
iOS Mobile Development

Today
Views
How to draw custom stuff on screen.

Gestures
How to react to user’s touch gestures.

Demo
SuperCard

Views
A view (i.e. UIView subclass) represents a rectangular area
Defines a coordinate space

Draws and handles events in that rectangle
Hierarchical
A view has only one superview - (UIView *)superview
But can have many (or zero) subviews - (NSArray *)subviews
Subview order (in subviews array) matters: those later in the array are on top of those earlier
A view can clip its subviews to its bounds or not (switch for this in Xcode, or method in UIView).

UIWindow
The UIView at the top of the view hierarchy
Only have one UIWindow (generally) in an iOS application
It’s all about views, not windows

Views
The hierarchy is most often constructed in Xcode graphically
Even custom views are often added to the view hierarchy using Xcode (more on this later).

But it can be done in code as well
- (void)addSubview:(UIView *)aView; // sent to aView’s (soon to be) superview
- (void)removeFromSuperview; // sent to the view that is being removed

The top of this hierarchy for your MVC is the @property view!
UIViewController’s @property (strong, nonatomic) UIView *view
It is critical to understand what this very simple @property is!
This is the view whose bounds will be changed when autorotation happens, for example.
This is the view you would programmatically add subviews to.
All your MVC’s View’s UIView’s eventually have this view as their parent (it’s at the top).
It is automatically hooked up for you when you drag out a View Controller in Xcode.

Initializing a UIView
Yes, you might want to override UIView’s designated initializer
More common than overriding UIViewController’s designated initializer (but still rare).

But you will also want to set up stuff in awakeFromNib
This is because initWithFrame: is NOT called for a UIView coming out of a storyboard!
But awakeFromNib is. Same as we talked about with UIViewController.
It’s called “awakeFromNib” for historical reasons.

Typical code ...
- (void)setup { ... }
- (void)awakeFromNib { [self setup]; }
- (id)initWithFrame:(CGRect)aRect
{
 self = [super initWithFrame:aRect];
 [self setup];
 return self;
}

View Coordinates
CGFloat
Just a floating point number (depends on 64-bit or not), but we always use it for graphics.

CGPoint
C struct with two CGFloats in it: x and y.
CGPoint p = CGPointMake(34.5, 22.0);
p.x += 20; // move right by 20 points

CGSize
C struct with two CGFloats in it: width and height.
CGSize s = CGSizeMake(100.0, 200.0);
s.height += 50; // make the size 50 points taller

CGRect
C struct with a CGPoint origin and a CGSize size.
CGRect aRect = CGRectMake(45.0, 75.5, 300, 500);
aRect.size.height += 45; // make the rectangle 45 points taller
aRect.origin.x += 30; // move the rectangle to the right 30 points

(0,0) increasing x

increasing y

Coordinates
Origin of a view’s coordinate system is upper left
Units are “points” (not pixels)
Usually you don’t care about how many pixels per point are on the screen you’re drawing on.
Fonts and arcs and such automatically adjust to use higher resolution.
However, if you are drawing something detailed (like a graph), you might want to know.
There is a UIView property which will tell you:
@property CGFloat contentScaleFactor; // returns pixels per point on the screen this view is on.
This property is not readonly, but you should basically pretend that it is for this course.

Views have 3 properties related to their location and size
@property CGRect bounds; // your view’s internal drawing space’s origin and size
The bounds property is what you use inside your view’s own implementation.
It is up to your implementation as to how to interpret the meaning of bounds.origin.
@property CGPoint center; // the center of your view in your superview’s coordinate space
@property CGRect frame; // a rectangle in your superview’s coordinate space which entirely

// contains your view’s bounds.size

(400, 35)

Coordinates
Use frame and center to position the view in the hierarchy
These are used by superviews, never inside your UIView subclass’s implementation.
You might think frame.size is always equal to bounds.size, but you’d be wrong ...

View A

View B

300, 225 200250
0, 0

320

320

140, 65

View B’s bounds = ((0,0),(200,250))
View B’s frame = ((140,65),(320,320))
View B’s center = (300,225)

View B’s middle in its own coordinate space is
(bound.size.width/2+bounds.origin.x,
 bounds.size.height/2+bounds.origin.y)
which is (100,125) in this case.

Because views can be rotated
(and scaled and translated too).

Views are rarely rotated, but don’t
misuse frame or center by assuming that.

Creating Views
Most often you create views in Xcode
Of course, Xcode’s palette knows nothing about a custom view class you might create.
So you drag out a generic UIView from the palette and use the Identity Inspector
 to change the class of the UIView to your custom class (demo of this later).

How do you create a UIView in code (i.e. not in Xcode)?
Just use alloc and initWithFrame: (UIView’s designated initializer).
Can also use init (frame will be CGRectZero).

Example
CGRect labelRect = CGRectMake(20, 20, 50, 30);
UILabel *label = [[UILabel alloc] initWithFrame:labelRect];
label.text = @”Hello!”;
[self.view addSubview:label]; // Note self.view!

Custom Views
When would I want to create my own UIView subclass?
I want to do some custom drawing on screen.
I need to handle touch events in a special way (i.e. different than a button or slider does)
We’ll talk about handling touch events in a bit. First we’ll focus on drawing.

Drawing is easy ... create a UIView subclass & override 1 method
- (void)drawRect:(CGRect)aRect;
You can optimize by not drawing outside of aRect if you want (but not required).

NEVER call drawRect:!! EVER! Or else!
Instead, let iOS know that your view’s visual is out of date with one of these UIView methods:
- (void)setNeedsDisplay;
- (void)setNeedsDisplayInRect:(CGRect)aRect;
It will then set everything up and call drawRect: for you at an appropriate time.
Obviously, the second version will call your drawRect: with only rectangles that need updates.

Custom Views
So how do I implement my drawRect:?
Use the Core Graphics framework directly (a C API, not object-oriented).
Or we can use the object-oriented UIBezierPath class (we’ll do it this way).

Core Graphics Concepts
Get a context to draw into (iOS will prepare one each time your drawRect: is called)
Create paths (out of lines, arcs, etc.)
Set colors, fonts, textures, linewidths, linecaps, etc.
Stroke or fill the above-created paths

UIBezierPath
Do all of the above, but capture it with an object.
Then ask the object to stroke or fill what you’ve created.

Context
The context determines where your drawing goes
Screen (the only one we’re going to talk about today)
Offscreen Bitmap
PDF
Printer

For normal drawing, UIKit sets up the current context for you
But it is only valid during that particular call to drawRect:.
A new one is set up for you each time drawRect: is called.
So never cache the current graphics context in drawRect: to use later!

How to get this magic context?
UIBezierPath draws into the current context, so you don’t need to get it if using that.
But if you’re calling Core Graphics C functions directly, you’ll need it (it’s an argument to them).
Call the following C function inside your drawRect: method to get the current graphics context ...
CGContextRef context = UIGraphicsGetCurrentContext();

Define a Path
Begin the path
UIBezierPath *path = [[UIBezierPath alloc] init];

Move around, add lines or arcs to the path
 [path moveToPoint:CGPointMake(75, 10)];

Define a Path
Begin the path
UIBezierPath *path = [[UIBezierPath alloc] init];

Move around, add lines or arcs to the path

[path moveToPoint:CGPointMake(75, 10)];
[path addLineToPoint:CGPointMake(160, 150)];

Define a Path
Begin the path
UIBezierPath *path = [[UIBezierPath alloc] init];

Move around, add lines or arcs to the path

[path moveToPoint:CGPointMake(75, 10)];
[path addLineToPoint:CGPointMake(160, 150)];
[path addLineToPoint:CGPointMake(10, 150]);

Define a Path
Begin the path
UIBezierPath *path = [[UIBezierPath alloc] init];

Move around, add lines or arcs to the path

Close the path (connects the last point back to the first)
[path closePath]; // not strictly required but triangle won’t have all 3 sides otherwise

[path moveToPoint:CGPointMake(75, 10)];
[path addLineToPoint:CGPointMake(160, 150)];
[path addLineToPoint:CGPointMake(10, 150]);

Define a Path
Begin the path
UIBezierPath *path = [[UIBezierPath alloc] init];

Move around, add lines or arcs to the path

Close the path (connects the last point back to the first)
[path closePath]; // not strictly required but triangle won’t have all 3 sides otherwise

Now that the path has been created, we can stroke/fill it
Actually, nothing has been drawn yet, we’ve just created the UIBezierPath.

[path moveToPoint:CGPointMake(75, 10)];
[path addLineToPoint:CGPointMake(160, 150)];
[path addLineToPoint:CGPointMake(10, 150]);

Define a Path
Begin the path
UIBezierPath *path = [[UIBezierPath alloc] init];

Move around, add lines or arcs to the path

Close the path (connects the last point back to the first)
[path closePath]; // not strictly required but triangle won’t have all 3 sides otherwise

Now that the path has been created, we can stroke/fill it
Actually, nothing has been drawn yet, we’ve just created the UIBezierPath.

[path moveToPoint:CGPointMake(75, 10)];
[path addLineToPoint:CGPointMake(160, 150)];
[path addLineToPoint:CGPointMake(10, 150]);

[[UIColor greenColor] setFill];
[[UIColor redColor] setStroke];

Define a Path
Begin the path
UIBezierPath *path = [[UIBezierPath alloc] init];

Move around, add lines or arcs to the path

Close the path (connects the last point back to the first)
[path closePath]; // not strictly required but triangle won’t have all 3 sides otherwise

Now that the path has been created, we can stroke/fill it
Actually, nothing has been drawn yet, we’ve just created the UIBezierPath.

[path moveToPoint:CGPointMake(75, 10)];
[path addLineToPoint:CGPointMake(160, 150)];
[path addLineToPoint:CGPointMake(10, 150]);

[path fill]; [path stroke];

[[UIColor greenColor] setFill];
[[UIColor redColor] setStroke];

Graphics State
Can also set graphics state
e.g. path.lineWidth = 2.0; // line width in points (not pixels)

And draw rounded rects, ovals, etc.
UIBezierPath *roundedRect = [UIBezierPath bezierPathWithRoundedRect:(CGRect)bounds

cornerRadius:(CGFloat)radius];

Note: the “casts” in the arguments are just to let you know the types (i.e. they’re not required).
UIBezierPath *oval = [UIBezierPath bezierPathWithOvalInRect:(CGRect)bounds];
[roundedRect stroke];
[oval fill];

You can use a UIBezierPath to “clip” your drawing
[roundedRect addClip]; // this would clip all drawing to be inside the roundedRect

Graphics State
Drawing with transparency in UIView
You know that UIColors can have alpha.
This is how you can draw with transparency in your drawRect:.

UIView also has a backgroundColor property which can be set to transparent values.

Be sure to set @property BOOL opaque to NO in a view which is partially transparent.
If you don’t, results are unpredictable (this is a performance optimization property, by the way).

UIView‘s @property CGFloat alpha can make the entire view partially transparent.
 (you might use this to your advantage in your homework to show a “disabled” custom view)

View Transparency
What happens when views overlap?
As mentioned before, subviews list order determine’s who’s in front
Lower ones (earlier in subviews array) can “show through” transparent views on top of them

Default drawing is opaque
Transparency is not cheap (performance-wise)

Also, you can hide a view completely by setting hidden property
@property (nonatomic) BOOL hidden;
myView.hidden = YES; // view will not be on screen and will not handle events
This is not as uncommon as you might think
On a small screen, keeping it de-cluttered by hiding currently unusable views make sense.
Also this can be used to swap two (or more) views in and out depending on state.

Graphics State
Special considerations for defining drawing “subroutines”
What if you wanted to have a utility method that draws something?
You don’t want that utility method to mess up the graphics state of the calling method.
Use save and restore context functions.

- (void)drawRect:(CGRect)aRect {
 CGContextRef context = UIGraphicsGetCurrentContext();
 [[UIColor redColor] setFill];
 // do some stuff
 [self drawGreenCircle:context];
 // do more stuff and expect fill color to be red
}

- (void)drawGreenCircle:(CGContextRef)ctxt {
 CGContextSaveGState(ctxt);
 [[UIColor greenColor] setFill];
 // draw my circle
 CGContextRestoreGState(ctxt);
}

Drawing Text
We can use a UILabel as a subview to draw text in our view
But there are certainly occasions where we want to draw text in our drawRect:.

To draw in drawRect:, use NSAttributedString
NSAttributedString *text = ...;
[text drawAtPoint:(CGPoint)p]; // NSAttributedString instance method added by UIKit

How much space will a piece of text will take up when drawn?
CGSize textSize = [text size]; // another UIKit NSAttributedString instance method

You might be disturbed that there are drawing methods in Foundation (a non-UI framework!).
These NSAttributedString methods are defined in UIKit via a mechanism called categories.
 (so are the names of the attributes that define UI stuff (e.g. NSFontAttributeName)).
Categories are an Objective-C way to add methods to an existing class without subclassing.
We’ll cover how (and when) to use this a bit later in this course.

Drawing Images
UIImageView is like UILabel for images
But again, occasionally you want to draw an image in your drawRect:.

Create a UIImage object from a file in your Resources folder
UIImage *image = [UIImage imageNamed:@“foo.jpg”]; // you did this in Matchismo

Or create one from a named file or from raw data
(of course, we haven’t talked about the file system yet, but ...)
UIImage *image = [[UIImage alloc] initWithContentsOfFile:(NSString *)fullPath];
UIImage *image = [[UIImage alloc] initWithData:(NSData *)imageData];

Or you can even create one by drawing with CGContext functions
UIGraphicsBeginImageContext(CGSize);
// draw with CGContext functions
UIImage *myImage = UIGraphicsGetImageFromCurrentContext();
UIGraphicsEndImageContext();

Drawing Images
Now blast the UIImage’s bits into the current graphics context
UIImage *image = ...;
[image drawAtPoint:(CGPoint)p]; // p is upper left corner of the image
[image drawInRect:(CGRect)r]; // scales the image to fit in r
[image drawAsPatternInRect:(CGRect)patRect; // tiles the image into patRect

Aside: You can get a PNG or JPG data representation of UIImage
NSData *jpgData = UIImageJPEGRepresentation((UIImage *)myImage, (CGFloat)quality);
NSData *pngData = UIImagePNGRepresentation((UIImage *)myImage);

Redraw on bounds change?
By default, when your UIView’s bounds change, there is no redraw
Instead, the “bits” of your view will be stretched or squished or moved.

Often this is not what you want ...
Luckily, there is a UIView @property to control this! It can be set in Xcode.
@property (nonatomic) UIViewContentMode contentMode;

These content modes move the bits of your drawing to that location ...
UIViewContentMode{Left,Right,Top,Right,BottomLeft,BottomRight,TopLeft,TopRight}
These content modes stretch the bits of your drawing ...
UIViewContentModeScale{ToFill,AspectFill,AspectFit} // bit stretching/shrinking
This content mode calls drawRect: to redraw everything when the bounds changes ...
UIViewContentModeRedraw // it is quite often that this is what you want

Default is UIViewContentModeScaleToFill (stretch the bits to fill the bounds)

UIGestureRecognizer
We’ve seen how to draw in our UIView, how do we get touches?
We can get notified of the raw touch events (touch down, moved, up).
Or we can react to certain, predefined “gestures.” This latter is the way to go.

Gestures are recognized by the class UIGestureRecognizer
This class is “abstract.” We only actually use “concrete subclasses” of it.

There are two sides to using a gesture recognizer
1. Adding a gesture recognizer to a UIView to ask it to recognize that gesture.
2. Providing the implementation of a method to “handle” that gesture when it happens.

Usually #1 is done by a Controller
Though occasionally a UIView will do it to itself if it just doesn’t make sense without that gesture.

Usually #2 is provided by the UIView itself
But it would not be unreasonable for the Controller to do it.
Or for the Controller to decide it wants to handle a gesture differently than the view does.

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller
- (void)setPannableView:(UIView *)pannableView // maybe this is a setter in a Controller
{
 _pannableView = pannableView;
 UIPanGestureRecognizer *pangr =

[[UIPanGestureRecognizer alloc] initWithTarget:pannableView action:@selector(pan:)];
 [pannableView addGestureRecognizer:pangr];

}

This is a concrete subclass of UIGestureRecognizer that recognizes
“panning” (moving something around with your finger).

There are, of course, other concrete subclasses (for swipe, pinch, tap, etc.).

Note that we are specifying the view itself as the target to handle a pan gesture when it is recognized.
Thus the view will be both the recognizer and the handler of the gesture.

The UIView does not have to handle the gesture. It could be, for example, the Controller that handles it.
The View would generally handle gestures to modify how the View is drawn.

The Controller would have to handle gestures that modified the Model.

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller
- (void)setPannableView:(UIView *)pannableView // maybe this is a setter in a Controller
{
 _pannableView = pannableView;
 UIPanGestureRecognizer *pangr =

[[UIPanGestureRecognizer alloc] initWithTarget:pannableView action:@selector(pan:)];
 [pannableView addGestureRecognizer:pangr];

}

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller
- (void)setPannableView:(UIView *)pannableView // maybe this is a setter in a Controller
{
 _pannableView = pannableView;
 UIPanGestureRecognizer *pangr =

[[UIPanGestureRecognizer alloc] initWithTarget:pannableView action:@selector(pan:)];
 [pannableView addGestureRecognizer:pangr];

}

This is the action method that will be sent to the target
(the pannableView) during the handling of the recognition of this gesture.

This version of the action message takes one argument
(which is the UIGestureRecognizer that sends the action),

but there is another version that takes no arguments if you’d prefer.

We’ll look at the implementation of this method in a moment.

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller
- (void)setPannableView:(UIView *)pannableView // maybe this is a setter in a Controller
{
 _pannableView = pannableView;
 UIPanGestureRecognizer *pangr =

[[UIPanGestureRecognizer alloc] initWithTarget:pannableView action:@selector(pan:)];
 [pannableView addGestureRecognizer:pangr];

}

If we don’t do this, then even though the pannableView
implements pan:, it would never get called because we
would have never added this gesture recognizer to the

view’s list of gestures that it recognizes.

Think of this as “turning the handling of this gesture on.”

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller
- (void)setPannableView:(UIView *)pannableView // maybe this is a setter in a Controller
{
 _pannableView = pannableView;
 UIPanGestureRecognizer *pangr =

[[UIPanGestureRecognizer alloc] initWithTarget:pannableView action:@selector(pan:)];
 [pannableView addGestureRecognizer:pangr];

}

Only UIView instances can recognize a gesture (because UIViews handle all touch input).
But any object can tell a UIView to recognize a gesture (by adding a recognizer to the UIView).
And any object can handle the recognition of a gesture (by being the target of the gesture’s action).

UIGestureRecognizer
How do we implement the target of a gesture recognizer?
Each concrete class provides some methods to help you do that.

For example, UIPanGestureRecognizer provides 3 methods:
- (CGPoint)translationInView:(UIView *)aView;
- (CGPoint)velocityInView:(UIView *)aView;
- (void)setTranslation:(CGPoint)translation inView:(UIView *)aView;

Also, the base class, UIGestureRecognizer provides this @property:
@property (readonly) UIGestureRecognizerState state;
Gesture Recognizers sit around in the state Possible until they start to be recognized
Then they either go to Recognized (for discrete gestures like a tap)
Or they go to Began (for continuous gestures like a pan)
At any time, the state can change to Failed (so watch out for that)
If the gesture is continuous, it’ll move on to the Changed and eventually the Ended state
Continuous can also go to Cancelled state (if the recognizer realizes it’s not this gesture after all)

UIGestureRecognizer
So, given these methods, what would pan: look like?

- (void)pan:(UIPanGestureRecognizer *)recognizer
{
 if ((recognizer.state == UIGestureRecognizerStateChanged) ||

(recognizer.state == UIGestureRecognizerStateEnded)) {

}
}

We’re going to update our view
every time the touch moves
(and when the touch ends).
This is “smooth panning.”

UIGestureRecognizer
So, given these methods, what would pan: look like?

- (void)pan:(UIPanGestureRecognizer *)recognizer
{
 if ((recognizer.state == UIGestureRecognizerStateChanged) ||

(recognizer.state == UIGestureRecognizerStateEnded)) {
CGPoint translation = [recognizer translationInView:self];

}
}

This is the cumulative distance this gesture has moved.

UIGestureRecognizer
So, given these methods, what would pan: look like?

- (void)pan:(UIPanGestureRecognizer *)recognizer
{
 if ((recognizer.state == UIGestureRecognizerStateChanged) ||

(recognizer.state == UIGestureRecognizerStateEnded)) {
CGPoint translation = [recognizer translationInView:self];
// move something in myself (I’m a UIView) by translation.x and translation.y
// for example, if I were a graph and my origin was set by an @property called origin
self.origin = CGPointMake(self.origin.x+translation.x, self.origin.y+translation.y);

}
}

UIGestureRecognizer
So, given these methods, what would pan: look like?

- (void)pan:(UIPanGestureRecognizer *)recognizer
{
 if ((recognizer.state == UIGestureRecognizerStateChanged) ||

(recognizer.state == UIGestureRecognizerStateEnded)) {
CGPoint translation = [recognizer translationInView:self];
// move something in myself (I’m a UIView) by translation.x and translation.y
// for example, if I were a graph and my origin was set by an @property called origin
self.origin = CGPointMake(self.origin.x+translation.x, self.origin.y+translation.y);
[recognizer setTranslation:CGPointZero inView:self];

Here we are resetting the cumulative distance to zero.

Now each time this is called, we’ll get the “incremental” movement of
the gesture (which is what we want). If we wanted the “cumulative”

movement of the gesture, we would not include this line of code.

}
}

UIGestureRecognizer
So, given these methods, what would pan: look like?

- (void)pan:(UIPanGestureRecognizer *)recognizer
{
 if ((recognizer.state == UIGestureRecognizerStateChanged) ||

(recognizer.state == UIGestureRecognizerStateEnded)) {
CGPoint translation = [recognizer translationInView:self];
// move something in myself (I’m a UIView) by translation.x and translation.y
// for example, if I were a graph and my origin was set by an @property called origin
self.origin = CGPointMake(self.origin.x+translation.x, self.origin.y+translation.y);
[recognizer setTranslation:CGPointZero inView:self];

}
}

Other Concrete Gestures
UIPinchGestureRecognizer
@property CGFloat scale; // note that this is not readonly (can reset each movement)
@property (readonly) CGFloat velocity; // note that this is readonly; scale factor per second

UIRotationGestureRecognizer
@property CGFloat rotation; // not readonly; in radians
@property (readonly) CGFloat velocity; // readonly; radians per second

UISwipeGestureRecognizer
This one you “set up” (w/the following) to find certain swipe types, then look for Recognized state
@property UISwipeGestureRecognizerDirection direction; // what direction swipes you want
@property NSUInteger numberOfTouchesRequired; // two finger swipes? or just one finger? more?

UITapGestureRecognizer
Set up (w/the following) then look for Recognized state
@property NSUInteger numberOfTapsRequired; // single tap or double tap or triple tap, etc.
@property NSUInteger numberOfTouchesRequired; // e.g., require two finger tap?

Demo
SuperCard
Let’s make a lot better-looking playing card!

What to watch for ...
Custom UIView with its own drawRect:
setNeedsDisplay
UIBezierPath
Clipping
Pushing and popping graphics context
Drawing text with NSAttributedString and images with UIImage
Document Outline and Size Inspector in Xcode
Gestures recognizers hooked up in Xcode vs. programmatically
Controller vs. View as gesture handler

Coming Up

Next
Animation
Autolayout

