
COURSE OVERVIEW

COMPUTER ARCHITECTURE AND ORGANIZATION

Instructor:
Professor Emmett Witchel

2

University of Texas at Austin

Overview

• Course theme
• Five realities
• Logistics

3

University of Texas at Austin

Course Theme:
Abstraction Is Good But Don’t Forget Reality

• Most CS and CE courses emphasize abstraction
• Abstract data types
• Asymptotic analysis

• These abstractions have limits
• Especially in the presence of bugs
• Need to understand details of underlying implementations

• Useful outcomes
• Become more effective programmers

• Able to find and eliminate bugs efficiently
• Able to understand and tune for program performance

• Prepare for later “systems” classes in CS & ECE
• Compilers, Operating Systems, Networks, Computer Architecture,

Embedded Systems

4

University of Texas at Austin

Great Reality #1:
Ints are not Integers, Floats are not Reals

• Example 1: Is x2 ≥ 0?

• Floats: Yes!

• Ints:
• 40000 * 40000 →1600000000
• 50000 * 50000 → ??

• Example 2: Is (x + y) + z = x + (y + z)?
• Unsigned & Signed Ints: Yes!
• Floats:

• (1e20 + -1e20) + 3.14 --> 3.14
• 1e20 + (-1e20 + 3.14) --> ??

Source: xkcd.com/571

5

University of Texas at Austin

Code Security Example

• Similar to code found in FreeBSD’s implementation of
getpeername

• There are legions of smart people trying to find
vulnerabilities in programs

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

6

University of Texas at Austin

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, MSIZE);
printf(“%s\n”, mybuf);

}

7

University of Texas at Austin

Malicious Usage

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, -MSIZE);
. . .

}

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

8

University of Texas at Austin

Computer Arithmetic

• Does not generate random values
• Arithmetic operations have important mathematical properties

• Cannot assume all “usual” mathematical properties
• Due to finiteness of representations
• Integer operations satisfy “ring” properties

• Commutativity, associativity, distributivity
• Floating point operations satisfy “ordering” properties

• Monotonicity, values of signs
• Observation

• Need to understand which abstractions apply in which contexts
• Important issues for compiler writers and serious application

programmers

9

University of Texas at Austin

Great Reality #2:
You’ve Got to Know Assembly

• Chances are, you’ll never write programs in assembly
• Compilers are much better & more patient than you are

• But: Understanding assembly is key to machine-level
execution model
• Behavior of programs in presence of bugs

• High-level language models break down
• Tuning program performance

• Understand optimizations done / not done by the compiler
• Understanding sources of program inefficiency

• Implementing system software
• Compiler has machine code as target
• Operating systems must manage process state

• Creating / fighting malware
• x86 assembly is the language of choice!

10

University of Texas at Austin

Assembly Code Example

• Time Stamp Counter
• Special 64-bit register in Intel-compatible machines
• Incremented every clock cycle
• Read with rdtsc instruction

• Application
• Measure time (in clock cycles) required by procedure

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);

11

University of Texas at Austin

Code to Read Counter

• Write small amount of assembly code using GCC’s
asm facility

• Inserts assembly code into machine code generated
by compiler

static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/
void access_counter(unsigned *hi, unsigned *lo)
{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
: "=r" (*hi), "=r" (*lo)
:
: "%edx", "%eax");

}

12

University of Texas at Austin

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

• Memory is not unbounded
• It must be allocated and managed
• Many applications are memory dominated

• Memory referencing bugs especially pernicious
• Effects are distant in both time and space

• Memory performance is not uniform
• Cache and virtual memory effects can greatly affect

program performance
• Adapting program to characteristics of memory system can

lead to major speed improvements

13

University of Texas at Austin

Memory Referencing Bug Example

• Result is architecture specific

double fun(int i)
{

volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) → 3.14
fun(1) → 3.14
fun(2) → 3.1399998664856
fun(3) → 2.00000061035156
fun(4) → 3.14, then segmentation fault

14

University of Texas at Austin

Memory Referencing Bug Example
double fun(int i)
{

volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) → 3.14
fun(1) → 3.14
fun(2) → 3.1399998664856
fun(3) → 2.00000061035156
fun(4) → 3.14, then segmentation fault

Location accessed by
fun(i)

Explanation:
Saved State 4
d7 ... d4 3
d3 ... d0 2
a[1] 1
a[0] 0

15

University of Texas at Austin

Memory Referencing Errors

• C and C++ do not provide any memory protection
• Out of bounds array references
• Invalid pointer values
• Abuses of malloc/free

• Can lead to nasty bugs
• Whether or not bug has any effect depends on system and compiler
• Action at a distance

• Corrupted object logically unrelated to one being accessed
• Effect of bug may be first observed long after it is generated

• How can I deal with this?
• Program in Java, Ruby or ML
• Understand what possible interactions may occur
• Use or develop tools to detect referencing errors (e.g. Valgrind)

16

University of Texas at Austin

Memory System Performance Example

• Hierarchical memory organization
• Performance depends on access patterns

• Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

21 times slower
(Pentium 4)

17

University of Texas at Austin

The Memory Mountain

64
M

8M

1M 12
8K 16

K 2K

0

1000

2000

3000

4000

5000

6000

7000

s1 s3 s5 s7 s9

s1
1

s1
3

s1
5

s3
2 Size (bytes)

R
ea

d
 th

ro
ug

hp
ut

 (M
B

/s
)

Stride (x8 bytes)

L1

L2

Mem

L3

copyij

copyji

Intel Core i7
2.67 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache

18

University of Texas at Austin

Great Reality #4: There’s more to
performance than asymptotic complexity

• Constant factors matter too!
• And even exact op count does not predict performance

• Easily see 10:1 performance range depending on how code
written

• Must optimize at multiple levels: algorithm, data
representations, procedures, and loops

• Must understand system to optimize performance
• How programs compiled and executed
• How to measure program performance and identify

bottlenecks
• How to improve performance without destroying code

modularity and generality

19

University of Texas at Austin

Example Matrix Multiplication

• Standard desktop computer, vendor compiler, using optimization flags
• Both implementations have exactly the same operations count (2n3)
• What is going on?

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x

Triple loop

Best code (K. Goto)

20

University of Texas at Austin

MMM Plot: Analysis
Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

 Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

 Effect: fewer register spills, L1/L2 cache misses, and TLB misses

23

University of Texas at Austin

Course Perspective

• Most Systems Courses are Builder-Centric
• Computer Architecture

• Design pipelined processor in Verilog

• Operating Systems
• Implement large portions of operating system

• Compilers
• Write compiler for simple language

• Networking
• Implement and simulate network protocols

24

University of Texas at Austin

Course Perspective (Cont.)

• Our Course is Programmer-Centric
• Purpose is to show how by knowing more about the

underlying system, one can be more effective as a
programmer

• Enable you to
• Write programs that are more reliable and efficient
• Incorporate features that require hooks into OS

• E.g., concurrency, signal handlers

• Not just a course for dedicated hackers
• We bring out the hidden hacker in everyone

• Cover material in this course that you won’t see elsewhere

26

University of Texas at Austin

Textbooks

• Randal E. Bryant and David R. O’Hallaron,
• “Computer Systems: A Programmer’s Perspective, Second

Edition” (CS:APP2e), Prentice Hall, 2011
• http://csapp.cs.cmu.edu
• This book really matters for the course!

• How to solve labs
• Practice problems typical of exam problems

• Brian Kernighan and Dennis Ritchie,
• “The C Programming Language, Second Edition”, Prentice

Hall, 1988

27

University of Texas at Austin

Course Components

• Lectures
• Higher level concepts

• Recitations
• Applied concepts, important tools and skills for labs, clarification

of lectures, exam coverage
• Labs (7)

• The heart of the course
• 1-3 weeks each
• Provide in-depth understanding of an aspect of systems
• Programming and measurement

• Exams (3)
• Test your understanding of concepts & mathematical principles

28

University of Texas at Austin

Course Learning

• Lectures
• Good for overview, resolving questions, flagging topics

for further review
• Reading

• Good for specifics, good preparation for lecture
• Homeworks

• Cement your understanding, give each other questions
• Exams will require you to understand the material.

Such understanding likely requires attending lecture
and reading.

29

University of Texas at Austin

Getting Help

• Class Web Page
• Complete schedule of lectures, exams, and assignments

• Copies of lectures, assignments, exams, solutions
• Clarifications to assignments

• Message Board
• We will use piazza

• 1:1 Appointments
• Office hours on web page
• You can schedule 1:1 appointments with any of the teaching staff

31

University of Texas at Austin

Policies: Assignments (Labs) And Exams

• Work groups
• You must work alone on all assignments

• Handins
• Assignments due at 11:59pm on Thurs evening
• Electronic handins using turnin (no exceptions!)

• Conflicts for exams, other irreducible conflicts
• OK, but must make PRIOR arrangements at start of semester
• Notifying us well ahead of time shows maturity and makes things easier

for us (and thus we work harder to help you with your problem)
• Testing accommodation

• Please submit requests within 1 week of course start
• Appealing grades

• Within 7 days of completion of grading, in writing

32

University of Texas at Austin

Facilities

• See course information for lab location
• Need a cs account (mandatory!)

• Request one here
• https://apps.cs.utexas.edu/udb/newaccount/

• cs.utexas.edu machines
• http://apps.cs.utexas.edu/unixlabstatus/

• Public labs
• http://www.cs.utexas.edu/facilities/public-

labs

http://apps.cs.utexas.edu/unixlabstatus/

33

University of Texas at Austin

Timeliness

• Grace days
• 4 slip days for the course
• Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks
• Save them until late in the term!

• Lateness penalties
• Once slip day(s) used up, get penalized 20% per day
• No handins later than 3 days after due date

• Catastrophic events
• Major illness, death in family,
• Formulate a plan (with your academic advisor) to get back on track

• Advice
• Once you start running late, it’s really hard to catch up

34

University of Texas at Austin

Cheating

• What is cheating?
• Sharing code: by copying, retyping, looking at, or supplying a file
• Coaching: helping your friend to write a lab, line by line
• Copying code from previous course or from elsewhere on WWW

• Only allowed to use code we supply, or from CS:APP website
• What is NOT cheating?

• Explaining how to use systems or tools
• Helping others with high-level design issues
• Please identify your collaborators explicitly on HW and labs

• Penalty for cheating:
• Removal from course with failing grade
• Permanent mark on your record

• Detection of cheating:
• We do check
• Our tools for doing this are much better than most cheaters think!

35

University of Texas at Austin

Other Rules of the Lecture Hall

• Laptops: not permitted (danger, youtube)
• See me for exceptions

• Electronic communications: forbidden
• No email, instant messaging, cell phone calls, etc

• No audio or video recording

• Presence in lectures, recitations: mandatory

36

University of Texas at Austin

Policies: Grading (approximate)

• Exams (50-60%)

• Labs (30-40%)

• Homeworks (5%)

• Class particpation (5%)

• Graded on a curve

37

University of Texas at Austin

Programs and Data

• Topics
• Bits operations, arithmetic, assembly language programs
• Representation of C control and data structures
• Includes aspects of architecture and compilers

• Assignments
• L1 (datalab): Manipulating bits
• L2 (archlab): Y86 (assembly) Programming
• L3 (bomblab): Defusing a binary bomb

38

University of Texas at Austin

Architecture: Datapath & Pipelining

• Topics
• How does a processor fetch, decode & execute code?
• Pipelined processors, latency, and throughput

• Assignments
• L4 (archlab): Extending a basic processor

implementation
• L5 (archlab): Modifying a pipelined processor

39

University of Texas at Austin

The Memory Hierarchy

• Topics
• Memory technology, memory hierarchy, caches, disks,

locality
• Includes aspects of architecture and OS

• Assignments
• L6 (memlab): Mapping the performance of the memory

hierarchy

40

University of Texas at Austin

• Topics
• Co-optimization (control and data), measuring time on a

computer
• Includes aspects of architecture, compilers, and OS

• Assignments
• L7(perflab): Manually optimizing an algorithm

Performance Analysis

44

University of Texas at Austin

Lab Rationale

• Each lab has a well-defined goal such as solving a
puzzle or winning a contest

• Doing the lab should result in new skills and
concepts

• We try to use competition in a fun and healthy way
• Set a reasonable threshold for full credit

46

University of Texas at Austin

Welcome
and Enjoy!

	Slide Number 1
	Overview
	Course Theme:�Abstraction Is Good But Don’t Forget Reality
	Great Reality #1: �Ints are not Integers, Floats are not Reals
	Code Security Example
	Typical Usage
	Malicious Usage
	Computer Arithmetic
	Great Reality #2: �You’ve Got to Know Assembly
	Assembly Code Example
	Code to Read Counter
	Great Reality #3: Memory Matters�Random Access Memory Is an Unphysical Abstraction
	Memory Referencing Bug Example
	Memory Referencing Bug Example
	Memory Referencing Errors
	Memory System Performance Example
	The Memory Mountain
	Great Reality #4: There’s more to performance than asymptotic complexity�
	Example Matrix Multiplication
	MMM Plot: Analysis
	Course Perspective
	Course Perspective (Cont.)
	Textbooks
	Course Components
	Course Learning
	Getting Help	
	Policies: Assignments (Labs) And Exams
	Facilities
	Timeliness
	Cheating
	Other Rules of the Lecture Hall
	Policies: Grading (approximate)
	Programs and Data
	Architecture: Datapath & Pipelining
	The Memory Hierarchy
	Performance Analysis
	Lab Rationale
	Welcome and Enjoy!

