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ROOTKITS ARE DANGEROUS 

 Adversary exploits insecure system 

 Leave backdoor to facilitate long-term access 

 

 

 A real world problem 

 Malware involved in breach of 95% of data records 

[Verizon Data Breach Report 2010] 

 85% installed backdoors 

 

 

 Why are rootkits such a pain? 



ROOTKITS ARE DIFFICULT TO DETECT 

 Key behavior: hide system state to conceal presence 

 

 Files 

 Conceal suspicious control / configuration files 

 

 Processes 

 Conceal backdoor login process 

 In Unix, a special case of file hiding in /proc  

 

 Other system state 

 Open network ports 

 Loaded kernel modules 



KERNEL ROOTKITS EVEN MORE SO 

 User-level vectors detectable 

 Kernel will still report correct state 

 Hash system binaries 

 

 Kernel rootkits can be undetectable by users 

 Attacker has access to kernel memory 

 Modify kernel state to hide resources 

 Kernel reports incorrect state to all user programs 

 

 Modify kernel control flow or data 

 Violate some kernel invariant 



ROOTKITS CHANGE CONTROL FLOW 

.readdir 

ext3_dir_operations ext3_readdir 

call vfs_readdir 

Kernel text 

 Modify functions for 

examining system state 

 

 Kernel text 

 Change instructions 

 Invariant: text is 

immutable 

 

 Function pointers 

 In mutable data memory 

 Invariant: pointers point 

to one of a few valid entry 

points 

“ls /proc” 
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ROOTKITS CHANGE DATA STRUCTURES 

 Kernel assumes invariants hold between data 

structures 

 Linux: tree for scheduling, list for enumerating processes 

 Invariant: structures represent same set 

 

 Rootkit can modify heap to hide state 

enumerate schedule 

== 



ROOTKITS CHANGE DATA STRUCTURES 

 Kernel assumes invariants hold between data 

structures 

 Linux: tree for scheduling, list for enumerating processes 

 Invariant: structures represent same set 

 

 Rootkit can modify heap to hide state 

schedule 

! = 
enumerate 



PROTECTING THE KERNEL 

 OSck: ensure kernel integrity by checking 
invariants 

 (It‟s like fsck) 

 

 Identify key invariants subverted by rootkits 

 Control-flow 

 Important heap structures (e.g. process list) 

 

 Generate code to check invariants 

 Automatic: analyze source code 

 Manual: write ad-hoc integrity checks 

 

 Isolate checking code from operating system 

 



OSCK ARCHITECTURE 

 Virtualize kernel 

 

 Run verifier process 
alongside kernel 

 Has access to kernel 
compile-time information 

 Hypervisor provides 
verifier access to kernel 
memory 

 

 Periodically scan 
memory for violations 

 Configurable 
performance overhead 

 

Guest VM OSck verifier 

Applications 

Kernel 

Guest physical memory 

Data structure 

checks 

Host kernel (optional) 
 

Hypervisor 



OSCK DESIGN GOALS 

 Efficiency and safety 

 Verifier must inspect all kernel memory 

 Use hints from untrusted kernel to speed checks 

 

 Programmability 

 Not all checks are automatic 

 Make it easy to write ad-hoc checks 

 Source-to-source translation of kernel data structures 

 

 Concurrency 

 Checking code runs concurrently with kernel 

 Safely handle concurrency-related errors 
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PROTECTING CONTROL FLOW 

 Static and persistent 

 Kernel text and processor state (e.g. IA32_LSTAR) 

 Protect text with hardware page protection 

 Disallow updates to special registers 

 

 Dynamic 

 Function pointers in data memory 

 Invariant: point to one of a few valid entry points 

 Can be at any memory address 

 Can be a variety of types 



CHECKING FUNCTION POINTERS 

 How does kernel get to function pointer? 

 Start at global root (symbol) 

 Traverse graph of data structures 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

struct task_struct 

files_struct *files 

struct files_struct 

file **fd 

struct file 

file_operations *f_op 

struct file_operations 

int (*readdir)(file*,…) 



CHECKING FUNCTION POINTERS 

 State-based control flow integrity [Petroni & Hicks] 

 Start at global root (symbol) 

 Traverse graph of data structures 

 Ensure function pointers point to valid entry points 

 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

struct task_struct 

files_struct *files 

struct files_struct 

file **fd 

struct file 

file_operations *f_op 

struct file_operations 

int (*readdir)(file*,…) 

evil_function: 

  push %ebp 

  … 

✔ 



CHECKING FUNCTION POINTERS 

 Traversing large graphs is not great 

 Significant amount of dynamic state 

 Must avoid runaway pointers, etc. 

 We can do better 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

struct task_struct 

files_struct *files 

struct files_struct 

file **fd 

struct file 

file_operations *f_op 

struct file_operations 

int (*readdir)(file*,…) 

evil_function: 

  push %ebp 

  … 



CHECKING WITH TYPE INFORMATION 

 Map kernel memory to type 

 Pick an object (any object) 

 Verify its pointers 

 Verify all kernel memory in single pass 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

struct task_struct 

struct files_struct 

struct file 

struct file_operations 
file **fd 

int (*readdir)(file*,…) 



CHECKING WITH TYPE INFORMATION 

 Where does type information come from? 

 Kernel: allocates memory 

 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

struct task_struct 

struct files_struct 

struct file 

struct file_operations 



LINUX SLAB ALLOCATION 

 Kernel allocates memory with caches 

 Per-type allocators 

 Objects of same type on same page 

 

 Source analysis associates cache with 

type 

 Identify allocation sites, allocated types 

 

 OSck reads kernel page metadata 

 Determine cache for each page 

 Objects on page have cache‟s type 

free struct inode 

free struct inode 

free struct inode 

allocated 

allocated 

free struct inode 

free struct inode 

slab page 

“inode_cache” 

cache descriptor 
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 Objects on page have cache‟s type 

free struct inode 

free struct inode 

free struct inode 

allocated 

allocated 

free struct inode 

free struct inode 

slab page 

cache descriptor 
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USING UNTRUSTED TYPE INFO. 

 Cannot change type assigned to function 

 Valid entry points determined at compile time 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

struct task_struct 

files_struct *files 

struct files_struct 

file **fd 

struct file 

file_operations *f_op 

struct file_operations 

int (*readdir)(file*,…) 

evil_function: 

  push %ebp 

  … 



USING UNTRUSTED TYPE INFO. 

 Modify type information to mislead OSck? 

 Have to modify type information for predecessors 
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task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

struct task_struct 

files_struct *files 

??? 

??? 

   ??? 

evil_function: 
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USING UNTRUSTED TYPE INFO. 

 Cannot change type assigned to symbol 

 Compiled into kernel 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

??? 

??? 

??? 

   ??? 

evil_function: 

  push %ebp 

  … 



USING UNTRUSTED TYPE INFO. 

 Use type information for efficient checking 

 Interpret type information from untrusted kernel 

 Do not rely on type information for safety 

task_struct *current_task 

readdir: 

  push %ebp 

  … 

Kernel text 

struct task_struct 

struct files_struct 

struct file 

struct file_operations 



OSCK DESIGN GOALS 

 Efficiency and safety 

 Verifier must inspect all kernel memory 

 Use hints from untrusted kernel to speed checks 

 

 Programmability 

 Not all checks are automatic 

 Make it easy to write ad-hoc checks 

 Source-to-source translation of kernel data structures 

 

 Concurrency 

 Checking code runs concurrently with kernel 

 Safely handle concurrency-related errors 

 



PROTECTING NON-CONTROL DATA 

 Integrity for function pointers is well-specified 
through kernel source 

 Object X at offset Y points to Z 

 

 Data integrity properties complicated, ad-hoc 

 e.g. list A == tree B 

 Can take a kernel developer‟s understanding 

 

 Provide kernel-like interface for verifying 
properties 

 Extract data structure definitions 

 Source-to-source translation 

 Verification code looks like a kernel thread 



HANDLING CONCURRENCY 

 OSck runs concurrently with kernel execution 

 No synchronization with kernel 

 Data races possible 

 

 Races can cause false negatives 

 Rootkit present, evades OSck with data race 

 Assume false negatives are not reproducible 

 

 Races can cause false positives 

 Benign inconsistency causes OSck to detect rootkit 

 Adopt „stop the world‟ approach 



EVALUATING DESIGN GOALS 

 Efficiency and safety 

 How long do checks take to run? 

 What is the overhead on a running system? 

 What rootkits does OSck detect? 

 

 Programmability 

 How much work is it to write data structure checks? 

 

 Concurrency 

 How often does concurrency cause false positives? 

 



HOW LONG DO CHECKS TAKE? 

Benchmark Avg. time Max time 

SPEC INT 2006 76ms 123ms 

RAB 109ms 316ms 

Kernel compile 126ms 324ms 

 Most system activity: ≈100ms 

 Filesystem benchmarks have longer worst case 

 Create large numbers of kernel objects 



WHAT IS THE OVERHEAD? 

host guest OSck 

SPEC 2006 

INT 1.00 1.03 +2% 

FP 1.00 1.03 +0% 

RAB 

mkdir 9.69 5.87 +2% 

copy 35.6 44.07 +2% 

du 0.23 0.39 +3% 

grep/sum 3.37 1.89 -2% 

Kernel compile 

515 471 +0% 



WHAT ROOTKITS DOES OSCK DETECT? 

 All of them 

 That we could find 

 

 Take corpus of rootkits from available in the wild 

 Port some 

 Extract hiding vectors from others 

 Complete coverage of hiding vectors 

 

 Develop new rootkit vectors 

 extable – corrupts exception table and pointers 

 ret-to-sched – creates hidden process by modifying 

stacks 

 



HOW MUCH WORK TO DETECT ROOTKITS? 

 Function pointer type-safety most expansive 

property 

 504 lines of C 

 

 Other individual properties require little code 

 No individual check > 100 lines 

 

 Total: 804 LOC 

 



FALSE POSITIVES FROM CONCURRENCY 

 In benchmarking: none 

 Heavyweight handling okay 

 

 Are they rare enough to be ignored? 

 High scheduling activity causes frequent updates to 

process list/tree 

 yield() microbenchmark causes false positives in 23% 

of scans 



CONCLUSION 

 OSck detects rootkits by verifying kernel 

invariants 

 

 Efficient type-safety through cooperation with 

untrusted kernel 

 

 Accessible interface for specifying ad-hoc data 

structure invariants 

 

 Correct concurrency handling 


