
Pipelining I

Topics
 Pipelining principles

 Pipeline overheads

 Pipeline registers and stages

Systems I

2

Overview

What’s wrong with the sequential (SEQ) Y86?

 It’s slow!

 Each piece of hardware is used only a small fraction of time

 We would like to find a way to get more performance with

only a little more hardware

General Principles of Pipelining

 Goal

 Difficulties

Creating a Pipelined Y86 Processor

 Rearranging SEQ

 Inserting pipeline registers

 Problems with data and control hazards

3

Real-World Pipelines: Car Washes

Idea

 Divide process into

independent stages

 Move objects through stages

in sequence

 At any given times, multiple

objects being processed

Sequential Parallel

Pipelined

4

Laundry example

Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and fold

Washer takes 30 minutes

Dryer takes 30 minutes

“Folder” takes 30 minutes

“Stasher” takes 30 minutes
to put clothes into drawers

A B C D

Slide courtesy of D. Patterson

5

Sequential Laundry

Sequential laundry takes 8 hours for 4 loads

If they learned pipelining, how long would laundry take?

30 T

a

s

k

O

r

d

e

r

B

C

D

A
Time

30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

6 PM 7 8 9 10 11 12 1 2 AM

Slide courtesy of D. Patterson

6

Pipelined Laundry: Start ASAP

Pipelined laundry takes 3.5 hours for 4 loads!

T

a

s

k

O

r

d

e

r

12 2 AM 6 PM 7 8 9 10 11 1

Time

B

C

D

A

30 30 30 30 30 30 30

Slide courtesy of D. Patterson

7

Pipelining Lessons

Pipelining doesn’t help latency
of single task, it helps
throughput of entire workload

Multiple tasks operating
simultaneously using
different resources

Potential speedup = Number
pipe stages

Pipeline rate limited by slowest
pipeline stage

Unbalanced lengths of pipe
stages reduces speedup

Time to “fill” pipeline and time
to “drain” it reduces speedup

Stall for Dependences

6 PM 7 8 9

Time

B

C

D

A

30 30 30 30 30 30 30

T

a

s

k

O

r

d

e

r

Slide courtesy of D. Patterson

8

Latency and Throughput

Latency: time to complete an operation

Throughput: work completed per unit time

Consider plumbing

 Low latency: turn on faucet and water comes out

 High bandwidth: lots of water (e.g., to fill a pool)

What is “High speed Internet?”

 Low latency: needed to interactive gaming

 High bandwidth: needed for downloading large files

 Marketing departments like to conflate latency and

bandwidth…

9

Relationship between Latency and
Throughput

Latency and bandwidth only loosely coupled

 Henry Ford: assembly lines increase bandwidth without

reducing latency

My factory takes 1 day to make a Model-T ford.

 But I can start building a new car every 10 minutes

 At 24 hrs/day, I can make 24 * 6 = 144 cars per day

 A special order for 1 green car, still takes 1 day

 Throughput is increased, but latency is not.

Latency reduction is difficult

Often, one can buy bandwidth

 E.g., more memory chips, more disks, more computers

 Big server farms (e.g., google) are high bandwidth

10

Computational Example

System

 Computation requires total of 300 picoseconds

 Additional 20 picoseconds to save result in register

 Must have clock cycle of at least 320 ps

Combinational

logic

R

e

g

300 ps 20 ps

Clock

Delay = 320 ps

Throughput = 3.12 GOPS

11

3-Way Pipelined Version

System

 Divide combinational logic into 3 blocks of 100 ps each

 Can begin new operation as soon as previous one passes

through stage A.

 Begin new operation every 120 ps

 Overall latency increases

 360 ps from start to finish

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Delay = 360 ps

Throughput = 8.33 GOPS

12

Pipeline Diagrams

Unpipelined

 Cannot start new operation until previous one completes

3-Way Pipelined

 Up to 3 operations in process simultaneously

Time

OP1

OP2

OP3

Time

A B C

A B C

A B C

OP1

OP2

OP3

13

Operating a Pipeline

Time

OP1

OP2

OP3

A B C

A B C

A B C

0 120 240 360 480 640

Clock

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

239

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

241

R

e

g

R

e

g

R

e

g

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb.

logic

A

Comb.

logic

B

Comb.

logic

C

Clock

300

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

359

14

Limitations: Nonuniform Delays

 Throughput limited by slowest stage

 Other stages sit idle for much of the time

 Challenging to partition system into balanced stages

R

e

g

Clock

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Delay = 510 ps

Throughput = 5.88 GOPS

Comb.

logic

A

Time

OP1

OP2

OP3

A B C

A B C

A B C

15

Limitations: Register Overhead

 As try to deepen pipeline, overhead of loading registers

becomes more significant

 Percentage of clock cycle spent loading register:

 1-stage pipeline: 6.25%

 3-stage pipeline: 16.67%

 6-stage pipeline: 28.57%

 High speeds of modern processor designs obtained through

very deep pipelining

Delay = 420 ps, Throughput = 14.29 GOPS Clock

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

16

CPU Performance Equation

3 components to execution time:

Factors affecting CPU execution time:

Cycle

Seconds

nInstructio

Cycles

Program

nsInstructio

Program

Seconds
 timeCPU 

Inst. Count CPI Clock Rate

Program X

Compiler X (X)

Inst. Set X X (X)

Organization X X

MicroArch X X

Technology X

• Consider all three elements when optimizing
• Workloads change!

17

Cycles Per Instruction (CPI)

Depends on the instruction

Average cycles per instruction

Example:

RateClock n instructio of timeExecution  iCPI i





n

i tot

i
iii

IC

IC
FFCPICPI

1

 where

Op Freq Cycles CPI(i) %time

ALU 50% 1 0.5 33%

Load 20% 2 0.4 27%

Store 10% 2 0.2 13%

Branch 20% 2 0.4 27%

CPI(total) 1.5

18

Comparing and Summarizing
Performance

Fair way to summarize performance?

Capture in a single number?

Example: Which of the following machines is best?

Computer A Computer B Computer C

Program 1 1 10 20

Program 2 1000 100 20

Total Time 1001 110 40

19

Means

Arithmetic mean

Geometric mean




n

i

iT
n 1

1

nn

i

iT

1

1












Can be weighted: aiTi

Represents total execution time
Should not be used for aggregating

normalized numbers

Consistent independent of reference
Best for combining results
Best for normalized results





n

i

iT
n

Geo
1

)ln(
1

)ln(

20

What is the geometric mean of 2 and 8?

 A. 5

 B. 4

21

Is Speed the Last Word in
Performance?
Depends on the application!

Cost

 Not just processor, but other components (ie. memory)

Power consumption

 Trade power for performance in many applications

Capacity

 Many database applications are I/O bound and disk

bandwidth is the precious commodity

22

Revisiting the Performance Eqn

Instruction Count: No change

Clock Cycle Time

 Improves by factor of almost N for N-deep pipeline

 Not quite factor of N due to pipeline overheads

Cycles Per Instruction

 In ideal world, CPI would stay the same

 An individual instruction takes N cycles

 But we have N instructions in flight at a time

 So - average CPIpipe = CPIno_pipe * N/N

Thus performance can improve by up to factor of N

Cycle

Seconds

nInstructio

Cycles

Program

nsInstructio

Program

Seconds
 timeCPU 

23

Data Dependencies

 Result from one instruction used as operand for another

 Read-after-write (RAW) dependency

 Very common in actual programs

 Must make sure our pipeline handles these properly

 Get correct results

 Minimize performance impact

1 irmovl $50, %eax

2 addl %eax, %ebx

3 mrmovl 100(%ebx), %edx

Time

OP1

OP2

OP3

24

Data Hazards

 Result does not feed back around in time for next operation

 Pipelining has changed behavior of system

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

Time

OP1

OP2

OP3

A B C

A B C

A B C

OP4 A B C

25

SEQ Hardware

 Stages occur in sequence

 One operation in process
at a time

 One stage for each logical
pipeline operation

 Fetch (get next instruction
from memory)

 Decode (figure out what
instruction does and get
values from regfile)

 Execute (compute)

 Memory (access data
memory if necessary)

 Write back (write any
instruction result to
regfile)

Instruction

memory

Instruction

memory
PC

increment

PC

increment

CCCC ALUALU

Data

memory

Data

memory

New

PC

rB

dstE dstM

ALU

A

ALU

B

Mem.

control

Addr

srcA srcB

read

write

ALU

fun.

Fetch

Decode

Execute

Memory

Write back

data out

Register

file

Register

file

A B
M

E

Register

file

Register

file

A B
M

E

Bch

dstE dstM srcA srcB

icode ifun rA

PC

valC valP

valBvalA

Data

valE

valM

PC

newPC

26

Instruction

memory

Instruction

memory
PC

increment

PC

increment

CCCC ALUALU

Data

memory

Data

memory

PC

rB

dstE dstM

ALU

A

ALU

B

Mem.

control

Addr

srcA srcB

read

write

ALU

fun.

Fetch

Decode

Execute

Memory

Write back

data out

Register

file

Register

file

A B
M

E

Register

file

Register

file

A B
M

E

Bch

dstE dstM srcA srcB

icode ifun rA

pBch pValM pValC pValPpIcode

PC

valC valP

valBvalA

Data

valE

valM

PC

SEQ+ Hardware

 Still sequential

implementation

 Reorder PC stage to put at

beginning

PC Stage

 Task is to select PC for

current instruction

 Based on results

computed by previous

instruction

Processor State

 PC is no longer stored in

register

 But, can determine PC

based on other stored

information

27

Instruction

memory

Instruction

memory
PC

increment

PC

increment

CCCC
ALUALU

Data

memory

Data

memory

Fetch

Decode

Execute

Memory

Write back

icode, ifun

rA, rB

valC

Register

file

Register

file

A B
M

E

Register

file

Register

file

A B
M

E

pState

valP

srcA, srcB

dstA, dstB

valA, valB

aluA, aluB

Bch

valE

Addr, Data

valM

PC

valE, valM

valM

icode, valC

valP

PC

Adding Pipeline Registers

P C

i n c r e m e n t

P C

i n c r e m e n t

C C C C
A L U A L U

D a t a

m e m o r y

D a t a

m e m o r y

F e t c h

D e c o d e

E x e c u t e

M e m o r y

W r i t e b a c k

R e g i s t e r

f i l e

R e g i s t e r

f i l e

A B
M

E

R e g i s t e r

f i l e

R e g i s t e r

f i l e

A B
M

E

v a l P

d _ s r c A ,

d _ s r c B

v a l A , v a l B

a l u A , a l u B

B c h v a l E

A d d r , D a t a

v a l M

P C

W _ v a l E , W _ v a l M , W _ d s t E , W _ d s t M W _ i c o d e , W _ v a l M

i c o d e , i f u n ,

r A , r B , v a l C

E

M

W

F

D

v a l P

f _ P C

p r e d P C

I n s t r u c t i o n

m e m o r y

I n s t r u c t i o n

m e m o r y

M _ i c o d e ,

M _ B c h ,

M _ v a l A

28

Pipeline Stages

Fetch

 Select current PC

 Read instruction

 Compute incremented PC

Decode

 Read program registers

Execute

 Operate ALU

Memory

 Read or write data memory

Write Back

 Update register file

P C

i n c r e m e n t

P C

i n c r e m e n t

C C C C
A L U A L U

D a t a

m e m o r y

D a t a

m e m o r y

F e t c h

D e c o d e

E x e c u t e

M e m o r y

W r i t e b a c k

R e g i s t e r

f i l e

R e g i s t e r

f i l e

A B
M

E

R e g i s t e r

f i l e

R e g i s t e r

f i l e

A B
M

E

v a l P

d _ s r c A ,

d _ s r c B

v a l A , v a l B

a l u A , a l u B

B c h v a l E

A d d r , D a t a

v a l M

P C

W _ v a l E , W _ v a l M , W _ d s t E , W _ d s t M W _ i c o d e , W _ v a l M

i c o d e , i f u n ,

r A , r B , v a l C

E

M

W

F

D

v a l P

f _ P C

p r e d P C

I n s t r u c t i o n

m e m o r y

I n s t r u c t i o n

m e m o r y

M _ i c o d e ,

M _ B c h ,

M _ v a l A

29

Summary

Today

 Pipelining principles (assembly line)

 Overheads due to imperfect pipelining

 Breaking instruction execution into sequence of stages

Next Time
 Pipelining hardware: registers and feedback paths

 Difficulties with pipelines: hazards

 Method of mitigating hazards

