
ENSURING OPERATING SYSTEM

KERNEL INTEGRITY WITH OSCK

Owen Hofmann, Alan Dunn, Sangman Kim,

Indrajit Roy*, Emmett Witchel

UT Austin

*HP Labs

ROOTKITS ARE DANGEROUS

 Adversary exploits insecure system

 Leave backdoor to facilitate long-term access

 A real world problem

 Malware involved in breach of 95% of data records

[Verizon Data Breach Report 2010]

 85% installed backdoors

 Why are rootkits such a pain?

ROOTKITS ARE DIFFICULT TO DETECT

 Key behavior: hide system state to conceal presence

 Files

 Conceal suspicious control / configuration files

 Processes

 Conceal backdoor login process

 In Unix, a special case of file hiding in /proc

 Other system state

 Open network ports

 Loaded kernel modules

KERNEL ROOTKITS EVEN MORE SO

 User-level vectors detectable

 Kernel will still report correct state

 Hash system binaries

 Kernel rootkits can be undetectable by users

 Attacker has access to kernel memory

 Modify kernel state to hide resources

 Kernel reports incorrect state to all user programs

 Modify kernel control flow or data

 Violate some kernel invariant

ROOTKITS CHANGE CONTROL FLOW

.readdir

ext3_dir_operations ext3_readdir

call vfs_readdir

Kernel text

 Modify functions for

examining system state

 Kernel text

 Change instructions

 Invariant: text is

immutable

 Function pointers

 In mutable data memory

 Invariant: pointers point

to one of a few valid entry

points

“ls /proc”

ROOTKITS CHANGE CONTROL FLOW

 Modify functions for

examining system state

 Kernel text

 Change instructions

 Invariant: text is

immutable

 Function pointers

 In mutable data memory

 Invariant: pointers point

to one of a few valid entry

points

.readdir

ext3_dir_operations ext3_readdir

evil_function

call evil_function

Kernel text

“ls /proc”

ROOTKITS CHANGE DATA STRUCTURES

 Kernel assumes invariants hold between data

structures

 Linux: tree for scheduling, list for enumerating processes

 Invariant: structures represent same set

 Rootkit can modify heap to hide state

enumerate schedule

==

ROOTKITS CHANGE DATA STRUCTURES

 Kernel assumes invariants hold between data

structures

 Linux: tree for scheduling, list for enumerating processes

 Invariant: structures represent same set

 Rootkit can modify heap to hide state

schedule

! =
enumerate

PROTECTING THE KERNEL

 OSck: ensure kernel integrity by checking
invariants

 (It‟s like fsck)

 Identify key invariants subverted by rootkits

 Control-flow

 Important heap structures (e.g. process list)

 Generate code to check invariants

 Automatic: analyze source code

 Manual: write ad-hoc integrity checks

 Isolate checking code from operating system

OSCK ARCHITECTURE

 Virtualize kernel

 Run verifier process
alongside kernel

 Has access to kernel
compile-time information

 Hypervisor provides
verifier access to kernel
memory

 Periodically scan
memory for violations

 Configurable
performance overhead

Guest VM OSck verifier

Applications

Kernel

Guest physical memory

Data structure

checks

Host kernel (optional)

Hypervisor

OSCK DESIGN GOALS

 Efficiency and safety

 Verifier must inspect all kernel memory

 Use hints from untrusted kernel to speed checks

 Programmability

 Not all checks are automatic

 Make it easy to write ad-hoc checks

 Source-to-source translation of kernel data structures

 Concurrency

 Checking code runs concurrently with kernel

 Safely handle concurrency-related errors

OSCK DESIGN GOALS

 Efficiency and safety

 Verifier must inspect all kernel memory

 Use hints from untrusted kernel to speed checks

 Programmability

 Not all checks are automatic

 Make it easy to write ad-hoc checks

 Source-to-source translation of kernel data structures

 Concurrency

 Checking code runs concurrently with kernel

 Safely handle concurrency-related errors

PROTECTING CONTROL FLOW

 Static and persistent

 Kernel text and processor state (e.g. IA32_LSTAR)

 Protect text with hardware page protection

 Disallow updates to special registers

 Dynamic

 Function pointers in data memory

 Invariant: point to one of a few valid entry points

 Can be at any memory address

 Can be a variety of types

CHECKING FUNCTION POINTERS

 How does kernel get to function pointer?

 Start at global root (symbol)

 Traverse graph of data structures

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

files_struct *files

struct files_struct

file **fd

struct file

file_operations *f_op

struct file_operations

int (*readdir)(file*,…)

CHECKING FUNCTION POINTERS

 State-based control flow integrity [Petroni & Hicks]

 Start at global root (symbol)

 Traverse graph of data structures

 Ensure function pointers point to valid entry points

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

files_struct *files

struct files_struct

file **fd

struct file

file_operations *f_op

struct file_operations

int (*readdir)(file*,…)

evil_function:

 push %ebp

 …

✔

CHECKING FUNCTION POINTERS

 Traversing large graphs is not great

 Significant amount of dynamic state

 Must avoid runaway pointers, etc.

 We can do better

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

files_struct *files

struct files_struct

file **fd

struct file

file_operations *f_op

struct file_operations

int (*readdir)(file*,…)

evil_function:

 push %ebp

 …

CHECKING WITH TYPE INFORMATION

 Map kernel memory to type

 Pick an object (any object)

 Verify its pointers

 Verify all kernel memory in single pass

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

struct files_struct

struct file

struct file_operations
file **fd

int (*readdir)(file*,…)

CHECKING WITH TYPE INFORMATION

 Where does type information come from?

 Kernel: allocates memory

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

struct files_struct

struct file

struct file_operations

LINUX SLAB ALLOCATION

 Kernel allocates memory with caches

 Per-type allocators

 Objects of same type on same page

 Source analysis associates cache with

type

 Identify allocation sites, allocated types

 OSck reads kernel page metadata

 Determine cache for each page

 Objects on page have cache‟s type

free struct inode

free struct inode

free struct inode

allocated

allocated

free struct inode

free struct inode

slab page

“inode_cache”

cache descriptor

LINUX SLAB ALLOCATION

 Kernel allocates memory with caches

 Per-type allocators

 Objects of same type on same page

 Source analysis associates cache with

type

 Identify allocation sites, allocated types

 OSck reads kernel page metadata

 Determine cache for each page

 Objects on page have cache‟s type

free struct inode

free struct inode

free struct inode

allocated

allocated

free struct inode

free struct inode

slab page

cache descriptor

“corrupt_cache”

USING UNTRUSTED TYPE INFO.

 Cannot change type assigned to function

 Valid entry points determined at compile time

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

files_struct *files

struct files_struct

file **fd

struct file

file_operations *f_op

struct file_operations

int (*readdir)(file*,…)

evil_function:

 push %ebp

 …

USING UNTRUSTED TYPE INFO.

 Modify type information to mislead OSck?

 Have to modify type information for predecessors

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

files_struct *files

struct files_struct

file **fd

struct file

file_operations *f_op

 ???

evil_function:

 push %ebp

 …

USING UNTRUSTED TYPE INFO.

 Modify type information to mislead OSck?

 Have to modify type information for predecessors

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

files_struct *files

struct files_struct

file **fd

???

 ???

evil_function:

 push %ebp

 …

USING UNTRUSTED TYPE INFO.

 Modify type information to mislead OSck?

 Have to modify type information for predecessors

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

files_struct *files

???

???

 ???

evil_function:

 push %ebp

 …

USING UNTRUSTED TYPE INFO.

 Cannot change type assigned to symbol

 Compiled into kernel

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

???

???

???

 ???

evil_function:

 push %ebp

 …

USING UNTRUSTED TYPE INFO.

 Use type information for efficient checking

 Interpret type information from untrusted kernel

 Do not rely on type information for safety

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

struct files_struct

struct file

struct file_operations

OSCK DESIGN GOALS

 Efficiency and safety

 Verifier must inspect all kernel memory

 Use hints from untrusted kernel to speed checks

 Programmability

 Not all checks are automatic

 Make it easy to write ad-hoc checks

 Source-to-source translation of kernel data structures

 Concurrency

 Checking code runs concurrently with kernel

 Safely handle concurrency-related errors

PROTECTING NON-CONTROL DATA

 Integrity for function pointers is well-specified
through kernel source

 Object X at offset Y points to Z

 Data integrity properties complicated, ad-hoc

 e.g. list A == tree B

 Can take a kernel developer‟s understanding

 Provide kernel-like interface for verifying
properties

 Extract data structure definitions

 Source-to-source translation

 Verification code looks like a kernel thread

HANDLING CONCURRENCY

 OSck runs concurrently with kernel execution

 No synchronization with kernel

 Data races possible

 Races can cause false negatives

 Rootkit present, evades OSck with data race

 Assume false negatives are not reproducible

 Races can cause false positives

 Benign inconsistency causes OSck to detect rootkit

 Adopt „stop the world‟ approach

EVALUATING DESIGN GOALS

 Efficiency and safety

 How long do checks take to run?

 What is the overhead on a running system?

 What rootkits does OSck detect?

 Programmability

 How much work is it to write data structure checks?

 Concurrency

 How often does concurrency cause false positives?

HOW LONG DO CHECKS TAKE?

Benchmark Avg. time Max time

SPEC INT 2006 76ms 123ms

RAB 109ms 316ms

Kernel compile 126ms 324ms

 Most system activity: ≈100ms

 Filesystem benchmarks have longer worst case

 Create large numbers of kernel objects

WHAT IS THE OVERHEAD?

host guest OSck

SPEC 2006

INT 1.00 1.03 +2%

FP 1.00 1.03 +0%

RAB

mkdir 9.69 5.87 +2%

copy 35.6 44.07 +2%

du 0.23 0.39 +3%

grep/sum 3.37 1.89 -2%

Kernel compile

515 471 +0%

WHAT ROOTKITS DOES OSCK DETECT?

 All of them

 That we could find

 Take corpus of rootkits from available in the wild

 Port some

 Extract hiding vectors from others

 Complete coverage of hiding vectors

 Develop new rootkit vectors

 extable – corrupts exception table and pointers

 ret-to-sched – creates hidden process by modifying

stacks

HOW MUCH WORK TO DETECT ROOTKITS?

 Function pointer type-safety most expansive

property

 504 lines of C

 Other individual properties require little code

 No individual check > 100 lines

 Total: 804 LOC

FALSE POSITIVES FROM CONCURRENCY

 In benchmarking: none

 Heavyweight handling okay

 Are they rare enough to be ignored?

 High scheduling activity causes frequent updates to

process list/tree

 yield() microbenchmark causes false positives in 23%

of scans

CONCLUSION

 OSck detects rootkits by verifying kernel

invariants

 Efficient type-safety through cooperation with

untrusted kernel

 Accessible interface for specifying ad-hoc data

structure invariants

 Correct concurrency handling

