
ENSURING OPERATING SYSTEM

KERNEL INTEGRITY WITH OSCK

Owen Hofmann, Alan Dunn, Sangman Kim,

Indrajit Roy*, Emmett Witchel

UT Austin

*HP Labs

ROOTKITS ARE DANGEROUS

 Adversary exploits insecure system

 Leave backdoor to facilitate long-term access

 A real world problem

 Malware involved in breach of 95% of data records

[Verizon Data Breach Report 2010]

 85% installed backdoors

 Why are rootkits such a pain?

ROOTKITS ARE DIFFICULT TO DETECT

 Key behavior: hide system state to conceal presence

 Files

 Conceal suspicious control / configuration files

 Processes

 Conceal backdoor login process

 In Unix, a special case of file hiding in /proc

 Other system state

 Open network ports

 Loaded kernel modules

KERNEL ROOTKITS EVEN MORE SO

 User-level vectors detectable

 Kernel will still report correct state

 Hash system binaries

 Kernel rootkits can be undetectable by users

 Attacker has access to kernel memory

 Modify kernel state to hide resources

 Kernel reports incorrect state to all user programs

 Modify kernel control flow or data

 Violate some kernel invariant

ROOTKITS CHANGE CONTROL FLOW

.readdir

ext3_dir_operations ext3_readdir

call vfs_readdir

Kernel text

 Modify functions for

examining system state

 Kernel text

 Change instructions

 Invariant: text is

immutable

 Function pointers

 In mutable data memory

 Invariant: pointers point

to one of a few valid entry

points

“ls /proc”

ROOTKITS CHANGE CONTROL FLOW

 Modify functions for

examining system state

 Kernel text

 Change instructions

 Invariant: text is

immutable

 Function pointers

 In mutable data memory

 Invariant: pointers point

to one of a few valid entry

points

.readdir

ext3_dir_operations ext3_readdir

evil_function

call evil_function

Kernel text

“ls /proc”

ROOTKITS CHANGE DATA STRUCTURES

 Kernel assumes invariants hold between data

structures

 Linux: tree for scheduling, list for enumerating processes

 Invariant: structures represent same set

 Rootkit can modify heap to hide state

enumerate schedule

==

ROOTKITS CHANGE DATA STRUCTURES

 Kernel assumes invariants hold between data

structures

 Linux: tree for scheduling, list for enumerating processes

 Invariant: structures represent same set

 Rootkit can modify heap to hide state

schedule

! =
enumerate

PROTECTING THE KERNEL

 OSck: ensure kernel integrity by checking
invariants

 (It‟s like fsck)

 Identify key invariants subverted by rootkits

 Control-flow

 Important heap structures (e.g. process list)

 Generate code to check invariants

 Automatic: analyze source code

 Manual: write ad-hoc integrity checks

 Isolate checking code from operating system

OSCK ARCHITECTURE

 Virtualize kernel

 Run verifier process
alongside kernel

 Has access to kernel
compile-time information

 Hypervisor provides
verifier access to kernel
memory

 Periodically scan
memory for violations

 Configurable
performance overhead

Guest VM OSck verifier

Applications

Kernel

Guest physical memory

Data structure

checks

Host kernel (optional)

Hypervisor

OSCK DESIGN GOALS

 Efficiency and safety

 Verifier must inspect all kernel memory

 Use hints from untrusted kernel to speed checks

 Programmability

 Not all checks are automatic

 Make it easy to write ad-hoc checks

 Source-to-source translation of kernel data structures

 Concurrency

 Checking code runs concurrently with kernel

 Safely handle concurrency-related errors

OSCK DESIGN GOALS

 Efficiency and safety

 Verifier must inspect all kernel memory

 Use hints from untrusted kernel to speed checks

 Programmability

 Not all checks are automatic

 Make it easy to write ad-hoc checks

 Source-to-source translation of kernel data structures

 Concurrency

 Checking code runs concurrently with kernel

 Safely handle concurrency-related errors

PROTECTING CONTROL FLOW

 Static and persistent

 Kernel text and processor state (e.g. IA32_LSTAR)

 Protect text with hardware page protection

 Disallow updates to special registers

 Dynamic

 Function pointers in data memory

 Invariant: point to one of a few valid entry points

 Can be at any memory address

 Can be a variety of types

CHECKING FUNCTION POINTERS

 How does kernel get to function pointer?

 Start at global root (symbol)

 Traverse graph of data structures

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

files_struct *files

struct files_struct

file **fd

struct file

file_operations *f_op

struct file_operations

int (*readdir)(file*,…)

CHECKING FUNCTION POINTERS

 State-based control flow integrity [Petroni & Hicks]

 Start at global root (symbol)

 Traverse graph of data structures

 Ensure function pointers point to valid entry points

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

files_struct *files

struct files_struct

file **fd

struct file

file_operations *f_op

struct file_operations

int (*readdir)(file*,…)

evil_function:

 push %ebp

 …

✔

CHECKING FUNCTION POINTERS

 Traversing large graphs is not great

 Significant amount of dynamic state

 Must avoid runaway pointers, etc.

 We can do better

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

files_struct *files

struct files_struct

file **fd

struct file

file_operations *f_op

struct file_operations

int (*readdir)(file*,…)

evil_function:

 push %ebp

 …

CHECKING WITH TYPE INFORMATION

 Map kernel memory to type

 Pick an object (any object)

 Verify its pointers

 Verify all kernel memory in single pass

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

struct files_struct

struct file

struct file_operations
file **fd

int (*readdir)(file*,…)

CHECKING WITH TYPE INFORMATION

 Where does type information come from?

 Kernel: allocates memory

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

struct files_struct

struct file

struct file_operations

LINUX SLAB ALLOCATION

 Kernel allocates memory with caches

 Per-type allocators

 Objects of same type on same page

 Source analysis associates cache with

type

 Identify allocation sites, allocated types

 OSck reads kernel page metadata

 Determine cache for each page

 Objects on page have cache‟s type

free struct inode

free struct inode

free struct inode

allocated

allocated

free struct inode

free struct inode

slab page

“inode_cache”

cache descriptor

LINUX SLAB ALLOCATION

 Kernel allocates memory with caches

 Per-type allocators

 Objects of same type on same page

 Source analysis associates cache with

type

 Identify allocation sites, allocated types

 OSck reads kernel page metadata

 Determine cache for each page

 Objects on page have cache‟s type

free struct inode

free struct inode

free struct inode

allocated

allocated

free struct inode

free struct inode

slab page

cache descriptor

“corrupt_cache”

USING UNTRUSTED TYPE INFO.

 Cannot change type assigned to function

 Valid entry points determined at compile time

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

files_struct *files

struct files_struct

file **fd

struct file

file_operations *f_op

struct file_operations

int (*readdir)(file*,…)

evil_function:

 push %ebp

 …

USING UNTRUSTED TYPE INFO.

 Modify type information to mislead OSck?

 Have to modify type information for predecessors

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

files_struct *files

struct files_struct

file **fd

struct file

file_operations *f_op

 ???

evil_function:

 push %ebp

 …

USING UNTRUSTED TYPE INFO.

 Modify type information to mislead OSck?

 Have to modify type information for predecessors

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

files_struct *files

struct files_struct

file **fd

???

 ???

evil_function:

 push %ebp

 …

USING UNTRUSTED TYPE INFO.

 Modify type information to mislead OSck?

 Have to modify type information for predecessors

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

files_struct *files

???

???

 ???

evil_function:

 push %ebp

 …

USING UNTRUSTED TYPE INFO.

 Cannot change type assigned to symbol

 Compiled into kernel

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

???

???

???

 ???

evil_function:

 push %ebp

 …

USING UNTRUSTED TYPE INFO.

 Use type information for efficient checking

 Interpret type information from untrusted kernel

 Do not rely on type information for safety

task_struct *current_task

readdir:

 push %ebp

 …

Kernel text

struct task_struct

struct files_struct

struct file

struct file_operations

OSCK DESIGN GOALS

 Efficiency and safety

 Verifier must inspect all kernel memory

 Use hints from untrusted kernel to speed checks

 Programmability

 Not all checks are automatic

 Make it easy to write ad-hoc checks

 Source-to-source translation of kernel data structures

 Concurrency

 Checking code runs concurrently with kernel

 Safely handle concurrency-related errors

PROTECTING NON-CONTROL DATA

 Integrity for function pointers is well-specified
through kernel source

 Object X at offset Y points to Z

 Data integrity properties complicated, ad-hoc

 e.g. list A == tree B

 Can take a kernel developer‟s understanding

 Provide kernel-like interface for verifying
properties

 Extract data structure definitions

 Source-to-source translation

 Verification code looks like a kernel thread

HANDLING CONCURRENCY

 OSck runs concurrently with kernel execution

 No synchronization with kernel

 Data races possible

 Races can cause false negatives

 Rootkit present, evades OSck with data race

 Assume false negatives are not reproducible

 Races can cause false positives

 Benign inconsistency causes OSck to detect rootkit

 Adopt „stop the world‟ approach

EVALUATING DESIGN GOALS

 Efficiency and safety

 How long do checks take to run?

 What is the overhead on a running system?

 What rootkits does OSck detect?

 Programmability

 How much work is it to write data structure checks?

 Concurrency

 How often does concurrency cause false positives?

HOW LONG DO CHECKS TAKE?

Benchmark Avg. time Max time

SPEC INT 2006 76ms 123ms

RAB 109ms 316ms

Kernel compile 126ms 324ms

 Most system activity: ≈100ms

 Filesystem benchmarks have longer worst case

 Create large numbers of kernel objects

WHAT IS THE OVERHEAD?

host guest OSck

SPEC 2006

INT 1.00 1.03 +2%

FP 1.00 1.03 +0%

RAB

mkdir 9.69 5.87 +2%

copy 35.6 44.07 +2%

du 0.23 0.39 +3%

grep/sum 3.37 1.89 -2%

Kernel compile

515 471 +0%

WHAT ROOTKITS DOES OSCK DETECT?

 All of them

 That we could find

 Take corpus of rootkits from available in the wild

 Port some

 Extract hiding vectors from others

 Complete coverage of hiding vectors

 Develop new rootkit vectors

 extable – corrupts exception table and pointers

 ret-to-sched – creates hidden process by modifying

stacks

HOW MUCH WORK TO DETECT ROOTKITS?

 Function pointer type-safety most expansive

property

 504 lines of C

 Other individual properties require little code

 No individual check > 100 lines

 Total: 804 LOC

FALSE POSITIVES FROM CONCURRENCY

 In benchmarking: none

 Heavyweight handling okay

 Are they rare enough to be ignored?

 High scheduling activity causes frequent updates to

process list/tree

 yield() microbenchmark causes false positives in 23%

of scans

CONCLUSION

 OSck detects rootkits by verifying kernel

invariants

 Efficient type-safety through cooperation with

untrusted kernel

 Accessible interface for specifying ad-hoc data

structure invariants

 Correct concurrency handling

