
Challenges and Opportunities

for Systems Using CXL

Memory
Emmett Witchel, UT Austin
Credit to many, including

Zhiting Zhu, Newton Ni, Yibo Huang, Zhipeng Jia
(Google), Yan Sun (UIUC), Nam Sung Kim (UIUC)

Once

upon a

time

In

the

beginning

Intel creates software guard

extension (SGX) enclaves

[2015]

Intel creates software guard

extension (SGX) enclaves

[2015]

Haven [OSDI 14] places

legacy apps in enclave

with library OS

Intel creates software guard

extension (SGX) enclaves

[2015]

Haven [OSDI 14] places

legacy apps in enclave

with library OS

from

ImageFX (Google)

Intel creates software guard

extension (SGX) enclaves

[2015]

Haven [OSDI 14] places

legacy apps in enclave

with library OS

from

ImageFX (Google)

Panoply [NDSS 17], Komodo

[SOSP 17], Occlum [ASPLOS

20], minimize TCB in enclave

Intel creates software guard

extension (SGX) enclaves

[2015]

Haven [OSDI 14] places

legacy apps in enclave

with library OS

Intel makes trust domain extensions

(TDX) to secure VMs [2023]

from

ImageFX (Google)

Panoply [NDSS 17], Komodo

[SOSP 17], Occlum [ASPLOS

20], minimize TCB in enclave

Intel creates software guard

extension (SGX) enclaves

[2015]

Haven [OSDI 14] places

legacy apps in enclave

with library OS

Intel makes trust domain extensions

(TDX) to secure VMs [2023]

from

ImageFX (Google)

Panoply [NDSS 17], Komodo

[SOSP 17], Occlum [ASPLOS

20], minimize TCB in enclave

Hoard [ASPLOS 00] does

scalable memory allocation

Hoard [ASPLOS 00] does

scalable memory allocation

IBM does a lock-free

version of Hoard [PLDI04]

Hoard [ASPLOS 00] does

scalable memory allocation

IBM does a lock-free

version of Hoard [PLDI04]

from

Copilot (MS)

Hoard [ASPLOS 00] does

scalable memory allocation

IBM does a lock-free

version of Hoard [PLDI04]

from

Copilot (MS)

Apple adopts Hoard, cites

ASPLOS paper in code [08]

Hoard [ASPLOS 00] does

scalable memory allocation

IBM does a lock-free

version of Hoard [PLDI04]

LLAMA [ASPLOS 20] uses machine

learning to reduce fragmentation

from

Copilot (MS)

Apple adopts Hoard, cites

ASPLOS paper in code [08]

Hoard [ASPLOS 00] does

scalable memory allocation

IBM does a lock-free

version of Hoard [PLDI04]

LLAMA [ASPLOS 20] uses machine

learning to reduce fragmentation

from

Copilot (MS)

Apple adopts Hoard, cites

ASPLOS paper in code [08]

Spectre & Meltdown

microarchitectural side channels

are exploitable [2018]

Spectre & Meltdown

microarchitectural side channels

are exploitable [2018]

KPTI in Linux, Intel

firmware patch [2018]

Spectre & Meltdown

microarchitectural side channels

are exploitable [2018]

KPTI in Linux, Intel

firmware patch [2018]

from

ImageFX (Google)

Spectre & Meltdown

microarchitectural side channels

are exploitable [2018]

KPTI in Linux, Intel

firmware patch [2018]

from

ImageFX (Google)

Foreshadow [USENIX 18]

Augury [IEEE SP 22]

Spectre & Meltdown

microarchitectural side channels

are exploitable [2018]

KPTI in Linux, Intel

firmware patch [2018]

????????????????????????????

from

ImageFX (Google)

Foreshadow [USENIX 18]

Augury [IEEE SP 22]

Spectre & Meltdown

microarchitectural side channels

are exploitable [2018]

KPTI in Linux, Intel

firmware patch [2018]

????????????????????????????

from

ImageFX (Google)

Foreshadow [USENIX 18]

Augury [IEEE SP 22]

Gustav Freytag’s pyramid [1863]

Exposition

Rising action

Denouement

Falling action

Inciting incident

Climax

The role of metacognition

● Metadata is data about data,

e.g., a file’s modification

timestamp

○ Metacognition is thinking about

thinking

● Metacognition can provide

insight and perspective

○ Can get you out of a rut

○ Even if useful, it is no crystal ball

Open a field

Where is your work in the pyramid?

Open a field

Provide superior alternative

Where is your work in the pyramid?

Open a field

Provide superior alternative Solve long tail of problems

Where is your work in the pyramid?

Open a field

Provide superior alternative

Deploy and move on (closer)

Solve long tail of problems

Where is your work in the pyramid?

Compute Express Link (CXL) memory

Memory

becomes limiting

resource

Pond, TPP

[ASPLOS 23]

CXL standard

finalized

??????

Talk outline

● CXL memory — saving costs

○ Disaggregation motivation

○ CXL memory is transparent

● CXL pods — increasing performance [CXL-SHM SOSP 23]

○ CXL memory is explicitly controlled by programmer

○ Unstructured / global coordination can be fast

● New challenges for CXL pods

○ Tolerating partial failures, why and how

What is a computer?

● [A computer must] store

numbers passively—the

results of various partial,

intermediate calculations.

The totality of these organs

is called a “memory.”

- John Von Neumann (1958)

Image credit: cad crowd

What is a computer?

● [A computer must] store

numbers passively—the

results of various partial,

intermediate calculations.

The totality of these organs

is called a “memory.”

- John Von Neumann (1958)

Image credit: cad crowd

Physical racks vs. virtual machines

● Memory stranding in Azure cloud (from Pond [ASPLOS 23])
○ No free CPU cores but memory left

○ Up to 25% stranded memory at 95th percentile

● Untouched memory due to overprovisioning

Image credit: Pond [ASPLOS 23]

The dream of disaggregation

● So many compute nodes

● Memory and Storage

○ All the bandwidth you can buy

○ All the capacity you can buy

○ Low latency (physical limits)

● Optimized for cost savings

○ Flexible partitioning of resources

○ Transparent to applications

CPU

CPU
CPU

CPU

CPU

CPU

CPU

CPU
CPUCPU

Memory

100ns, ∞BW

Storage

1ms, ∞BW

The reality of disaggregation

A hierarchy of layers

System software!

○ Virtual memory was

invented for this

○ Prediction & migration

Works pretty well

○ Pond, TPP, etc.

Image credit: Timothy Prickett Morgan, The Next Platform

Questions remain

● Enough layers?

● Enough bandwidth?

● Low enough latency?

● Accurate prediction?

● Latency insensitive

applications?

● Active area now

Image credit: Timothy Prickett Morgan, The Next Platform

● Shared mutable

state

● Centralized state

● Many efficient

algorithms

● Limited

concurrency

● Database

17

One Host

Single-host software vs. distributed software

● Shared mutable

state

● Centralized state

● Many efficient

algorithms

● Limited

concurrency

● Database

17

● Replicated state

machines

● Scalable

● Fast failover

● Difficult to construct and

maintain (performance)

● Key-value store

One Host Distributed (many hosts)

Single-host software vs. distributed software

● Shared mutable

state

● Centralized state

● Many efficient

algorithms

● Limited

concurrency

● Database

17

● Replicated state

machines

● Scalable

● Fast failover

● Difficult to construct and

maintain (performance)

● Key-value store

One Host Distributed (many hosts)

Single-host software vs. distributed software

● Shared mutable

state

● Centralized state

● Many efficient

algorithms

● Limited

concurrency

● Database

17

● Replicated state

machines

● Scalable

● Fast failover

● Difficult to construct and

maintain (performance)

● Key-value store

One Host Distributed (many hosts)

Single-host software vs. distributed software

● Shared mutable

state

● Centralized state

● Many efficient

algorithms

● Limited

concurrency

● Database

18

● Replicated state

machines

● Scalable

● Fast failover

● Difficult to construct and

maintain (performance)

● Key-value store

One Host Distributed (many hosts)

Single-host software vs. distributed software

● Shared mutable

state

● Centralized state

● Many efficient

algorithms

● Limited

concurrency

● Database

18

● Replicated state

machines

● Scalable

● Fast failover

● Difficult to construct and

maintain (performance)

● Key-value store

One Host Distributed (many hosts)CXL Pod

● Machines

connected to CXL

memory

Single-host software vs. distributed software

● Shared mutable

state

● Centralized state

● Many efficient

algorithms

● Limited

concurrency

● Database

18

● Replicated state

machines

● Scalable

● Fast failover

● Difficult to construct and

maintain (performance)

● Key-value store

One Host Distributed (many hosts)CXL Pod

● Machines

connected to CXL

memory

Single-host software vs. distributed software

A tale of two climates

● Shared mutable

state

● Centralized state

● Many efficient

algorithms

● Limited

concurrency

● Database

19

● Replicated state

machines

● Scalable

● Fast failover

● Difficult to construct and

maintain (performance)

● Key-value store

One Host Distributed (many hosts)CXL Pod

● Encapsulate

complexity in data

structures

● Low tail latency

● The “SQLite” of

distributed systems

CXL Pod

● Runs single-node SW

○ Fine-grain sharing CXL

○ Requires next HW

standard

● Need support from

○ OS + memory allocator

● 16 hosts X 288 cores

○ 4,608 cores Sierra Forest

○ 7,200 MapReduce [04]

OS-1

Process-1

Local DRAM Host-1

Kernel Allocator

Meta

CXL Memory

User Space

Allocator Meta

OS-2

Process-2

1 Application

2 Hosts, 2 OSes, 2 Processes, 4 Threads

Local DRAM Host-2

Application region

What will run on a CXL pod?

● An in-memory database

○ High performance

○ High availability, no downtime

○ Coordination by shared memory more efficient than

■ Partitioned state +

■ Distributed transactions over the network

● Long-running computation with lots of state

○ Computation is valuable enough to require fault tolerance

○ Check pointing state is slow

■ Consumes storage bandwidth

What are the requirements for a CXL pod?

● Will I get hardware cache

coherence across all CXL?

○ Uncertain at this time

○ Might require SRAM tags

■ Raising the cost

● What should HW provide SW?

Persistent memory: avoid extra instructions

● Before 2016, pcommit needed

MOV X1, 70 ; store 70 to X1

CLWB X1 ; flush X1 from cache

SFENCE

PCOMMIT ; persist

SFENCE ; ensure pcommit finished

Persistent memory: avoid extra instructions

MOV X1, 70 ; store 70 to X1

CLWB X1 ; flush X1 from cache

SFENCE

● After 2016

○ pcommit deprecated

Persistent memory: avoid extra instructions

MOV X1, 70 ; store 70 to X1

SFENCE

● After 2020
○ Extended asynchronous DRAM Refresh (eADR)

○ No more cache flushing

● Analogy for CXL: global persistent flush (GPF)
○ No more performance sapping clwb!

Challenges of the CXL pod - partial failure

● Let’s say one OS reboots or one process dies

○ Do I have to restart all OSes (or all processes)?

○ Full restart is bad for availability

● Tolerating partial failure means

○ Application remains available during partial recovery

○ OS / process recovers and rejoins

● CXL pod fault model

○ Is it a shared memory multiprocessor or a distributed system?

○ Distributed systems should tolerate partial failures

Host 0 Host 1

CXL

What goes wrong on a partial failure?

● Shared data structures go in shared CXL

○ Shared data structures need synchronization

● OSes & applications have to synchronize on CXL memory

○ Spinlocks, futexes, mutexes, semaphores are not fault-tolerant

○ Die with a lock held ⇒ Deadlock

● OS reboot is not a global quiescent point!

○ Can’t rebuild DRAM from PM on OS reboot [NOVA FAST 16]

● On recovery, restore state from where? Storage is slow

CXL pod partial failure model

● Make CXL memory persistent

○ Give it independent power supply

○ Protect integrity with ECC

■ Raising cost of module

● On a partial failure restore from CXL

memory state

○ Applications remain available during recovery

● How do we synchronize and remain fault-tolerant?

Transactions to the rescue!

● Transactions are fault-tolerant

○ Persistent memory systems use them for memory allocation

● Problem for PM allocation

void * ptr = persistent_alloc(1024)

make_persistent_root(ptr)

Transactions to the rescue!

● Transactions are fault-tolerant

○ Persistent memory systems use them for memory allocation

● Problem for PM allocation

void * ptr = persistent_alloc(1024)

make_persistent_root(ptr)
Memory leak

Transactions to the rescue!

● Transactions are fault-tolerant

○ Persistent memory systems use them for memory allocation

● Problem for PM allocation

void * ptr = persistent_alloc(1024)

make_persistent_root(ptr)
Memory leak

● Tolerating partial failures more pervasive than memory allocation

○ Let’s avoid mandating fully transactional programming model

○ Find efficient special-case solutions

Correctness under concurrency

● Concurrent safety by linearizability [Herlihy, Wing 1990]

○ Operations have linearization point between invocation & response

■ Respects real-time order

○ Reorder linearization points to be sequential

○ Sequential history is correct for sequential specification of object

● But linearizability says nothing about failures

○ Use durable linearizability [Izraelevitz 2016]

Time

Invoke Response

Queue

Linearization point

Correctness under concurrency

● Concurrent safety by linearizability [Herlihy, Wing 1990]

○ Operations have linearization point between invocation & response

■ Respects real-time order

○ Reorder linearization points to be sequential

○ Sequential history is correct for sequential specification of object

● But linearizability says nothing about failures

○ Use durable linearizability [Izraelevitz 2016]

Time

Invoke Response

Queue

Linearization point

Correctness under concurrency + partial failure

● Durable linearizability has limitations for partial failure

● Need detectable execution [Friedman 2018]

○ Need the ability to execute operations exactly once

■ Crash while enqueue object O into Q

■ On recovery did I enqueue?

■ Can look for O in Q, but another thread might have dequeued it

○ Recovery settles question of whether operation succeeded

● Need linearizability + detectable execution

Performance of OpenMPI broadcast microbenchmark

● OSU microbenchmark across 16 VMs

● Message passing / distributed system benchmark

● Memory is more efficient than network messages

OpenMPI (μs) CXL (μs)

Size p50 p99 p50 p99

64B 18.5 53.7 7.2 (2.6x) 12.9 (4.2x)

1MB 3120 3660 406 (7.7x) 439 (8.3x)

Promise for CXL and beyond

● Mathematically, there are too many problems

○ Technology identifies important ones

● What should HW provide SW?

○ Vital as HW stops scaling

○ Ease SW programming model

● What do we learn even if CXL fails?

○ Break down solutions

○ Use the parts in new systems

Why do we do research?

●

●

○

○

Why do we do research?

● Ego gratification

●

○

○

Why do we do research?

● Ego gratification

● Impact

○

○

Why do we do research?

● Ego gratification

● Impact

○ Change the world

○

Why do we do research?

● Ego gratification

● Impact

○ Change the world

○ Positive effect on other people and society

Why do we do research?

● Ego gratification

● Impact

○ Change the world

○ Positive effect on other people and society

Impact

Why do we do research?

● Ego gratification

● Impact

○ Change the world

○ Positive effect on other people and society

Impact

ImpactImpactImpact

Why do we do research?

Why do we do research?

Why do we do research?

Why do we do research?

● Ego gratification

● Impact
○ Change the world

○ Positive effect on other people and society

● Aha moment, pursuit of truth
○ Ph.D: Academic degree that pushes boundaries of human

knowledge in a specialized field through focused research for several

years

○ Insight is hard to search for and hard to recognize

What is the nature of insight?

Credit: Good Will Hunting, A Beautiful Mind, Its Always Sunny in Philadelphia

What is the nature of insight?

Credit: Good Will Hunting, A Beautiful Mind, Its Always Sunny in Philadelphia

What is the nature of insight?

Credit: Good Will Hunting, A Beautiful Mind, Its Always Sunny in Philadelphia

What is the nature of insight?

Credit: Good Will Hunting, A Beautiful Mind, Its Always Sunny in Philadelphia

Insight arises within a group

● Research is a social activity

○ A research group

○ The research community

● The whole is greater than the sum of its parts
○ I write papers because I learn so much from writing them

○ My old papers are written by someone more knowledgeable than I

● Unreasonable levels of effort help

○ Dedication displaces normality

○ Synesthesia

Research for the long haul

● Study what you love and what you are good at

● Explore, but topics recur in popularity

● Find the right fit

Research for the long haul

● Study what you love and what you are good at

● Explore, but topics recur in popularity

● Find the right fit
Every shrink, every career counselor, every

Disney princess knows the answer: “Be

yourself.” “Follow your heart.”

Only here's what I really, really want someone

to explain to me. What if one happens to be

possessed of a heart that can't be trusted?

--Donna Tartt, The Goldfinch

How do we remain a robust community?

● Number of submissions is way up

● Number of accepted papers is way up

● Size of program committees is way up

● What do we do?

○ One or two annual deadlines, not three

○ History of paper reviews from previous conferences?

○ Pay per submission (in cash, in reviews)

Research ethics

No matter what our place in life is, each human being possesses

a fundamental inner freedom that cannot be compromised

unless we let it. And that therefore imbues us with an innate

demand for personal responsibility.

- Like Stories of Old
- https://youtu.be/FDVR73qUSXU?si=Bd-bUzOuZ4-BXepE&t=1307

Many thanks

Zhiting Zhu

UT Austin

Yan Sun

UIUC

Yibo Huang

UT Austin

Newton Ni

UT Austin

Nam Sung Kim

UIUC

Zhipeng Jia

Google

Summary

● CXL memory — saving costs

○ Disaggregation motivation

○ CXL memory is transparent

● CXL pods — increasing performance

○ CXL memory is explicitly controlled by programmer

○ Unstructured / global coordination can be fast

● New challenges for CXL pods

○ Tolerating partial failures

Summary

● CXL memory — saving costs

○ Disaggregation motivation

○ CXL memory is transparent

● CXL pods — increasing performance

○ CXL memory is explicitly controlled by programmer

○ Unstructured / global coordination can be fast

● New challenges for CXL pods

○ Tolerating partial failures

	Slide 1: Challenges and Opportunities for Systems Using CXL Memory
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Gustav Freytag’s pyramid [1863]
	Slide 23: The role of metacognition
	Slide 24: Where is your work in the pyramid?
	Slide 25: Where is your work in the pyramid?
	Slide 26: Where is your work in the pyramid?
	Slide 27: Where is your work in the pyramid?
	Slide 28: Compute Express Link (CXL) memory
	Slide 29: Talk outline
	Slide 30: What is a computer?
	Slide 31: What is a computer?
	Slide 32: Physical racks vs. virtual machines
	Slide 33: The dream of disaggregation
	Slide 34: The reality of disaggregation
	Slide 35: Questions remain
	Slide 36: Single-host software vs. distributed software
	Slide 37: Single-host software vs. distributed software
	Slide 38: Single-host software vs. distributed software
	Slide 39: Single-host software vs. distributed software
	Slide 40: Single-host software vs. distributed software
	Slide 41: Single-host software vs. distributed software
	Slide 42: Single-host software vs. distributed software
	Slide 43: A tale of two climates
	Slide 45: CXL Pod
	Slide 46: What will run on a CXL pod?
	Slide 47: What are the requirements for a CXL pod?
	Slide 48: Persistent memory: avoid extra instructions
	Slide 49: Persistent memory: avoid extra instructions
	Slide 50: Persistent memory: avoid extra instructions
	Slide 51: Challenges of the CXL pod - partial failure
	Slide 52: What goes wrong on a partial failure?
	Slide 54: CXL pod partial failure model
	Slide 55: Transactions to the rescue!
	Slide 56: Transactions to the rescue!
	Slide 57: Transactions to the rescue!
	Slide 58: Correctness under concurrency
	Slide 59: Correctness under concurrency
	Slide 60: Correctness under concurrency + partial failure
	Slide 61: Performance of OpenMPI broadcast microbenchmark
	Slide 62: Promise for CXL and beyond
	Slide 63: Why do we do research?
	Slide 64: Why do we do research?
	Slide 65: Why do we do research?
	Slide 66: Why do we do research?
	Slide 67: Why do we do research?
	Slide 68: Why do we do research?
	Slide 69: Why do we do research?
	Slide 70: Why do we do research?
	Slide 71: Why do we do research?
	Slide 72: Why do we do research?
	Slide 73: Why do we do research?
	Slide 74: What is the nature of insight?
	Slide 75: What is the nature of insight?
	Slide 76: What is the nature of insight?
	Slide 77: What is the nature of insight?
	Slide 78: Insight arises within a group
	Slide 79: Research for the long haul
	Slide 80: Research for the long haul
	Slide 81: How do we remain a robust community?
	Slide 82: Research ethics
	Slide 83: Many thanks
	Slide 84: Summary
	Slide 85: Summary

