
CS 429H, Spring 2014
Lab 5: The Buffer Bomb

Assigned: March 6, 2014, Due: March 20, 2014

Introduction

This assignment will help you develop a detailed understanding of IA-32 calling conventions and stack
organization. It involves applying a series of buffer overflow attacks on an executable file bufbomb in the
lab directory.

Note: In this lab, you will gain firsthand experience with one of the methods commonly used to exploit
security weaknesses in operating systems and network servers. Our purpose is to help you learn about the
runtime operation of programs and to understand the nature of this form of security weakness so that you
can avoid it when you write system code. We do not condone the use of this or any other form of attack to
gain unauthorized access to any system resources. There are criminal statutes governing such activities.

Logistics

As usual, this is an individual project.

We generated the lab using gcc’s -m32 flag, so all code produced by the compiler follows IA-32 rules,
even if the host is an x86-64 system. This should be enough to convince you that the compiler can use any
calling convention it wants, so long as it’s consistent.

Hand Out Instructions

You can obtain your buffer bomb by pointing your Web browser at:

http://butterfinger.cs.utexas.edu:18213/

The server will return a tar file called buflab-handout.tar to your browser. Start by copying
buflab-handout.tar to a (protected) directory in which you plan to do your work. Then give the com-
mand “tar xvf buflab-handout.tar”. This will create a directory called buflab-handout
containing the following three executable files:

1

bufbomb: The buffer bomb program you will attack.

makecookie: Generates a “cookie” based on your userid.

hex2raw: A utility to help convert between string formats.

In the following instructions, we will assume that you have copied the three programs to a protected local
directory, and that you are executing them in that local directory.

Userids and Cookies

Phases of this lab will require a slightly different solution from each student. The correct solution will be
based on your userid.

A cookie is a string of eight hexadecimal digits that is (with high probability) unique to your userid. You can
generate your cookie with the makecookie program giving your userid as the argument. For example:

unix> ./makecookie natviv
0x66779b73

In four of your five buffer attacks, your objective will be to make your cookie show up in places where it
ordinarily would not.

The BUFBOMB Program

The BUFBOMB program reads a string from standard input. It does so with the function getbuf defined
below:

1 /* Buffer size for getbuf */
2 #define NORMAL_BUFFER_SIZE 32
3

4 int getbuf()
5 {
6 char buf[NORMAL_BUFFER_SIZE];
7 Gets(buf);
8 return 1;
9 }

The function Gets is similar to the standard library function gets—it reads a string from standard input
(terminated by ‘\n’ or end-of-file) and stores it (along with a null terminator) at the specified destination.
In this code, you can see that the destination is an array buf having sufficient space for 32 characters.

Gets (and gets) grabs a string off the input stream and stores it into its destination address (in this case
buf). However, Gets() has no way of determining whether buf is large enough to store the whole input.
It simply copies the entire input string, possibly overrunning the bounds of the storage allocated at the
destination.

2

If the string typed by the user to getbuf is no more than 31 characters long, it is clear that getbuf will
return 1, as shown by the following execution example:

unix> ./bufbomb -u natviv
Type string: I love CS 429H.
Dud: getbuf returned 0x1

Typically an error occurs if we type a longer string:

unix> ./bufbomb -u natviv
Type string: It is easier to love this class when you are a TA.
Ouch!: You caused a segmentation fault!

As the error message indicates, overrunning the buffer typically causes the program state to be corrupted,
leading to a memory access error. Your task is to be more clever with the strings you feed BUFBOMB so that
it does more interesting things. These are called exploit strings.

BUFBOMB takes several different command line arguments:

-u userid: Operate the bomb for the indicated userid. You should always provide this argument for several
reasons:

• It is required to submit your successful attacks to the grading server.

• BUFBOMB determines the cookie you will be using based on your userid, as does the program
MAKECOOKIE.

• We have built features into BUFBOMB so that some of the key stack addresses you will need to
use depend on your userid’s cookie.

-h: Print list of possible command line arguments.

-n: Operate in “Nitro” mode, as is used in Level 4 below.

-s: Submit your solution exploit string to the grading server.

At this point, you should think about the x86 stack structure a bit and figure out what entries of the stack you
will be targeting. You may also want to think about exactly why the last example created a segmentation
fault, although this is less clear.

Your exploit strings will typically contain byte values that do not correspond to the ASCII values for printing
characters. The program HEX2RAW can help you generate these raw strings. It takes as input a hex-
formatted string. In this format, each byte value is represented by two hex digits. For example, the string
“012345” could be entered in hex format as “30 31 32 33 34 35.” (Recall that the ASCII code for
decimal digit x is 0x3x.)

The hex characters you pass HEX2RAW should be separated by whitespace (blanks or newlines). I recom-
mend separating different parts of your exploit string with newlines while you’re working on it. HEX2RAW

also supports C-style block comments, so you can mark off sections of your exploit string. For example:

3

bf 66 7b 32 78 /* mov $0x78327b66,%edi */

Be sure to leave space around both the starting and ending comment strings (‘/*’, ‘*/’) so they will be
properly ignored.

If you generate a hex-formatted exploit string in the file exploit.txt, you can apply the raw string to
BUFBOMB in several different ways:

1. You can set up a series of pipes to pass the string through HEX2RAW.

unix> cat exploit.txt | ./hex2raw | ./bufbomb -u natviv

2. You can store the raw string in a file and use I/O redirection to supply it to BUFBOMB:

unix> ./hex2raw < exploit.txt > exploit-raw.txt
unix> ./bufbomb -u natviv < exploit-raw.txt

This approach can also be used when running BUFBOMB from within GDB:

unix> gdb bufbomb
(gdb) run -u natviv < exploit-raw.txt

Important points:

• Your exploit string must not contain byte value 0x0A at any intermediate position, since this is the
ASCII code for newline (‘\n’). When Gets encounters this byte, it will assume you intended to
terminate the string.

• HEX2RAW expects two-digit hex values separated by a whitespace. So if you want to create a byte
with a hex value of 0, you need to specify 00. To create the word 0xDEADBEEF you should pass DE
AD BE EF to HEX2RAW.

When you have correctly solved one of the levels, say level 0:

../hex2raw < smoke-natviv.txt | ../bufbomb -u natviv
Userid: natviv
Cookie: 0x1005b2b7
Type string:Smoke!: You called smoke()
VALID
NICE JOB!

then you can submit your solution to the grading server using the -s option:

./hex2raw < smoke-natviv.txt | ./bufbomb -u natviv -s
Userid: natviv
Cookie: 0x1005b2b7
Type string:Smoke!: You called smoke()
VALID
Sent exploit string to server to be validated.
NICE JOB!

4

The server will test your exploit string to make sure it really works, and it will update the Buffer Lab
scoreboard page indicating that your userid (listed by your cookie for anonymity) has completed this level.

You can view the scoreboard by pointing your Web browser at

http://butterfinger.cs.utexas.edu:18213/scoreboard

Unlike the Bomb Lab, there is no penalty for making mistakes in this lab. Feel free to fire away at BUFBOMB

with any string you like. Of course, you shouldn’t brute force this lab either, since it would take longer than
you have to do the assignment.

IMPORTANT NOTE: You can work on your buffer bomb on any Linux machine, but in order to submit
your solution, you will need to be running on any of the machines as stated previously for the Bomb Lab

Level 0: Candle (10 pts)

The function getbuf is called within BUFBOMB by a function test having the following C code:

1 void test()
2 {
3 int val;
4 /* Put canary on stack to detect possible corruption */
5 volatile int local = uniqueval();
6

7 val = getbuf();
8

9 /* Check for corrupted stack */
10 if (local != uniqueval()) {
11 printf("Sabotaged!: the stack has been corrupted\n");
12 }
13 else if (val == cookie) {
14 printf("Boom!: getbuf returned 0x%x\n", val);
15 validate(3);
16 } else {
17 printf("Dud: getbuf returned 0x%x\n", val);
18 }
19 }

When getbuf executes its return statement (line 5 of getbuf), the program ordinarily resumes execution
within function test (at line 7 of this function). We want to change this behavior. Within the file bufbomb,
there is a function smoke having the following C code:

void smoke()
{

5

printf("Smoke!: You called smoke()\n");
validate(0);
exit(0);

}

Your task is to get BUFBOMB to execute the code for smoke when getbuf executes its return statement,
rather than returning to test. Note that your exploit string may also corrupt parts of the stack not directly
related to this stage, but this will not cause a problem, since smoke causes the program to exit directly.

Some Advice:

• All the information you need to devise your exploit string for this level can be determined by exam-
ining a disassembled version of BUFBOMB. Use objdump -d to get this dissembled version.

• Be careful about byte ordering.

• You might want to use GDB to step the program through the last few instructions of getbuf to make
sure it is doing the right thing.

• The placement of buf within the stack frame for getbuf depends on which version of GCC was
used to compile bufbomb, so you will have to read some assembly to figure out its true location.

Level 1: Sparkler (10 pts)

Within the file bufbomb there is also a function fizz having the following C code:

void fizz(int val)
{

if (val == cookie) {
printf("Fizz!: You called fizz(0x%x)\n", val);
validate(1);

} else
printf("Misfire: You called fizz(0x%x)\n", val);

exit(0);
}

Similar to Level 0, your task is to get BUFBOMB to execute the code for fizz rather than returning to
test. In this case, however, you must make it appear to fizz as if you have passed your cookie as its
argument. How can you do this?

Some Advice:

• Note that the program won’t really call fizz—it will simply execute its code. This has important
implications for where on the stack you want to place your cookie.

6

Level 2: Firecracker (15 pts)

A much more sophisticated form of buffer attack involves supplying a string that encodes actual machine in-
structions. The exploit string then overwrites the return pointer with the starting address of these instructions
on the stack. When the calling function (in this case getbuf) executes its ret instruction, the program
will start executing the instructions on the stack rather than returning. With this form of attack, you can get
the program to do almost anything. The code you place on the stack is called the exploit code. This style of
attack is tricky, though, because you must get machine code onto the stack and set the return pointer to the
start of this code.

Within the file bufbomb there is a function bang having the following C code:

int global_value = 0;

void bang(int val)
{

if (global_value == cookie) {
printf("Bang!: You set global_value to 0x%x\n", global_value);
validate(2);

} else
printf("Misfire: global_value = 0x%x\n", global_value);

exit(0);
}

Similar to Levels 0 and 1, your task is to get BUFBOMB to execute the code for bang rather than returning
to test. Before this, however, you must set global variable global_value to your userid’s cookie. Your
exploit code should set global_value, push the address of bang on the stack, and then execute a ret
instruction to cause a jump to the code for bang.

Some Advice:

• You can use GDB to get the information you need to construct your exploit string. Set a break-
point within getbuf and run to this breakpoint. Determine parameters such as the address of
global_value and the location of the buffer.

• Determining the byte encoding of instruction sequences by hand is tedious and prone to errors. You
can let tools do all of the work by writing an assembly code file containing the instructions and
data you want to put on the stack. Assemble this file with gcc -m32 -c and disassemble it with
objdump -d. You should be able to get the exact byte sequence that you will type at the prompt.
(A brief example of how to do this is included at the end of this writeup.)

• Keep in mind that your exploit string depends on your machine, your compiler, and even your userid’s
cookie. Do all of your work on one of the machines assigned by your instructor, and make sure you
include the proper userid on the command line to BUFBOMB.

• Watch your use of address modes when writing assembly code. Note that movl $0x4, %eax
moves the value 0x00000004 into register %eax; whereas movl 0x4, %eax moves the value

7

at memory location 0x00000004 into %eax. Since that memory location is usually undefined, the
second instruction will cause a segfault!

• Do not attempt to use either a jmp or a call instruction to jump to the code for bang. These
instructions uses PC-relative addressing, which is very tricky to set up correctly. Instead, push an
address on the stack and use the ret instruction.

Level 3: Dynamite (20 pts)

Our preceding attacks have all caused the program to jump to the code for some other function, which
then causes the program to exit. As a result, it was acceptable to use exploit strings that corrupt the stack,
overwriting saved values.

The most sophisticated form of buffer overflow attack causes the program to execute some exploit code that
changes the program’s register/memory state, but makes the program return to the original calling function
(test in this case). The calling function is oblivious to the attack. This style of attack is tricky, though,
since you must: 1) get machine code onto the stack, 2) set the return pointer to the start of this code, and 3)
undo any corruptions made to the stack state.

Your job for this level is to supply an exploit string that will cause getbuf to return your cookie back to
test, rather than the value 1. You can see in the code for test that this will cause the program to go
“Boom!.” Your exploit code should set your cookie as the return value, restore any corrupted state, push
the correct return location on the stack, and execute a ret instruction to really return to test.

Some Advice:

• You can use GDB to get the information you need to construct your exploit string. Set a breakpoint
within getbuf and run to this breakpoint. Determine parameters such as the saved return address.

• Determining the byte encoding of instruction sequences by hand is tedious and prone to errors. You
can let tools do all of the work by writing an assembly code file containing the instructions and data
you want to put on the stack. Assemble this file with GCC and disassemble it with OBJDUMP. You
should be able to get the exact byte sequence that you will type at the prompt. (A brief example of
how to do this is included at the end of this writeup.)

• Keep in mind that your exploit string depends on your machine, your compiler, and even your userid’s
cookie. Do all of your work on the machines assigned by your instructor, and make sure you include
the proper userid on the command line to BUFBOMB.

Once you complete this level, pause to reflect on what you have accomplished. You caused a program to
execute machine code of your own design. You have done so in a sufficiently stealthy way that the program
did not realize that anything was amiss.

Level 4: Nitroglycerin (10 pts)

Please note: You’ll need to use the “-n,” command-line flag in order to run this stage.

8

From one run to another, especially by different users, the exact stack positions used by a given procedure
will vary. One reason for this variation is that the values of all environment variables are placed near the
base of the stack when a program starts executing. Environment variables are stored as strings, requiring
different amounts of storage depending on their values. Thus, the stack space allocated for a given user
depends on the settings of his or her environment variables. Stack positions also differ when running a
program under GDB, since GDB uses stack space for some of its own state.

In the code that calls getbuf, we have incorporated features that stabilize the stack, so that the position of
getbuf’s stack frame will be consistent between runs. This made it possible for you to write an exploit
string knowing the exact starting address of buf. If you tried to use such an exploit on a normal program,
you would find that it works some times, but it causes segmentation faults at other times. Hence the name
“dynamite”—an explosive developed by Alfred Nobel that contains stabilizing elements to make it less
prone to unexpected explosions.

For this level, we have gone the opposite direction, making the stack positions even less stable than they
normally are. Hence the name “nitroglycerin”—an explosive that is notoriously unstable.

When you run BUFBOMB with the command line flag “-n,” it will run in “Nitro” mode. Rather than calling
the function getbuf, the program calls a slightly different function getbufn:

/* Buffer size for getbufn */
#define KABOOM_BUFFER_SIZE 512

This function is similar to getbuf, except that it has a buffer of 512 characters. You will need this ad-
ditional space to create a reliable exploit. The code that calls getbufn first allocates a random amount
of storage on the stack, such that if you sample the value of %ebp during two successive executions of
getbufn, you would find they differ by as much as ±240.

In addition, when run in Nitro mode, BUFBOMB requires you to supply your string 5 times, and it will
execute getbufn 5 times, each with a different stack offset. Your exploit string must make it return your
cookie each of these times.

Your task is identical to the task for the Dynamite level. Once again, your job for this level is to supply an
exploit string that will cause getbufn to return your cookie back to test, rather than the value 1. You can
see in the code for test that this will cause the program to go “KABOOM!.” Your exploit code should set
your cookie as the return value, restore any corrupted state, push the correct return location on the stack,
and execute a ret instruction to really return to testn.

Some Advice:

• You can use the program HEX2RAW to send multiple copies of your exploit string. If you have a
single copy in the file exploit.txt, then you can use the following command:

unix> cat exploit.txt | ./hex2raw -n | ./bufbomb -n -u natviv

You must use the same string for all 5 executions of getbufn. Otherwise it will fail the testing code
used by our grading server.

9

• The trick is to make use of the nop instruction. It is encoded with a single byte (code 0x90). It may
be useful to read about ”nop sleds” in the textbook.

Logistical Notes

Handin occurs to the grading server whenever you correctly solve a level and use the -s option. Upon
receiving your solution, the server will validate your string and update the Buffer Lab scoreboard Web page,
which you can view by pointing your Web browser at

http://butterfinger.cs.utexas.edu:18213/scoreboard

You should be sure to check this page after your submission to make sure your string has been validated. (If
you really solved the level, your string should be valid.)

Note that each level is graded individually. You do not need to do them in the specified order, but you will
get credit only for the levels for which the server receives a valid message. You can check the Buffer Lab
scoreboard to see how far you’ve gotten.

The grading server creates the scoreboard by using the latest results it has for each phase.

Good luck and have fun!

Generating Byte Codes

Using GCC as an assembler and OBJDUMP as a disassembler makes it convenient to generate the byte codes
for instruction sequences. For example, suppose we write a file example.S containing the following
assembly code:

Example of hand-generated assembly code

push $0xabcdef # Push value onto stack
add $17,%eax # Add 17 to %eax
.align 4 # Following will be aligned on multiple of 4
.long 0xfedcba98 # A 4-byte constant

The code can contain a mixture of instructions and data. Anything to the right of a ‘#’ character is a
comment.

We can now assemble and disassemble this file:

unix> gcc -m32 -c example.S
unix> objdump -d example.o > example.d

The generated file example.d contains the following lines

10

0: 68 ef cd ab 00 push $0xabcdef
5: 83 c0 11 add $0x11,%eax
8: 98 cwtl
9: ba .byte 0xba
a: dc fe fdivr %st,%st(6)

Each line shows a single instruction. The number on the left indicates the starting address (starting with 0),
while the hex digits after the ‘:’ character indicate the byte codes for the instruction. Thus, we can see that
the instruction push $0xABCDEF has hex-formatted byte code 68 ef cd ab 00.

Starting at address 8, the disassembler gets confused. It tries to interpret the bytes in the file example.o as
instructions, but these bytes actually correspond to data. Note, however, that if we read off the 4 bytes start-
ing at address 8 we get: 98 ba dc fe. This is a byte-reversed version of the data word 0xFEDCBA98.
This byte reversal represents the proper way to supply the bytes as a string, since a little endian machine
lists the least significant byte first.

Finally, we can read off the byte sequence for our code as:

68 ef cd ab 00 83 c0 11 98 ba dc fe

This string can then be passed through HEX2RAW to generate a proper input string we can give to BUFBOMB.
Alternatively, we can edit example.d to look like this:

68 ef cd ab 00 /* push $0xabcdef */
83 c0 11 /* add $0x11,%eax */
98
ba dc fe

which is also a valid input we can pass through HEX2RAW before sending to BUFBOMB.

11

