
Pipelining I 
 

Topics 
 Pipelining principles 

 Pipeline overheads 

 Pipeline registers and stages 

 

Systems I 
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Overview 

What’s wrong with the sequential (SEQ) Y86? 

 It’s slow! 

 Each piece of hardware is used only a small fraction of time 

 We would like to find a way to get more performance with 

only a little more hardware 

General Principles of Pipelining 

 Goal 

 Difficulties 

Creating a Pipelined Y86 Processor 

 Rearranging SEQ 

 Inserting pipeline registers 

 Problems with data and control hazards 
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Real-World Pipelines: Car Washes 

Idea 

 Divide process into 

independent stages 

 Move objects through stages 

in sequence 

 At any given times, multiple 

objects being processed 

Sequential Parallel 

Pipelined 
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Laundry example 

Ann, Brian, Cathy, Dave  
each have one load of clothes  
to wash, dry, and fold 

Washer takes 30 minutes 

 

Dryer takes 30 minutes 

 

“Folder” takes 30 minutes 
 

“Stasher” takes 30 minutes 
to put clothes into drawers 

A B C D 

Slide courtesy of D. Patterson 
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Sequential Laundry 

Sequential laundry takes 8 hours for 4 loads 

If they learned pipelining, how long would  laundry take?  
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Pipelined Laundry: Start ASAP 

Pipelined laundry takes 3.5 hours for 4 loads!  
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Pipelining Lessons 

Pipelining doesn’t help latency 
of single task, it helps 
throughput of entire workload 

Multiple tasks operating 
simultaneously using 
different resources 

Potential speedup = Number 
pipe stages 

Pipeline rate limited by slowest 
pipeline stage 

Unbalanced lengths of pipe 
stages reduces speedup 

Time to “fill” pipeline and time 
to “drain” it reduces speedup 

Stall for Dependences 
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Latency and Throughput 

Latency: time to complete an operation 

Throughput: work completed per unit time 

Consider plumbing 

 Low latency: turn on faucet and water comes out 

 High bandwidth: lots of water (e.g., to fill a pool) 

What is “High speed Internet?” 

 Low latency: needed to interactive gaming 

 High bandwidth: needed for downloading large files 

 Marketing departments like to conflate latency and 

bandwidth… 
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Relationship between Latency and 
Throughput 

Latency and bandwidth only loosely coupled 

 Henry Ford: assembly lines increase bandwidth without 

reducing latency 

My factory takes 1 day to make a Model-T ford. 

 But I can start building a new car every 10 minutes 

 At 24 hrs/day, I can make 24 * 6 = 144 cars per day 

 A special order for 1 green car, still takes 1 day 

 Throughput is increased, but latency is not. 

Latency reduction is difficult 

Often, one can buy bandwidth 

 E.g., more memory chips, more disks, more computers 

 Big server farms (e.g., google) are high bandwidth 
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Computational Example 

System 

 Computation requires total of 300 picoseconds 

 Additional 20 picoseconds to save result in register 

 Must have clock cycle of at least 320 ps 

Combinational 

logic 
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300 ps 20 ps 

Clock 

Delay = 320 ps 

Throughput = 3.12 GOPS 
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3-Way Pipelined Version 

System 

 Divide combinational logic into 3 blocks of 100 ps each 

 Can begin new operation as soon as previous one passes 

through stage A. 

 Begin new operation every 120 ps 

 Overall latency increases 

 360 ps from start to finish 
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Pipeline Diagrams 

Unpipelined 

 

 

 

 Cannot start new operation until previous one completes 

3-Way Pipelined 

 

 

 

 Up to 3 operations in process simultaneously 
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Operating a Pipeline 
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Limitations: Nonuniform Delays 

 Throughput limited by slowest stage 

 Other stages sit idle for much of the time 

 Challenging to partition system into balanced stages 
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Limitations: Register Overhead 

 As try to deepen pipeline, overhead of loading registers 

becomes more significant 

 Percentage of clock cycle spent loading register: 

 1-stage pipeline:  6.25%  

 3-stage pipeline:  16.67%  

 6-stage pipeline:  28.57% 

 High speeds of modern processor designs obtained through 

very deep pipelining 

Delay = 420 ps, Throughput = 14.29 GOPS Clock 
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CPU Performance Equation 

3 components to execution time: 

 

 

Factors affecting CPU execution time: 

Cycle

Seconds

nInstructio

Cycles

Program

nsInstructio

Program

Seconds
   timeCPU 

Inst. Count CPI Clock Rate

Program X

Compiler X (X)

Inst. Set X X (X)

Organization X X

MicroArch X X

Technology X

• Consider all three elements when optimizing 
• Workloads change! 
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Cycles Per Instruction (CPI) 

Depends on the instruction 

 

 

Average cycles per instruction 

 

 

Example: 

RateClock   n instructio of timeExecution  iCPI i





n

i tot

i
iii

IC

IC
FFCPICPI

1

      where

Op Freq Cycles CPI(i) %time

ALU 50% 1 0.5 33%

Load 20% 2 0.4 27%

Store 10% 2 0.2 13%

Branch 20% 2 0.4 27%

CPI(total) 1.5
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Comparing and Summarizing 
Performance 

Fair way to summarize performance? 

Capture in a single number? 

 

Example:  Which of the following machines is best? 

Computer A Computer B Computer C

Program 1 1 10 20

Program 2 1000 100 20

Total Time 1001 110 40
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Means 

Arithmetic mean 

Geometric mean 



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Can be weighted:  aiTi 

Represents total execution time 
Should not be used for aggregating 

normalized numbers 

Consistent independent of reference 
Best for combining results 
Best for normalized results 
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What is the geometric mean of 2 and 8? 

 A. 5 

 B. 4 
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Is Speed the Last Word in 
Performance? 
Depends on the application! 

Cost 

 Not just processor, but other components (ie. memory) 

Power consumption 

 Trade power for performance in many applications 

Capacity 

 Many database applications are I/O bound and disk 

bandwidth is the precious commodity 
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Revisiting the Performance Eqn 

Instruction Count: No change 

Clock Cycle Time 

 Improves by factor of almost N for N-deep pipeline 

 Not quite factor of N due to pipeline overheads 

Cycles Per Instruction 

 In ideal world, CPI would stay the same 

 An individual instruction takes N cycles 

 But we have N instructions in flight at a time 

 So - average CPIpipe = CPIno_pipe * N/N 

Thus performance can improve by up to factor of N 

Cycle

Seconds

nInstructio

Cycles

Program

nsInstructio

Program

Seconds
   timeCPU 
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Data Dependencies 

 Result from one instruction used as operand for another 

 Read-after-write (RAW) dependency 

 Very common in actual programs 

 Must make sure our pipeline handles these properly 

 Get correct results 

 Minimize performance impact 

1    irmovl $50, %eax 

2    addl %eax,  %ebx 

3    mrmovl 100( %ebx ),  %edx 

Time 

OP1 

OP2 

OP3 
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Data Hazards 

 Result does not feed back around in time for next operation 

 Pipelining has changed behavior of system 
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SEQ Hardware 

 Stages occur in sequence 

 One operation in process 
at a time 

 One stage for each logical 
pipeline operation 

 Fetch (get next instruction 
from memory) 

 Decode (figure out what 
instruction does and get 
values from regfile) 

 Execute (compute) 

 Memory (access data 
memory if necessary) 

 Write back (write any 
instruction result to 
regfile) 
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Instruction
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Instruction
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PC

valC valP
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SEQ+ Hardware 

 Still sequential 

implementation 

 Reorder PC stage to put at 

beginning 

PC Stage 

 Task is to select PC for 

current instruction 

 Based on results 

computed by previous 

instruction 

Processor State 

 PC is no longer stored in 

register 

 But, can determine PC 

based on other stored 

information 
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Instruction
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Instruction
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Adding Pipeline Registers 
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Pipeline Stages 

Fetch 

 Select current PC 

 Read instruction 

 Compute incremented PC 

Decode 

 Read program registers 

Execute 

 Operate ALU 

Memory 

 Read or write data memory 

Write Back 

 Update register file 
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Summary 

Today 

 Pipelining principles (assembly line) 

 Overheads due to imperfect pipelining 

 Breaking instruction execution into sequence of stages 

Next Time 
 Pipelining hardware: registers and feedback paths 

 Difficulties with pipelines: hazards 

 Method of mitigating hazards 


