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ROOTKITS ARE DANGEROUS 

 Adversary exploits insecure system 

 Leave backdoor to facilitate long-term access 

 

 

 A real world problem 

 Malware involved in breach of 95% of data records 

[Verizon Data Breach Report 2010] 

 85% installed backdoors 

 

 

 Why are rootkits such a pain? 



ROOTKITS ARE DIFFICULT TO DETECT 

 Key behavior: hide system state to conceal presence 

 

 Files 

 Conceal suspicious control / configuration files 

 

 Processes 

 Conceal backdoor login process 

 In Unix, a special case of file hiding in /proc  

 

 Other system state 

 Open network ports 

 Loaded kernel modules 



KERNEL ROOTKITS EVEN MORE SO 

 User-level vectors detectable 

 Kernel will still report correct state 

 Hash system binaries 

 

 Kernel rootkits can be undetectable by users 

 Attacker has access to kernel memory 

 Modify kernel state to hide resources 

 Kernel reports incorrect state to all user programs 

 

 Modify kernel control flow or data 

 Violate some kernel invariant 



ROOTKITS CHANGE CONTROL FLOW 

.readdir 

ext3_dir_operations ext3_readdir 

call vfs_readdir 

Kernel text 

 Modify functions for 

examining system state 

 

 Kernel text 

 Change instructions 

 Invariant: text is 

immutable 

 

 Function pointers 

 In mutable data memory 

 Invariant: pointers point 

to one of a few valid entry 

points 

“ls /proc” 
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 Function pointers 

 In mutable data memory 

 Invariant: pointers point 

to one of a few valid entry 
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.readdir 

ext3_dir_operations ext3_readdir 

evil_function 

call evil_function 

Kernel text 

“ls /proc” 



ROOTKITS CHANGE DATA STRUCTURES 

 Kernel assumes invariants hold between data 

structures 

 Linux: tree for scheduling, list for enumerating processes 

 Invariant: structures represent same set 

 

 Rootkit can modify heap to hide state 

enumerate schedule 
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PROTECTING THE KERNEL 

 OSck: ensure kernel integrity by checking 
invariants 

 (It‟s like fsck) 

 

 Identify key invariants subverted by rootkits 

 Control-flow 

 Important heap structures (e.g. process list) 

 

 Generate code to check invariants 

 Automatic: analyze source code 

 Manual: write ad-hoc integrity checks 

 

 Isolate checking code from operating system 

 



OSCK ARCHITECTURE 

 Virtualize kernel 

 

 Run verifier process 
alongside kernel 

 Has access to kernel 
compile-time information 

 Hypervisor provides 
verifier access to kernel 
memory 

 

 Periodically scan 
memory for violations 

 Configurable 
performance overhead 

 

Guest VM OSck verifier 

Applications 

Kernel 

Guest physical memory 

Data structure 

checks 

Host kernel (optional) 
 

Hypervisor 



OSCK DESIGN GOALS 

 Efficiency and safety 

 Verifier must inspect all kernel memory 

 Use hints from untrusted kernel to speed checks 

 

 Programmability 

 Not all checks are automatic 

 Make it easy to write ad-hoc checks 

 Source-to-source translation of kernel data structures 

 

 Concurrency 

 Checking code runs concurrently with kernel 

 Safely handle concurrency-related errors 
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PROTECTING CONTROL FLOW 

 Static and persistent 

 Kernel text and processor state (e.g. IA32_LSTAR) 

 Protect text with hardware page protection 

 Disallow updates to special registers 

 

 Dynamic 

 Function pointers in data memory 

 Invariant: point to one of a few valid entry points 

 Can be at any memory address 

 Can be a variety of types 



CHECKING FUNCTION POINTERS 

 How does kernel get to function pointer? 

 Start at global root (symbol) 

 Traverse graph of data structures 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

struct task_struct 

files_struct *files 

struct files_struct 

file **fd 

struct file 

file_operations *f_op 

struct file_operations 

int (*readdir)(file*,…) 



CHECKING FUNCTION POINTERS 

 State-based control flow integrity [Petroni & Hicks] 

 Start at global root (symbol) 

 Traverse graph of data structures 

 Ensure function pointers point to valid entry points 

 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

struct task_struct 

files_struct *files 

struct files_struct 

file **fd 

struct file 

file_operations *f_op 

struct file_operations 

int (*readdir)(file*,…) 

evil_function: 

  push %ebp 

  … 

✔ 



CHECKING FUNCTION POINTERS 

 Traversing large graphs is not great 

 Significant amount of dynamic state 

 Must avoid runaway pointers, etc. 

 We can do better 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

struct task_struct 

files_struct *files 

struct files_struct 

file **fd 

struct file 

file_operations *f_op 

struct file_operations 

int (*readdir)(file*,…) 

evil_function: 

  push %ebp 

  … 



CHECKING WITH TYPE INFORMATION 

 Map kernel memory to type 

 Pick an object (any object) 

 Verify its pointers 

 Verify all kernel memory in single pass 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

struct task_struct 

struct files_struct 

struct file 

struct file_operations 
file **fd 

int (*readdir)(file*,…) 



CHECKING WITH TYPE INFORMATION 

 Where does type information come from? 

 Kernel: allocates memory 

 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

struct task_struct 

struct files_struct 

struct file 

struct file_operations 



LINUX SLAB ALLOCATION 

 Kernel allocates memory with caches 

 Per-type allocators 

 Objects of same type on same page 

 

 Source analysis associates cache with 

type 

 Identify allocation sites, allocated types 

 

 OSck reads kernel page metadata 

 Determine cache for each page 

 Objects on page have cache‟s type 

free struct inode 

free struct inode 

free struct inode 

allocated 

allocated 

free struct inode 

free struct inode 

slab page 

“inode_cache” 

cache descriptor 
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 Identify allocation sites, allocated types 

 

 OSck reads kernel page metadata 

 Determine cache for each page 

 Objects on page have cache‟s type 

free struct inode 

free struct inode 

free struct inode 

allocated 

allocated 

free struct inode 

free struct inode 

slab page 

cache descriptor 

“corrupt_cache” 



USING UNTRUSTED TYPE INFO. 

 Cannot change type assigned to function 

 Valid entry points determined at compile time 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

struct task_struct 

files_struct *files 

struct files_struct 

file **fd 

struct file 

file_operations *f_op 

struct file_operations 

int (*readdir)(file*,…) 

evil_function: 

  push %ebp 

  … 



USING UNTRUSTED TYPE INFO. 

 Modify type information to mislead OSck? 

 Have to modify type information for predecessors 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

struct task_struct 

files_struct *files 

struct files_struct 

file **fd 

struct file 

file_operations *f_op 

   ??? 

evil_function: 

  push %ebp 

  … 
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USING UNTRUSTED TYPE INFO. 

 Modify type information to mislead OSck? 

 Have to modify type information for predecessors 

 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

struct task_struct 

files_struct *files 

??? 

??? 

   ??? 

evil_function: 

  push %ebp 

  … 



USING UNTRUSTED TYPE INFO. 

 Cannot change type assigned to symbol 

 Compiled into kernel 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

??? 

??? 

??? 

   ??? 

evil_function: 

  push %ebp 

  … 



USING UNTRUSTED TYPE INFO. 

 Use type information for efficient checking 

 Interpret type information from untrusted kernel 

 Do not rely on type information for safety 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

struct task_struct 

struct files_struct 

struct file 

struct file_operations 



OSCK DESIGN GOALS 

 Efficiency and safety 

 Verifier must inspect all kernel memory 

 Use hints from untrusted kernel to speed checks 

 

 Programmability 

 Not all checks are automatic 

 Make it easy to write ad-hoc checks 

 Source-to-source translation of kernel data structures 

 

 Concurrency 

 Checking code runs concurrently with kernel 

 Safely handle concurrency-related errors 

 



PROTECTING NON-CONTROL DATA 

 Integrity for function pointers is well-specified 
through kernel source 

 Object X at offset Y points to Z 

 

 Data integrity properties complicated, ad-hoc 

 e.g. list A == tree B 

 Can take a kernel developer‟s understanding 

 

 Provide kernel-like interface for verifying 
properties 

 Extract data structure definitions 

 Source-to-source translation 

 Verification code looks like a kernel thread 



HANDLING CONCURRENCY 

 OSck runs concurrently with kernel execution 

 No synchronization with kernel 

 Data races possible 

 

 Races can cause false negatives 

 Rootkit present, evades OSck with data race 

 Assume false negatives are not reproducible 

 

 Races can cause false positives 

 Benign inconsistency causes OSck to detect rootkit 

 Adopt „stop the world‟ approach 



EVALUATING DESIGN GOALS 

 Efficiency and safety 

 How long do checks take to run? 

 What is the overhead on a running system? 

 What rootkits does OSck detect? 

 

 Programmability 

 How much work is it to write data structure checks? 

 

 Concurrency 

 How often does concurrency cause false positives? 

 



HOW LONG DO CHECKS TAKE? 

Benchmark Avg. time Max time 

SPEC INT 2006 76ms 123ms 

RAB 109ms 316ms 

Kernel compile 126ms 324ms 

 Most system activity: ≈100ms 

 Filesystem benchmarks have longer worst case 

 Create large numbers of kernel objects 



WHAT IS THE OVERHEAD? 

host guest OSck 

SPEC 2006 

INT 1.00 1.03 +2% 

FP 1.00 1.03 +0% 

RAB 

mkdir 9.69 5.87 +2% 

copy 35.6 44.07 +2% 

du 0.23 0.39 +3% 

grep/sum 3.37 1.89 -2% 

Kernel compile 

515 471 +0% 



WHAT ROOTKITS DOES OSCK DETECT? 

 All of them 

 That we could find 

 

 Take corpus of rootkits from available in the wild 

 Port some 

 Extract hiding vectors from others 

 Complete coverage of hiding vectors 

 

 Develop new rootkit vectors 

 extable – corrupts exception table and pointers 

 ret-to-sched – creates hidden process by modifying 

stacks 

 



HOW MUCH WORK TO DETECT ROOTKITS? 

 Function pointer type-safety most expansive 

property 

 504 lines of C 

 

 Other individual properties require little code 

 No individual check > 100 lines 

 

 Total: 804 LOC 

 



FALSE POSITIVES FROM CONCURRENCY 

 In benchmarking: none 

 Heavyweight handling okay 

 

 Are they rare enough to be ignored? 

 High scheduling activity causes frequent updates to 

process list/tree 

 yield() microbenchmark causes false positives in 23% 

of scans 



CONCLUSION 

 OSck detects rootkits by verifying kernel 

invariants 

 

 Efficient type-safety through cooperation with 

untrusted kernel 

 

 Accessible interface for specifying ad-hoc data 

structure invariants 

 

 Correct concurrency handling 


