQL:

from Department d
left outer join fetch d.employees where x.name = ’foo’

SQL:

select ∗ from Department as d
left outer join Employee as e on e.deptId = d.id
where d.name = ’foo’

Fig. 6. Augmenting queries with prefetch specifications.

Both benchmarks were executed on an Intel R©Pentium R©4 2.8 GHz machine
with 1 Gb of RAM. The OO7 benchmark connects to a database on a separate
machine, an Intel R©Pentium R©4 2.4 Ghz machine with 885 Mb of RAM on the
same University of Texas Computer Science department local area network. The
AutoFetch parameters maximum extent level and stack frame limit were set
to 12 and 20 respectively unless otherwise noted. The benchmarks did not use
any caching across transactions.

5.1 Torpedo Benchmark

The Torpedo benchmark [23] measures the number of SQL statements executed
by an ORM tool over a set of test cases. The benchmark consists of a Java client
and a J2EE auction server. The client issues requests to the auction server,
such as placing a bid or retrieving information for a particular auction. There
are seven client test cases which were designed to test various aspects of the
mapping tool such as caching or prefetching. The number of SQL statements
executed is used as the measure of the performance of the mapping tool. The
benchmark can be configured to use different object-relational mapping tools
(EJB, JDO, Hibernate) as the persistence backend.

We created two versions of the Hibernate persistence backend, the original
tuned backend included with the benchmark and that same backend minus the
prefetch directives. The latter backend can be configured to have AutoFetch
enabled or disabled. We ran the Torpedo benchmark for each version and possible
options three times in succession. The results of the first and third iterations are

Automatic Prefetching by Traversal Profiling 15

shown in Figure 7. The second run was omitted in the graph since the first and
second iterations produce the same results. A single set of iterations is sufficient,
because the benchmark is deterministic with respect to the number of queries.

Fig. 7. Torpedo benchmark results. The y-axis represents the number of queries exe-
cuted. Maximum extent level is 12.

As Figure 7 shows, the prefetch directives reduce the number of queries
executed. Without either the prefetch directives nor AutoFetch enabled the
benchmark executed three times as many queries. Without prefetch directives
but with AutoFetch enabled, the benchmark executes many queries on the
first and second iterations; however, from the third iteration (and onward) it
executes as many queries as the version with programmer-specified prefetches.

A simple query classification method using the code line where the query
was executed as the query class would not have been sufficient to match the
performance of manually specified prefetches for this benchmark. For example,
the findAuction method is used to load both detailed and summary information
about an auction. The detailed auction information includes traversing several
associations for an auction such as the auction bids. The summary auction infor-
mation only includes fields of the auction object such as the auction id or date.
These different access patterns require different prefetches even though they use
the same backend function to load the auction.

5.2 OO7 Benchmark

The OO7 benchmark [5] was designed to measure the performance of OODB
management systems. It consists of a series of traversals, queries, and structural

16 Ali Ibrahim & William R. Cook

Table 1. Comparison with prefetch disabled and with AutoFetch. Maximum extent
level is 12. Small OO7 benchmark. Metrics for each query/traversal are average number
SQL queries and average time in milliseconds. Percentages are for percent improvement
of AutoFetch over baseline.

Query Iteration No Prefetch AutoFetch
queries ms queries % ms %

Q1
1 11 45 11 – 43 (4%)
2 11 44 11 – 43 (2%)
3 11 43 11 – 43 –

Q2
1 2 10 2 – 9 (10%)
2 2 10 2 – 10 –
3 2 11 2 – 10 (9%)

Q3
1 2 59 2 – 58 (2%)
2 2 89 2 – 59 (34%)
3 2 58 2 – 60 -(3%)

Q6
1 2 70 2 – 69 (1%)
2 2 66 2 – 65 (2%)
3 2 67 2 – 81 -(21%)

Q7
1 2 532 2 – 504 (5%)
2 2 472 2 – 508 -(8%)
3 2 498 2 – 471 (5%)

Q8
1 2 43 2 – 48 -(12%)
2 2 46 2 – 46 –
3 2 48 2 – 44 (8%)

T1
1 3096 21750 2909 (6%) 20875 (4%)
2 3096 22160 2907 (6%) 20694 (7%)
3 3096 21009 38 (98.8%) 248 (98.8%)

T6
1 1146 8080 1099 (4%) 8266 -(2%)
2 1146 7900 1096 (4%) 8115 -(3%)
3 1146 7831 2 (99.8%) 21 (99.7%)

T8
1 2 36 2 – 38 -(6%)
2 2 46 2 – 36 (22%)
3 2 36 2 – 40 -(11%)

T9
1 2 40 2 – 35 (13%)
2 2 44 2 – 38 (14%)
3 2 40 2 – 36 (10%)

RT
1 10 63 4 (60%) 43 (32%)
2 10 63 3 (70%) 39 (38%)
3 10 61 3 (70%) 39 (36%)

Automatic Prefetching by Traversal Profiling 17

modifications performed on databases of varying sizes and statistical properties.
We implemented a Java version of the OO7 benchmark based on code pub-
licly available from the benchmark’s authors. Following the lead in Han [13], we
omitted all structural modification tests as well as any traversals that included
updates, because updates have no effect on AutoFetch behavior and otherwise
these traversals were not qualitatively different from the included traversals. Q4
was omitted because it requires using the medium or large OO7 databases. Tra-
versal CU was omitted because caching and AutoFetch are orthogonal, and
the traversal’s performance is very sensitive to the exact caching policy.

Only a few of the OO7 operations involve object navigation, which can be
optimized by AutoFetch. Traversal T1 is a complete traversal of the OO7
object graph, both the assembly and part hierarchies. Traversal T6 traverses the
entire assembly hierarchy, but only accesses the composite and root atomic parts
in the part hierarchy. Traversal T1 has a depth of about 29 while Traversal T6
has a depth of about 10. Neither the queries nor traversals T8 or T9 perform
navigation; however, they are included to detect any performance penalties for
traversal profiling.

We added a reverse traversal, RT, which chooses atomic parts and finds
their root assembly, associated module, and associated manual. Such traversals
were omitted from the OO7 benchmark because they were considered not to
add anything to the results. They are significant in the context of prefetch,
since single-valued associations can be prefetched more easily than multi-valued
associations.

Table 1 summarizes the results of the OO7 benchmark. Neither the queries
nor traversals T8 or T9 show any improvement with prefetch enabled. This is to
be expected since they do not perform any navigational queries. These queries
are included for completeness, and to show that AutoFetch does not have high
overhead when not needed.

Both traversals T1 and T6 show a large improvement in the number of queries
and time to execute the traversal. T6 shows a larger improvement than T1 even
though T1 is a deeper traversal, because some of the time executing traversal
T1 is spent traversing the object graph in memory; repeatedly traversing the
part hierarchies. The number of queries and the time to execute a traversal
are tightly correlated as expected. Both T1 and T6 are top-down hierarchical
traversals which require multiple collection prefetches to execute few queries.
Table 2 shows a comparison of the number of queries executed by AutoFetch
with Hibernate 3.1 and AutoFetch with Hibernate 3.0 which was unable to

Table 2. The number of queries executed by AutoFetch with Hibernate 3.0 and
AutoFetch with Hibernate 3.0 for traversals T1, T6, and RT. Only 3rd iteration
shown. Maximum extent level is 12. Small OO7 benchmark.

AutoFetch Version T1 T6 RT

AutoFetch with Hibernate 3.0 2171 415 3

AutoFetch with Hibernate 3.1 38 2 3

18 Ali Ibrahim & William R. Cook

prefetch multiple collection associations. The ability to fetch multiple collection
associations had a greater effect on deep traversals such as T1 and T6 than on
shallow traversals such as RT.

Figure 8 shows that the maximum depth of the traversal profile is important
to the performance of prefetch system in the presence for deep traversals. The
tradeoff for increasing the maximum depth of the traversal profile is an increase in
the memory requirements to store traversal profiles. It should be noted that deep
traversals such as T1 and T6 in OO7 are relatively rare in enterprise business
applications.

Fig. 8. Varying maximum extent level from 5 to 15. Only 3rd iteration shown. Small
OO7 database.

5.3 Resume Application

In addition to the synthetic benchmarks, we applied AutoFetch to a resume
application that uses the AppFuse framework [29]. AppFuse is a template for a
model-view-controller (MVC) architecture that integrates many popular Java li-
braries and tools. AppFuse includes a flexible data layer which can be configured
to use one of several persistence providers. Users of the framework define inter-
faces for data access objects (DAO) that are implemented using the persistence
provider.

Hibernate is used as the persistence provider in the sample resume appli-
cation. The resume application data model is centered around a Resume class.
A Resume contains basic resume data fields and associations to related objects,

Automatic Prefetching by Traversal Profiling 19

including education listings, work experiences, and references. The ResumeDAO
class includes methods to load and store resumes. A simple implementation of the
ResumeDAO and Resume classes is shown in Fig 9. The ResumeDAO.getResume(Long)
method loads a resume without prefetching any of its associated objects. To load
the work experience in a resume, a programmer first uses ResumeDAO to load
the resume, and then getExperiences () to load the work experience.

interface ResumeDAO {
Resume getResume(Long resumeId);
...

}

class Resume {
List getEducations() { ... }
List getExperiences () { ... }
List getReferences () { ... }
...

}

Fig. 9. Struts resume code without any optimizations

Although this implementation is very natural, it is inefficient because the
resume application has several pages that display exactly one kind of associated
object; a page for work experience, a page for references, etc. For these pages,
the application would execute 2 queries: one to load the resume and another to
load the associated objects. There are several alternative implementations:

1. Modify the ResumeDAO.getResume(Long) method to prefetch all associa-
tions.

2. Add ResumeDAO methods which load a resume with different prefetch di-
rectives.

3. Add ResumeDAO methods which directly load associated objects without
loading the resume first.

The actual implementation uses the third approach. The first alternative
always loads too much data and would be infeasible if the data model con-
tained cycles. The other two alternatives are fragile and redundant. For exam-
ple, if a new user interface page was added to the application that displayed
two resume associations, then a new method would have to be added to the
ResumeDAO class. The code is also redundant because we have to copy either the
ResumeDAO.getResume(Long) method in the second alternative or the Resume
getter methods in the third alternative. By incorporating AutoFetch, the sim-
ple code in Figure 9 should perform as well as the optimized code after some
initial iterations.

20 Ali Ibrahim & William R. Cook

We tested the code in Figure 9 version with AutoFetch and found that
indeed it was able to execute a single query for all the controller layer methods
after the initial learning period. Our modified code has the advantage of being
smaller, because we eliminated redundant methods in ResumeDAO class. With
AutoFetch, DAO methods are more general because the same method may
be used with different traversal patterns. AutoFetch also increases the inde-
pendence of the user interface or view layer from the business logic or controller
layer, because changes in the traversal pattern of the user interface on domain
objects do not require corresponding changes in the controller interface.

5.4 General Comments

In all of the evaluation benchmarks, the persistent data traversals were the same
given the query class. Consequently, AutoFetch never prefetched more data
than was needed, i.e. AutoFetch had perfect precision. While our intuition is
that persistent data traversals are usually independent of the program branching
behavior, it is an open question whether our benchmarks are truly representa-
tive in this respect. Similarly, it is difficult to draw general conclusions about the
parameters of the AutoFetch such as the maximum extent level or stack frame
limit without observing a larger class of persistent programs. The maximum ex-
tent level was set to 12, because this produced reasonable memory consumption
on our benchmarks. The stack frame limit was set to 20 to preserve enough in-
formation from the stack frame about control flow in the presence of the various
architectural layers in the Torpedo benchmark and the recursive traversals in
the OO7 benchmark.

6 Related Work

Han et al. [13] classify prefetching algorithms into five categories: page-based
prefetching, object-level/page-level access pattern prefetching, manually speci-
fied prefetches, context-based prefetches, and traversal/path-based prefetches.

Page-based prefetching has been explored in object-oriented databases such
as ObjectStore [17]. Page-based prefetching is effective when the access patterns
of an application correspond to the clustering of the objects on disk. Since the
clustering is usually static, it cannot efficiently support multiple data access
patterns. Good clustering of objects is difficult to achieve and can be expensive
to maintain when objects are updated frequently. However, when it works it
provides very low-cost prefetching. Finally, if the amount of object data that
should be prefetched is larger than a page, than this prefetching algorithm will
be unable to prefetch all the objects needed.

Object-level or page-level access pattern prefetching relies on monitoring the
sequence of object or page requests to the database. Curewitz et al. [9] imple-
mented an access pattern prefetching algorithm using compression algorithms.
Palmer and Zdonik [26] implemented a prefetch system, Fido, that stores access
patterns and uses a nearest neighbor algorithm to detect similar patterns and

Automatic Prefetching by Traversal Profiling 21

issue prefetch requests. Knafla [16] models object relationship accesses as dis-
crete time Markov chains and uses this model in addition to a sophisticated cost
model to issue prefetch requests. The main drawback to these approaches is that
they detect object-level patterns, i.e. they perform poorly if the same objects
are not repeatedly accessed. Repeated access to the same objects is not typical
of many enterprise applications with large databases.

Bernstein et al. [4] proposed a context-controlled prefetch system, which was
implemented as an extension of Microsoft Repository. Each persistent object in
memory is associated with a context. This context represents a set of related
objects, either objects that were loaded in the same query or objects that are
a member of the same collection association. For each attribute access of an
object O, the system prefetches the requested attribute for all objects in O’s
context. When iterating through the results of a query or collection associa-
tion, this prefetch strategy will avoid executing n + 1 queries where n is the
number of query results. A comparison of this strategy and AutoFetch is
given below. While AutoFetch only profiles associations, Bernstein et al. use
“MA prefetch” to prefetch scalar attributes for classes in which the attributes
reside in separate tables. MA prefetch improves the performance of the OO7
benchmark queries, which were not improved by AutoFetch, because OO7 at-
tributes and associations are separated into multiple tables. The implemented
system only supported single-level prefetches, although prefetching multiple lev-
els (path prefetch) is mentioned as an extension in the paper. The system also
makes extensive use of temporary tables, which are not needed by AutoFetch.

Han et al. [14, 13] extended the ideas of Bernstein et al. to maintain not only
the preceding traversal which led to an object, but the entire type-level path to
reach an object. Each query is associated with an attribute access log set which
contains all the type level paths used to access objects from the navigational root
set. The prefetch system then monitors the attribute access log and prefetches
objects if either an iterative or recursive pattern is detected. The prefetch system,
called PrefetchGuide, can prefetch multiple levels of objects in the object graph if
it observes multi-level iteration or recursive patterns. However, unlike the Bern-
stein prefetch implementation, there are no results on prefetching for arbitrary
queries, instead only purely navigational queries are supported. PrefetchGuide
is implemented in a prototype ORDBMS.

While the systems created by Bernstein and Han prefetch data within the
context of a top-level query, AutoFetch uses previous query executions to pre-
dict prefetch for future queries. Context-based prefetch always executes at least
one query for each distinct association path. AutoFetch, in contrast, can mod-
ify the top-level query itself, so that only one query is needed. AutoFetch can
also detect traversal patterns across queries, e.g. if certain unrelated associations
are always accessed from a given query result, AutoFetch prefetches those ob-
jects even though it would not constitute a recursive or iterative pattern within
that single query. One disadvantage of AutoFetch is that the initial queries
are executed without any prefetch at all. The consequence of this disadvan-
tage, is that the performance on the initial program iteration is equivalent to

22 Ali Ibrahim & William R. Cook

a program with unoptimized queries. However, it would be possible to combine
AutoFetch with a system such as PrefetchGuide. In such a combined system,
PrefetchGuide could handle prefetch in the first query, and also catch cases where
the statistical properties of past query executions do not allow AutoFetch to
predict correct prefetches. We believe that such a combination would provide
the best of both worlds for prefetch performance.

Automatic prefetch in object persistence architectures is similar to prefetch-
ing memory blocks as a compiler optimization. Luk and Mowry[20] have looked
at optimizing recursive data structure access by predicting which parts of the
structure will be accessed in the future. One of their approaches, history pointers,
is similar in philosophy to our traversal profiles.

7 Future Work

We presented a simple query classification algorithm which only relies on the
call stack at the moment the query is executed. Although we found this to work
quite well in practice, a more complex classification algorithm could include other
features of program state: the exact control path where the query was executed,
or the value of program variables. This richer program state representation might
classify queries too finely. Unsupervised learning techniques could be applied to
richer program state representations to learn a classification that clusters the
queries according to the similarity of their traversals. Consider the following
program fragment, where findAllFoos executes a query:

List results = findAllFoos ();
if (x > 5)

doTraversal1(results);
else

doTraversal2(results);

A learning algorithm could learn a better classification strategy than the one
described in this paper. In this case, the value of the variable x should be used
to distinguish two query classes.

A cost model for database query execution is necessary for accurate opti-
mization of prefetching. AutoFetch currently uses the simple heuristic that
it is always better to execute one query rather than two (or more) queries if
the data loaded by the second query is likely to be needed in the future. This
heuristic relies on the fact that database round-trips are expensive. However,
there are other factors that determine cost of prefetching a set objects: the cost
of the modified query, the expected size of the set of prefetched objects, the
connection latency, etc. A cost model that takes such factors into account will
have better performance and may even outperform manual prefetches since the
system would be able to take into account dynamic information about database
and program execution.

Automatic Prefetching by Traversal Profiling 23

8 Conclusion

Object prefetching is an important technique for improving performance of ap-
plications based on object persistence architectures. Current architectures rely
on the programmer to manually specify which objects to prefetch when execut-
ing a query. Correct prefetch specifications are difficult to write and maintain
as a program evolves, especially in modular programs. In this paper we pre-
sented AutoFetch, a novel technique for automatically computing prefetch
specifications. AutoFetch predicts which objects should be prefetched for a
given query based on previous query executions. AutoFetch classifies queries
executions based on the client state when the query is executed, and creates a
traversal profile to summarize which associations are traversed on the results of
the query. This information is used to predict prefetch for future queries. Be-
fore a new query is executed, a prefetch specification is generated based on the
classification of the query and its traversal profile. AutoFetch improves on pre-
vious approaches by collecting profile information across multiple queries, and
using client program state to help classify queries. We evaluated AutoFetch
using both sample applications and benchmarks and showed that we were able
to improve performance and/or simplify code.

References

1. M. P. Atkinson and O. P. Buneman. Types and persistence in database program-
ming languages. ACM Comput. Surv., 19(2):105–170, 1987.

2. M. P. Atkinson, L. Daynes, M. J. Jordan, T. Printezis, and S. Spence. An orthog-
onally persistent Java. SIGMOD Record, 25(4):68–75, 1996.

3. T. Ball and J. R. Larus. Efficient path profiling. In International Symposium on
Microarchitecture, pages 46–57, 1996.

4. P. A. Bernstein, S. Pal, and D. Shutt. Context-based prefetch for implementing
objects on relations. In Proceedings of the 25th VLDB Conference, 1999.

5. M. J. Carey, D. J. DeWitt, and J. F. Naughton. The 007 benchmark. SIGMOD
Rec., 22(2):12–21, 1993.

6. D. Cengija. Hibernate your data. onJava.com, 2004.
7. W. R. Cook and S. Rai. Safe query objects: statically typed objects as remotely

executable queries. In ICSE ’05: Proceedings of the 27th international conference
on Software engineering, pages 97–106. ACM Press, 2005.

8. G. Copeland and D. Maier. Making Smalltalk a database system. In Proceedings of
the 1984 ACM SIGMOD international conference on Management of data, pages
316–325. ACM Press, 1984.

9. K. M. Curewitz, P. Krishnan, and J. S. Vitter. Practical prefetching via data
compression. In Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’93), 1993.

10. J.-A. Dub, R. Sapir, and P. Purich. Oracle Application Server TopLink application
developers guide, 10g (9.0.4). Oracle Corporation, 2003.

11. J. A. Fisher and S. M. Freudenberger. Predicting conditional branch directions
from previous runs of a program. In ASPLOS-V: Proceedings of the fifth interna-
tional conference on Architectural support for programming languages and operating
systems, pages 85–95. ACM Press, 1992.

24 Ali Ibrahim & William R. Cook

12. G. Hamilton and R. Cattell. JDBCTM: A Java SQL API. Sun Microsystems, 1997.
13. W.-S. Han, Y.-S. Moon, and K.-Y. Whang. PrefetchGuide: capturing navigational

access patterns for prefetching in client/server object-oriented/object-relational
DBMSs. Information Sciences, 152(1):47–61, 2003.

14. W.-S. Han, Y.-S. Moon, K.-Y. Whang, and I.-Y. Song. Prefetching based on
type-level access pattern in object-relational DBMSs. In Proceedings of the 17th
International Conference on Data Engineering, pages 651–660. IEEE Computer
Society, 2001.

15. ISO/IEC. Information technology - database languages - SQL - part 3: Call-level
interface (SQL/CLI). Technical Report 9075-3:2003, ISO/IEC, 2003.

16. N. Knafla. Analysing object relationships to predict page access for prefetching. In
Eighth International Workshop on Persistent Object Systems: Design, Implemen-
tation and Use, POS-8, 1998.

17. C. Lamb, G. Landis, J. A. Orenstein, and D. Weinreb. The ObjectStore database
system. Commun. ACM, 34(10):50–63, 1991.

18. K. J. Lieberherr, B. Patt-Shamir, and D. Orleans. Traversals of object structures:
Specification and efficient implementation. ACM Trans. Program. Lang. Syst.,
26(2):370–412, 2004.

19. B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gruber, U. Maheshwari, A. C.
Myers, M. Day, and L. Shrira. Safe and efficient sharing of persistent objects
in Thor. In Proceedings of the 1996 ACM SIGMOD international conference on
Management of data, pages 318–329. ACM Press, 1996.

20. C.-K. Luk and T. C. Mowry. Compiler-based prefetching for recursive data struc-
tures. In Architectural Support for Programming Languages and Operating Systems,
pages 222–233, 1996.

21. D. Maier, J. Stein, A. Otis, and A. Purdy. Developments of an object-oriented
DBMS. In Proc. of ACM Conf. on Object-Oriented Programming, Systems, Lan-
guages and Applications, pages 472–482, 1986.

22. A. Marquez, S. Blackburn, G. Mercer, and J. N. Zigman. Implementing orthogo-
nally persistent Java. In Proceedings of the Workshop on Persistent Object Systems
(POS), 2000.

23. B. E. Martin. Uncovering database access optimizations in the middle tier with
TORPEDO. In Proceedings of the 21st International Conference on Data Engi-
neering, pages 916–926. IEEE Computer Society, 2005.

24. V. Matena and M. Hapner. Enterprise Java Beans Specification 1.0. Sun Microsys-
tems, 1998.

25. R. Morrison, R. Connor, G. Kirby, D. Munro, M. Atkinson, Q. Cutts, A. Brown,
and A. Dearle. The Napier88 persistent programming language and environment.
In Fully Integrated Data Environments, pages 98–154. Springer, 1999.

26. M. Palmer and S. B. Zdonik. Fido: A cache that learns to fetch. In Proceedings of
the 17th International Conference on Very Large Data Bases, 1991.

27. D. A. Patterson. Latency lags bandwith. Commun. ACM, 47(10):71–75, 2004.
28. C. Russell. Java Data Objects (JDO) Specification JSR-12. Sun Microsystems,

2003.
29. Raible’s wiki: StrutsResume. http://raibledesigns.com/wiki/Wiki.jsp?page=

StrutsResume, March 2006.
30. M. Venkatrao and M. Pizzo. SQL/CLI – a new binding style for SQL. SIGMOD

Record, 24(4):72–77, 1995.

