ENSURING OPERATING SYSTEM
KERNEL INTEGRITY WITH OSCK

Owen Hofmann, Alan Dunn, Sangman Kim,
Indrajit Roy*, Emmett Witchel

UT Austin
*HP Labs

ROOTKITS ARE DANGEROUS

Adversary exploits insecure system
Leave backdoor to facilitate long-term access

A real world problem

Malware involved in breach of 95% of data records
[Verizon Data Breach Report 2010]

85% 1nstalled backdoors

Why are rootkits such a pain?

ROOTKITS ARE DIFFICULT TO DETECT

Key behavior: hide system state to conceal presence

Files

Conceal suspicious control / configuration files

Processes
Conceal backdoor login process
In Unix, a special case of file hiding in /proc

Other system state
Open network ports
Loaded kernel modules

KERNEL ROOTKITS EVEN MORE SO

User-level vectors detectable
Kernel will still report correct state
Hash system binaries

Kernel rootkits can be undetectable by users
Attacker has access to kernel memory
Modify kernel state to hide resources
Kernel reports incorrect state to all user programs

Modify kernel control flow or data

Violate some kernel invariant

ROOTKITS CHANGE CONTROL FLOW

Modify functions for
examining system state

. “Is /proc”
Kernel text
Change instructions Kernel text
Invariant: text 1s
immutable call vfs_readdir \
Function pointers , _ ,
ext3_dir_operations ext3_readdir

In mutable data memory

Invariant: pointers point readdir —}—)

to one of a few valid entry
points

ROOTKITS CHANGE CONTROL FLOW

Modify functions for
examining system state

Kernel text
Change instructions

Invariant: text 1s
immutable

Function pointers
In mutable data memory

Invariant: pointers point
to one of a few valid entry
points

. “Is /proc”

Kernel text

call evil function

ext3_dir_operations

ext3 readdir

.readdir

evil function

!

ROOTKITS CHANGE DATA STRUCTURES

Kernel assumes invariants hold between data
structures

Linux: tree for scheduling, list for enumerating processes

Invariant: structures represent same set

Rootkit can modify heap to hide state

enumerate schedule

20000 ==

f‘

ROOTKITS CHANGE DATA STRUCTURES

Kernel assumes invariants hold between data
structures

Linux: tree for scheduling, list for enumerating processes

Invariant: structures represent same set

Rootkit can modify heap to hide state

enumerate schedule

2-6—0

o —=

f‘

PROTECTING THE KERNEL

OSck: ensure kernel integrity by checking
Invariants

(It’s like fsck)

Identify key invariants subverted by rootkits
Control-flow
Important heap structures (e.g. process list)

Generate code to check invariants

Automatic: analyze source code
Manual: write ad-hoc integrity checks

Isolate checking code from operating system

OSCK ARCHITECTURE

o Virtualize kernel

(Guest VM \ (OSck verifier\

o Run verifier process
alongside kernel Applications
» Has access to kernel Data structure
compile-time information checks
o Hypervisor provides
verifier access to kernel Guest physical memory
memory I
o Periodically scan Host kernel (optional)

memory for violations

» Configurable
performance overhead

OSCK DESIGN GOALS

Efficiency and safety
Verifier must inspect all kernel memory
Use hints from untrusted kernel to speed checks

Programmability
Not all checks are automatic
Make i1t easy to write ad-hoc checks
Source-to-source translation of kernel data structures

Concurrency
Checking code runs concurrently with kernel
Safely handle concurrency-related errors

OSCK DESIGN GOALS

Efficiency and safety
Verifier must inspect all kernel memory
Use hints from untrusted kernel to speed checks

PROTECTING CONTROL FLOW

Static and persistent
Kernel text and processor state (e.g. IA32_LSTAR)
Protect text with hardware page protection
Disallow updates to special registers

Dynamic
Function pointers in data memory
Invariant: point to one of a few valid entry points
Can be at any memory address
Can be a variety of types

CHECKING FUNCTION POINTERS

struct task struct

struct file

files_struct *files

file_operations *f op

Kernel text

ruct files_struc

file **fd

uct file_operations readdir:
int (*readdir)(file*,...) push %ebp

task_struct *current_task

How does kernel get to function pointer?
Start at global root (symbol)
Traverse graph of data structures

CHECKING FUNCTION POINTERS

evil function:
push %ebp

struct task struct

struct file

file_operations *f op

Z files_struct *files

: Kernel text
ruct files_struc
file **fd

ruct file_operations raaddir:
i N push %ebp
int (*readdir)(file*,...)

\. task struct *current_task

State-based control flow integrity [Petroni & Hicks]
Start at global root (symbol)
Traverse graph of data structures
Ensure function pointers point to valid entry points

CHECKING FUNCTION POINTERS

struét.task Serwoe

el text

—\. task_struct *currerrt—task

o Traversing large graphs is not great
» Significant amount of dynamic state

» Must avoid runaway pointers, etc.
» We can do better

CHECKING WITH TYPE INFORMATION

struct task struct

W struct file

struct files_struct

file **fd

‘ task struct *current_task

struct file_operations

Kernel text

int (*readdir)(file*,...)

Map kernel memory to type
Pick an object (any object)

Verify its pointers

Verify all kernel memory in single pass

A

readdir:
push %ebp

CHECKING WITH TYPE INFORMATION

struct task struct

W struct file

Kernel text

struct files_ struct

struct file_operations readdir:
W W push %ebp

. task struct *current_task

Where does type information come from?
Kernel: allocates memory

LINUX SLAB ALLOCATION

Kernel allocates memory with caches
Per-type allocators
Objects of same type on same page

Source analysis associates cache with

type
Identify allocation sites, allocated types

OSck reads kernel page metadata
Determine cache for each page
Objects on page have cache’s type

slab page

free struct inode
free struct inode
free struct inode
allocated

allocated

free struct inode
free struct inode

cache descriptor

“Inode_cache”

LINUX SLAB ALLOCATION

Kernel allocates memory with caches
Per-type allocators
Objects of same type on same page

Source analysis associates cache with

type
Identify allocation sites, allocated types

OSck reads kernel page metadata
Determine cache for each page
Objects on page have cache’s type

slab page

free struct inode
free struct inode
free struct inode
allocated

allocated

free struct inode
free struct inode

cache descriptor

“corrupt_cache”

USING UNTRUSTED TYPE INFO.

evil function:
push %ebp

struct task struct

struct file

file_operations *f op

z files_struct *files

Kernel text

struct files struct

file **fd

struct file_operations readdir:
. . push %ebp
int (*readdir)(file*,...)

\

task_struct *current_task

Cannot change type assigned to function
Valid entry points determined at compile time

USING UNTRUSTED TYPE INFO.

evil function:
push %ebp

struct task struct

struct file

file_operations *f op

z files_struct *files

Kernel text

struct files struct

file **fd

readdir:
}) push %ebp

\

task_struct *current_task

Modify type information to mislead OSck?
Have to modify type information for predecessors

USING UNTRUSTED TYPE INFO.

evil function:
push %ebp

struct task struct
27?

z files_struct *files

Kernel text

struct files_stru

file **fd

push %ebp

?27? }) readdir:

\

task_struct *current_task

Modify type information to mislead OSck?
Have to modify type information for predecessors

USING UNTRUSTED TYPE INFO.

evil_function:
push %ebp

struct task struct

Z files_struct *files

272?

Kernel text

77? readdir:
V push %ebp

\

task_struct *current_task

Modify type information to mislead OSck?
Have to modify type information for predecessors

USING UNTRUSTED TYPE INFO.

22?

2?27

task struct *current_task

o Cannot change type assigned to symbol
» Compiled 1nto kernel

Kernel text

USING UNTRUSTED TYPE INFO.

struct task struct

struct file

Kernel text

struct files_ struct

struct file_operations readdir:
’ ’ push %ebp

' task struct *current_task

Use type information for efficient checking
Interpret type information from untrusted kernel
Do not rely on type information for safety

OSCK DESIGN GOALS

Efficiency and safety
Verifier must inspect all kernel memory
Use hints from untrusted kernel to speed checks

Programmability
Not all checks are automatic
Make i1t easy to write ad-hoc checks
Source-to-source translation of kernel data structures

Concurrency
Checking code runs concurrently with kernel
Safely handle concurrency-related errors

PROTECTING NON-CONTROL DATA

Integrity for function pointers is well-specified
through kernel source

Object X at offset Y points to Z

Data integrity properties complicated, ad-hoc
e.g. list A == tree B
Can take a kernel developer’s understanding

Provide kernel-like interface for verifying
properties
Extract data structure definitions
Source-to-source translation
Verification code looks like a kernel thread

HANDLING CONCURRENCY

OSck runs concurrently with kernel execution
No synchronization with kernel
Data races possible

Races can cause false negatives
Rootkit present, evades OSck with data race
Assume false negatives are not reproducible

Races can cause false positives
Benign inconsistency causes OSck to detect rootkit
Adopt ‘stop the world’ approach

EVALUATING DESIGN GOALS

Efficiency and safety
How long do checks take to run?

What is the overhead on a running system?
What rootkits does OSck detect?

Programmability
How much work 1s it to write data structure checks?

Concurrency

How often does concurrency cause false positives?

HoOW LONG DO CHECKS TAKE?

Benchmark Avg. time Max time
SPEC INT 2006 76ms 123ms
RAB 109ms 316ms
Kernel compile 126ms 324ms

o Most system activity: =<100ms

o Filesystem benchmarks have longer worst case
o Create large numbers of kernel objects

WHAT IS THE OVERHEAD?

host guest OSck
SPEC 2006
INT 1.00 1.03 +2%
FP 1.00 1.03 +0%
RAB
mkdir 9.69 5.87 +2%
copy 35.6 44.07 +2%
du 0.23 0.39 +3%
grep/sum 3.37 1.89 -2%
Kernel compile
515 471 +0%

WHAT ROOTKITS DOES OSCK DETECT?

All of them
That we could find

Take corpus of rootkits from available in the wild
Port some
Extract hiding vectors from others
Complete coverage of hiding vectors

Develop new rootkit vectors
extable — corrupts exception table and pointers

ret-to-sched — creates hidden process by modifying
stacks

How MUCH WORK TO DETECT ROOTKITS?

Function pointer type-safety most expansive
property
504 lines of C

Other individual properties require little code
No individual check > 100 lines

Total: 804 LOC

FALSE POSITIVES FROM CONCURRENCY

In benchmarking: none
Heavyweight handling okay

Are they rare enough to be ignored?

High scheduling activity causes frequent updates to
process list/tree

yield() microbenchmark causes false positives in 23%
of scans

CONCLUSION

OSck detects rootkits by verifying kernel
Invariants

Efficient type-safety through cooperation with
untrusted kernel

Accessible interface for specifying ad-hoc data
structure 1nvariants

Correct concurrency handling

