COURSE OVERVIEW

COMPUTER ARCHITECTURE AND ORGANIZATION

Instructor:
Professor Emmett Witchel

~ \University of Texas atAustn
Overview

* Course theme
* Five realities

* Logistics

-~ |Uniersity of Texas atAustn
Course Theme:

Abstraction Is Good But Don’t Forget Reality

* Most CS and CE courses emphasize abstraction
Abstract data types
Asymptotic analysis
* These abstractions have limits
Especially in the presence of bugs
Need to understand details of underlying implementations

* Useful outcomes
Become more effective programmers
* Able to find and eliminate bugs efficiently
* Able to understand and tune for program performance
Prepare for later “systems” classes in CS & ECE

* Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems

Great Reality #1:
Ints are not Integers, Floats are not Reals

* Example 1:1s x2 > 02

P I v ,306... 1,307... . 32,767...-32,78...| | .. -32,767...-32.766 ...
Floats: Yes! BARA @M Bon M .
R p V@m@&% S g
B O P
Ints: ; ﬁ

* 40000 * 40000 1600000000
* 50000 * 50000 - 22

* Example 2:Is(x +y)+z = x + (y + z)?
Unsigned & Signed Ints: Yes!

Floats:
© (1e20 + -1€20) + 3.14 --> 3.14
© 1e20 + (-1€20 + 3.14) --> 22

Source: xked.com/571 4

Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel(void *user_dest, int maxlen) {

/* Byte count len i1s minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

* Similar to code found in FreeBSD’s implementation of
getpeername

* There are legions of smart people trying to find
vulnerabilities in programs

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel(void *user_dest, int maxlen) {

/* Byte count len 1s minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, MSIZE);
printf(“%s\n”’, mybuf);

Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel(void *user _dest, int maxlen) {

/* Byte count len 1s minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel (mybuf, -MSIZE);

e e el sl
Computer Arithmetic

* Does not generate random values
Arithmetic operations have important mathematical properties

* Cannot assume all “usual” mathematical properties
Due to finiteness of representations

Integer operations satisfy “ring” properties
* Commutativity, associativity, distributivity

Floating point operations satisfy “ordering” properties
* Monotonicity, values of signs
* QObservation
Need to understand which abstractions apply in which contexts

Important issues for compiler writers and serious application
programmers

.~ \Uniersity of Texas atAustin
Great Reality #2:

You’ve Got to Know Assembly

* Chances are, you'll never write programs in assembly
Compilers are much better & more patient than you are

* But: Understanding assembly is key to machine-level
execution model
Behavior of programs in presence of bugs
* High-level language models break down
Tuning program performance
* Understand optimizations done / not done by the compiler
* Understanding sources of program inefficiency
Implementing system software
* Compiler has machine code as target
* Operating systems must manage process state
Creating / fighting malware
* x86 assembly is the language of choice!

Assembly Code Example

* Time Stamp Counter
Special 64-bit register in Intel-compatible machines
Incremented every clock cycle
Read with rdtsc instruction

* Application

Measure time (in clock cycles) required by procedure

double t;
start_counter();
PO;

t = get _counter();
printf(""P required %f clock cycles\n”, t);

10

- \Uniersityof Texas atAustin
Code to Read Counter

* Write small amount of assembly code using GCC’s
asm facility

* Inserts assembly code into machine code generated
by compiler

O-

static unsigned cyc_hi ;
0;

static unsigned cyc lo =

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/

void access_counter(unsigned *hi, unsigned *l10)

{

asm('rdtsc; movl %%edx,%0; movl %%eax,%l"

"= C*hi), "=r" (*lo)

- "%edx™, "%eax™);

11

- \UnversityofTexasatAustn
Great Reality #3: Memory Matters

Random Access Memory Is an Unphysical Abstraction

* Memory is not unbounded
It must be allocated and managed
Many applications are memory dominated

* Memory referencing bugs especially pernicious
Effects are distant in both time and space

* Memory performance is not uniform

Cache and virtual memory effects can greatly affect
program performance

Adapting program to characteristics of memory system can
lead to major speed improvements

12

e e el sl
Memory Referencing Bug Example

double fun(int 1)

{ volatile double d[1] = {3.14};
volatile long Int a[2];
a[i1] = 1073741824 ; /* Possibly out of bounds */
return d[O];

+

fun(0) = 3.14

fun(l) = 3.14

fun(2) - 3.1399998664856

fun(3) = 2.00000061035156

fun(4) - 3.14, then segmentation fault

* Result is architecture specific

13

Memory Referencing Bug Example

double fun(int 1)
{

return d[O];

}

volatile double d[1] = {3.14};
volatile long iInt aJ2];
a[i1] = 1073741824 ; /* Possibly out of bounds */

fun(0)
fun(l)
fun(2)
fun(3)
fun(4)

Explanation:

3.14
3.14

28 20 28 20 2

Saved State

d7 ...d4

d3...do

a[l]

a[0]

4

o PN W

\

3.1399998664856
2.00000061035156
3.14, then segmentation fault

Location accessed by

" fun(i)

14

el esaausile
Memory Referencing Errors

* C and C++ do not provide any memory protection
Out of bounds array references
Invalid pointer values
Abuses of malloc/free

* Can lead to nasty bugs
Whether or not bug has any effect depends on system and compiler
Action at a distance
* Corrupted object logically unrelated to one being accessed
* Effect of bug may be first observed long after it is generated
* How can | deal with this¢
Program in Java, Ruby or ML
Understand what possible interactions may occur
Use or develop tools to detect referencing errors (e.g. Valgrind)

15

Memory System Performance Example

void copyij(int src[2048][2048],
int dst[2048][2048])
{

inti,j;
for (1=0;1<2048; i++)
for (j = 0;) < 2048; j++)
dst[i][i] = src[i]0];
}

void copyji(int src[2048][2048],
int dst[2048][2048])
{

inti,j;

for j = 0;] < 2048; j++)

~for (i=0;i<2048; i++)
dst[i][j] = src[i]{;

}

21 times slower

* Hierarchical memory organization (Pentium 4)
* Performance depends on access patterns

Including how step through multi-dimensional array

16

The Memory Mountain

L1 Intel Core i7

7000 T copy i j 2.67 GHz

32 KB L1 d-cache

6000 - 256 KB L2 cache
_ 8 MB L3 cache
§ 5000 -
=3
§ 4000
g’ L2
= 3000 -
<
o 2000 - L3

1000 -

copyj 1
0
¥ o b
N Mem 9
(7)) ?’3) 0]
) .
Stride (x8 bytes) 5 N = Size (bytes)
(7]

64M

17

- \Uniersityof Texas atAustin
Great Reality #4: There’s more to

performance than asymptotic complexity

* Constant factors matter tool!

* And even exact op count does not predict performance

Easily see 10:1 performance range depending on how code
written

Must optimize at multiple levels: algorithm, data
representations, procedures, and loops

* Must understand system to optimize performance
How programs compiled and executed

How to measure program performance and identify
bottlenecks

How to improve performance without destroying code

modularity and generality
18

el esaausile
Example Matrix Multiplication

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)

Gflop/s
Best code (If_. Goto)

37500

25000

12500 Triple loop

0 - —

0 2,250 4,500 6.750 9,000

I
* Standard desktop computer, venggng:r;piler, using optimization flags

* Both implementations have exactly the same operations count (2n3)

* What is going on?

19

MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflop/s
50000
—D— =
—a
37500
Multiple threads: 4x
25000
12500 : |
B Vector instructions: 4x
- ’ Emory nierarcny anad otner optmizations: 20X
0 t‘_" :' X) \Y P .
0 2,250 4,500 6,750 9,000

matrix size
m Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,

instruction scheduling, search to find best choice
m Effect: fewer register spills, L1/L2 cache misses, and TLB misses N

e e el sl
Course Perspective

* Most Systems Courses are Builder-Centric
Computer Architecture
* Design pipelined processor in Verilog
Operating Systems
* Implement large portions of operating system
Compilers
* Write compiler for simple language

Networking

* Implement and simulate network protocols

23

S University of Texas ab Austin
Course Perspective (Cont.)

* Qur Course is Programmer-Centric

Purpose is to show how by knowing more about the
underlying system, one can be more effective as a
programmer

Enable you to
* Write programs that are more reliable and efficient

* Incorporate features that require hooks into OS

E.g., concurrency, signal handlers

Not just a course for dedicated hackers

* We bring out the hidden hacker in everyone

Cover material in this course that you won’t see elsewhere

24

- \Uniersityof Texas atAustin
Textbooks

* Randal E. Bryant and David R. O’Hallaron,

“Computer Systems: A Programmer’s Perspective, Second
Edition” (CS:APP2e), Prentice Hall, 2011

http:/ /csapp.cs.cmu.edu

This book really matters for the coursel!
* How to solve labs
* Practice problems typical of exam problems

* Brian Kernighan and Dennis Ritchie,

“The C Programming Language, Second Edition”, Prentice
Hall, 1988

26

e e el sl
Course Components

* Lectures
Higher level concepts

* Recitations

Applied concepts, important tools and skills for labs, clarification
of lectures, exam coverage

Labs (7)

The heart of the course

1-3 weeks each
Provide in-depth understanding of an aspect of systems
Programming and measurement
* Exams (3)
Test your understanding of concepts & mathematical principles

27

el esaausile
Course Learning

* Lectures

Good for overview, resolving questions, flagging topics
for further review

* Reading
Good for specifics, good preparation for lecture
* Homeworks
Cement your understanding, give each other questions

* Exams will require you to understand the material.
Such understanding likely requires attending lecture
and reading.

28

el esaausile
Getting Help

* Class Web Page

Complete schedule of lectures, exams, and assignments
Copies of lectures, assignments, exams, solutions

Clarifications to assignments

* Message Board

We will use piazza

* 1:1 Appointments
Office hours on web page

You can schedule 1:1 appointments with any of the teaching staff

29

Policies: Assignments (Labs) And Exams

Work groups
You must work alone on all assignments
* Handins
Assignments due at 11:59pm on Thurs evening
Electronic handins using turnin (no exceptionsl)
* Conflicts for exams, other irreducible conflicts
OK, but must make PRIOR arrangements at start of semester

Notifying us well ahead of time shows maturity and makes things easier
for us (and thus we work harder to help you with your problem)

* Testing accommodation
Please submit requests within 1 week of course start

* Appealing grades
Within 7 days of completion of grading, in writing

31

Facilities

* See course information for lab location

* Need a ¢s account (mandatoryl)
Request one here

https: / /apps.cs.utexas.edu/udb /newaccount /

* cs.utexas.edu machines

* Public labs

http:/ /www.cs.utexas.edu /facilities /public-
labs

32

http://apps.cs.utexas.edu/unixlabstatus/

~ \University of Texas atAustn
Timeliness

Grace days
4 slip days for the course
Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks
Save them until late in the term!

Lateness penalties
Once slip day(s) used up, get penalized 20% per day
No handins later than 3 days after due date

Catastrophic events
Maijor illness, death in family,
Formulate a plan (with your academic advisor) to get back on track

Adyvice

Once you start running late, it’s really hard to catch up

33

e el enaiausilin
Cheating

What is cheating?
Sharing code: by copying, retyping, looking at, or supplying a file
Coaching: helping your friend to write a lab, line by line

Copying code from previous course or from elsewhere on WWW
* Only allowed to use code we supply, or from CS:APP website

What is NOT cheating?

Explaining how to use systems or tools

Helping others with high-level design issues

Please identify your collaborators explicitly on HW and labs
* Penalty for cheating:

Removal from course with failing grade

Permanent mark on your record
* Detection of cheating:

We do check

Our tools for doing this are much better than most cheaters think! 9

- \Uniersityof Texas atAustin
Other Rules of the Lecture Hall

* Laptops: not permitted (danger, youtube)

See me for exceptions

* Electronic communications: forbidden

No email, instant messaging, cell phone calls, etc

* No audio or video recording

* Presence in lectures, recitations: mandatory

35

S University of Texas ab Austin
Policies: Grading (approximate)

* Exams (50-60%)

> Labs (30-40%)

* Homeworks (5%)

* Class particpation (5%)

* Graded on a curve

36

el esaausile
Programs and Data

* Topics
Bits operations, arithmetic, assembly language programs
Representation of C control and data structures

Includes aspects of architecture and compilers

* Assignments
L1 (datalab): Manipulating bits
L2 (archlab): Y86 (assembly) Programming
L3 (bomblab): Defusing a binary bomb

37

el esaausile
Architecture: Datapath & Pipelining

* Topics
How does a processor fetch, decode & execute code?

Pipelined processors, latency, and throughput

* Assignments

L4 (archlab): Extending a basic processor
implementation

L5 (archlab): Modifying a pipelined processor

38

el esaausile
The Memory Hierarchy

* Topics

Memory technology, memory hierarchy, caches, disks,
locality

Includes aspects of architecture and OS

* Assignments

L6 (memlab): Mapping the performance of the memory
hierarchy

39

el esaausile
Performance Analysis

* Topics

Co-optimization (control and data), measuring time on a
computer

Includes aspects of architecture, compilers, and OS

* Assignments

L7 (perflab): Manually optimizing an algorithm

40

- \Uniersityof Texas atAustin
Lab Rationale

* Each lab has a well-defined goal such as solving a
puzzle or winning a contest

* Doing the lab should result in new skills and
concepts

* We try to use competition in a fun and healthy way

Set a reasonable threshold for full credit

44

Welcome
and Enjoy!

	Slide Number 1
	Overview
	Course Theme:�Abstraction Is Good But Don’t Forget Reality
	Great Reality #1: �Ints are not Integers, Floats are not Reals
	Code Security Example
	Typical Usage
	Malicious Usage
	Computer Arithmetic
	Great Reality #2: �You’ve Got to Know Assembly
	Assembly Code Example
	Code to Read Counter
	Great Reality #3: Memory Matters�Random Access Memory Is an Unphysical Abstraction
	Memory Referencing Bug Example
	Memory Referencing Bug Example
	Memory Referencing Errors
	Memory System Performance Example
	The Memory Mountain
	Great Reality #4: There’s more to performance than asymptotic complexity�
	Example Matrix Multiplication
	MMM Plot: Analysis
	Course Perspective
	Course Perspective (Cont.)
	Textbooks
	Course Components
	Course Learning
	Getting Help	
	Policies: Assignments (Labs) And Exams
	Facilities
	Timeliness
	Cheating
	Other Rules of the Lecture Hall
	Policies: Grading (approximate)
	Programs and Data
	Architecture: Datapath & Pipelining
	The Memory Hierarchy
	Performance Analysis
	Lab Rationale
	Welcome and Enjoy!

