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Abstract

A minimal, bounded hardware transactional memory im-
plementation significantly improves synchronization perfor-
mance when used in an operating system kernel. We add
HTM to Linux 2.4, a kernel with a simple, coarse-grained
synchronization structure. The transactional Linux 2.4 ker-
nel can improve performance of user programs by as much
as 40% over the non-transactional 2.4 kernel. It closes 68%
of the performance gap with the Linux 2.6 kernel, which has
had significant engineering effort applied to improve scala-
bility.

We then extend our minimal HTM to a fast, unbounded
transactional memory with a novel technique for coordi-
nating hardware transactions and software synchronization.
Overflowed transactions run in software, with only a mini-
mal coupling between hardware and software systems. There
is no performance penalty for overflow rates of less than 1%.
In one instance, at 16 processors and an overflow rate of 4%,
performance degrades from an ideal 4.3× to 3.6×.

Categories and Subject Descriptors C.1.4 [Processor Ar-
chitectures]: Parallel Architectures; D.1.3 [Programming
Techniques]: Concurrent Programming; D.4.1 [Process
Management]: Synchronization

General Terms Design, Performance

Keywords Hardware Transactional Memory

1. Introduction

As processor manufacturers scale the number of processing
cores on a chip, system designers are struggling to make
these parallel cores easy to program. Hardware transactional
memory (HTM) is a proposal that has attracted attention as
a powerful synchronization primitive that is easier to reason
about than locks and can be implemented with moderate
hardware support.
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Transactional memory (TM) is a form of optimistic con-
currency. To synchronize a program, the programmer need
only delimit the critical regions of code that access shared
data. These regions would otherwise be guarded by locks or
by another form of synchronization. Critical regions of dif-
ferent threads speculatively execute in parallel. By buffering
writes and detecting conflicting data accesses, TM enforces
an interleaving of the critical regions that is equivalent to a
serial execution. Because critical regions will execute in par-
allel if it is safe, the programmer does not need to manually
add fine-grained synchronization to get good performance.
Hardware transactional memory is implemented by adding a
small amount of state to processor caches and cache coher-
ence mechanisms, which already manage data sharing be-
tween processors.

To be an effective tool for concurrent programming, hard-
ware transactional memory needs to perform as well as locks
while providing a simpler programming model. Comparing
hardware transactional memory and locks has been difficult
for several reasons, discussed below.

Limited evaluation Most applications of HTM are evalu-
ated on small-scale benchmarks with little relation to real-
world synchronization problems. So far, TxLinux 2.6 [28,
30] is the largest application of hardware transactional mem-
ory. TxLinux 2.6 is a version of the 2.6 Linux kernel that
uses transactional memory for some kernel synchronization.
However, the Linux 2.6 kernel already uses fine-grained
locking for concurrency, so using transactions for synchro-
nization does not have any significant effect on performance.

Over-engineered virtualization of overflow HTM requires
support from the hardware to manage speculative state. Be-
cause hardware resources are finite, transactions require
some way to virtualize overflow, so that the burden of rea-
soning about hardware resource overflow is not placed on
the programmer. Providing for transaction overflow is an
active research area and proposals have ranged from direct
hardware support [25], stalling of all transactional threads
during overflow [3], to OS page-based support [7, 8], and
systems that use hardware to support software transactional
memory [1, 5, 10, 15, 31].

Virtualizing overflow is different from integrating trans-
actions with OS scheduling or paging, though some au-
thors refer to both concepts as virtualizing transactions. Re-
searchers have looked at allowing an active transaction to



survive OS scheduling or paging events [35, 36]. But over-
flow must be virtualized to provide a programming model
that is independent from the microarchitectural implementa-
tion of TM. Integrating transactions with OS scheduling and
paging is simply a performance trade-off. In this paper, vir-
tualization allows transactions to survive overflowing hard-
ware resources.

We believe that current virtualization proposals postulate
too much hardware. Hybrid designs require close coupling
of a single hardware and software transactional memory
implementation. Some hardware and hybrid designs require
modifications to the entire memory hierarchy [1, 4].

Signatures [6] have been proposed as a way to decou-
ple transaction state from caches [5, 33, 35, 36], thereby
avoiding the overflow problem. Signatures are interesting,
but have not yet been built and contain many untested per-
formance trade-offs. Depending on their use, they might be
up to 2KB in size. Designs include up to three signatures
per thread [36], and they need to be saved and restored by
the OS on context switches. These operations have unknown
performance consequences. Using smaller signatures pro-
vides faster context switches, but increases the probability of
pathologically bad performance. Also, signatures only pro-
vide detection of conflicts between transactions. To support
unbounded transactions, hardware must still buffer and read
unbounded speculative memory updates.

We show that an HTM with a minimal subset of TM fea-
tures (thus having a lower barrier to implementation than
more baroque designs) can simplify synchronization, pro-
vide comparable performance to fine-grained locking, and
handle overflows. We replace locked critical regions with
transactions in Linux 2.4 to demonstrate all three of these
properties on a code base whose scale is large enough to rep-
resent commercial software development. TxLinux 2.4 uses
HTM to significantly improve the scalability of the Linux 2.4
kernel, achieving good synchronization performance with
a coarse synchronization structure. Developing Linux 2.6
from 2.4 required significant effort, due in part to the ef-
fort of making synchronization more fine-grained. Linux
2.4 uses simpler synchronization that is easier to maintain,
but without HTM its synchronization performance is much
worse than Linux 2.6.

Attaining high performance with coarse-grained critical
sections requires solving three technical challenges. The first
challenge is integrating transactions with blocking synchro-
nization, solved with the cooperative transactional mutex
(cxmutex). The second challenge is efficiently transitioning
from a transaction to a lock-based critical region with atomic
lock acquire. Finally, spurious restarts must be reduced by
optimizing data structures for use in transactions.

We then show that a minimal HTM can provide the user
with a simple, unbounded programming model with the
speed of HTM for small transactions. A runtime system vir-
tualizes overflow of the HTM by falling back on software.
The runtime does not require a tight coupling of hardware
and software, instead allowing any HTM design to cooper-

ate with many types of software synchronization, such as
locking or an STM.

The technical contributions of this paper are:
1. We present a design, implementation and quantitative

evaluation of TxLinux 2.4. Simply by adding transac-
tions as a synchronization primitive, TxLinux 2.4 is sig-
nificantly more scalable than Linux 2.4, and represents a
new high-water mark for the benefits of hardware trans-
actional memory.

2. We present a novel methodology for combining an HTM
and software to create a hybrid TM system. By using
transaction ordering, we allow any strongly isolated
HTM design to be combined with any in-place update
software system. We prototype and evaluate a hybrid of
locking and HTM.

3. We introduce cxmutex, the cooperative transactional mu-
tex, which is a blocking synchronization primitive that
uses transactions for critical regions whenever possible.

4. We show how an atomic lock acquire mechanism can ef-
ficiently transition from transactions to lock-based criti-
cal regions.
This paper reviews HTM and provides an overview of

TxLinux 2.6 in Section 2. Section 3 describes our conver-
sion of the Linux 2.4 kernel to use HTM. Section 4 presents
the cxmutex primitive. Section 5 describes virtualizing over-
flow for both kernel and user code. Section 6 presents our
evaluation, Section 7 discusses related work and Section 8
concludes.

2. TxLinux background

Operating systems, like most large, multi-threaded appli-
cations, rely heavily on synchronization primitives such as
spinlocks to manage access to shared memory data struc-
tures. Hardware transactional memory (HTM) augments or
replaces these primitives by allowing the programmer to
specify code regions that execute atomically and in isola-
tion. This section provides a brief review of HTM and how
it has been used in TxLinux 2.6.

2.1 HTM primer

HTM support includes instructions added to the ISA. The
HTM model used in this study, MetaTM [28], extends the
x86 architecture with the instructions shown in Table 1.
The xbegin and xend primitives start and end a transac-
tion. MetaTM buffers all memory operations taking place
between these two instructions in the L1 cache. If the trans-
action ends successfully (commits), any memory updates
are made visible atomically to the rest of the system. These
primitives are available both at user-level or in the kernel.

A transactional conflict occurs when the write-set of one
transaction intersects with the union of the read-set and
write-set of another transaction. The read(write)-set is de-
fined as the set of addresses read(written) by a transaction.
An execution in which the ordering of all conflicting mem-
ory accesses (R→W, W→R, and W→W) is identical to that
of a serial execution of all transactions is called conflict se-



Primitive Definition

xbegin Instruction to begin a transaction.

xend Instruction to commit a transaction.

xrestart Instruction to restart a transaction

xgettxid Instruction to get the current transaction identifier,

which is 0 if there is no currently active transaction.

xpush Instruction to save transaction state and suspend cur-

rent transaction. Used on receiving an interrupt.

xpop Instruction to restore previously saved transaction state

and continue xpushed transaction. Used on an inter-

rupt return.

xtest If the value of the variable equals the argument, enter

the variable into the transaction read-set (if a transac-

tion exists) and return true. Otherwise, return false.

xcas A compare and swap instruction that subjects non-

transactional threads to contention manager policy.

Table 1. Hardware transactional memory concepts in MetaTM.

rializable. Most transactional memory systems detect con-
flicts between two transactions and force one to restart. This
is the most efficient method for providing provable isola-
tion [14]. MetaTM implements eager conflict detection and
eager version management using caches and cache coher-
ence. Conflicts are detected by observing cache coherence
traffic. Speculative versions of cache lines are buffered in L1
data caches during a transaction, while committed versions
reside in lower levels of the memory hierarchy. [27, 33].

When conflicts occur between transactions, the con-

tention manager decides which transaction succeeds and
which transaction(s) must roll back and retry. MetaTM im-
plements contention management in hardware due to per-
formance constraints. TM systems that handle conflicts be-
tween transactional and non-transactional memory accesses
(called asymmetric conflicts) without compromising isola-
tion are said to provide strong isolation [2]. Most HTMs
have strong isolation.

MetaTM supports flat nesting [14]. Repeated calls to xbe-
gin track the nesting level but aggregate all data into a single
transaction. Multiple transactional contexts on a single core
are supported via xpush and xpop. These primitives support
interrupt handlers that can create new, independent transac-
tions and do not necessarily restart parent transactions [28].

MetaTM does not model hardware to support transactions
overflowing the cache, or other exceptional situations such
as device I/O. In these cases, the transaction is restarted
and a status code (NEED EXCLUSIVE) is returned from the
xbegin instruction. This behavior plays an important role in
the I/O and overflow-tolerant behavior of cxspinlocks and
cxmutexes (Sections 2.2 and 4), and in the software-based
virtualization of overflowed user transactions (Section 5).
Code within a critical region may also invoke xretry with
the NEED EXCLUSIVE flag, which will be returned from the
xbegin instruction when the transaction restarts.

While hardware transactional memory is not yet com-
mon, the Rock CPU from Sun, which is scheduled to ship
in 2009, includes support for transactional memory [12, 19].
Azul Systems also ships a processor that contains hardware
transactional memory support [9].

2.2 Transactions in the OS

TxLinux 2.6 is a version of the Linux 2.6 kernel converted
to use transactional memory for synchronization [30]. This
section presents only the material that is necessary to under-
stand the conversion of Linux 2.4.

To provide isolation when critical regions are executing
speculatively, HTM systems must be able to undo the effects
of a transaction that has lost a conflict. However, HTM can
only roll back processor state and the contents of physical
memory, while the effects of I/O cannot be rolled back (I/O
devices do not have transactional interfaces). Performing I/O
operations as part of a transaction can break the atomic-
ity and isolation that transactional systems are designed to
guarantee. This is known as the output commit problem [13].
Critical regions that perform I/O cannot roll back or restart,
so should be protected by locks rather than transactions.

The cooperative transactional spinlock (cxspinlock) API
of TxLinux 2.6 addresses this problem with a programming
model similar to speculative lock elision (SLE) [23]. Cxspin-
locks integrate both transactions and conventional locks, al-
lowing them to inter-operate. Cxspinlocks allow different
executions of a single critical section to be synchronized
with either locks or transactions. Cxspinlocks enter critical
sections optimistically, but restart and acquire a lock if the
hardware determines at runtime that an I/O attempt is about
to occur. The resulting flexibility enables the greater concur-
rency of transactions when critical regions do not perform
I/O, and defaults to the safety of locks when necessary.

Cxspinlocks allow fairness between transactional and
non-transactional threads competing for the same critical
section. Non-transactional threads use the xcas instruction
to acquire a lock. Xcas is like a normal compare and swap
function, but it cooperates with the transaction contention
manager. The transactional hardware can control whether a
non-transactional thread enters a critical region and evicts
transactional threads. Transactional threads cannot enter a
region that is locked by a non-transactional thread.

In the Linux 2.6 kernel, locking is performed through
a well-defined API. For TxLinux 2.6, the large number of
critical regions guarded by spinlocks can be automatically
replaced with transactions, without requiring knowledge of
whether all code paths within the critical region can be ex-
ecuted transactionally. A kernel thread entering the critical
region begins a transaction, and falls back on locking if nec-
essary. This paper extends the adaptive nature of cxspinlocks
to blocking primitives like mutexes and semaphores (Sec-
tion 4).

3. Linux 2.4 conversion

This section presents details of our conversion of the Linux
2.4 kernel to use hardware transactional memory for high-
performance synchronization. We first briefly review syn-
chronization in Linux 2.4 to motivate using the kernel as
a proving ground for the benefits of hardware transactional
memory.



Converting the kernel to use HTM requires several engi-
neering steps. We automatically convert most spinlocks us-
ing the cxspinlock technique from TxLinux 2.6. We also im-
plement an atomic lock acquire to efficiently transition from
transactions to locking, and optimize data structures to avoid
significant sources of transaction conflicts. The final step of
the conversion is the development of cxmutex, a primitive
that uses transactions to speculatively execute some block-
ing critical sections. We believe that this engineering effort
is much less significant than the kernel-wide data and code
reorganization necessary to improve locking performance
from Linux 2.4 to 2.6.

3.1 Synchronization in Linux 2.4

Linux 2.4 uses a small number of coarse-grained locks
for much of its synchronization. Highly contended data
structures, such as the runqueue and directory entry cache
(dcache), are often guarded by a single spinlock. In addi-
tion, the 2.4 kernel makes heavy use of the Big Kernel Lock
(BKL), a coarse-grained spinlock with special semantics that
is used to protect a wide variety of unrelated kernel opera-
tions. Unlike a Linux spinlock, the BKL can be acquired
recursively without deadlocking. Further, a thread that holds
the BKL can sleep by voluntarily calling schedule(). The
BKL is released when the thread sleeps, so other threads can
obtain it. When the thread wakes up, the BKL is reacquired.

The coarse-grained locking in Linux 2.4 is a major im-
pediment to performance scalability in multiprocessor sys-
tems (the BKL has been called the “red-headed stepchild of
the Linux kernel” [17]). Section 6.2 evaluates profiling in-
formation for both the Linux 2.4 and 2.6 kernels: some user
workloads spend more than 50% of kernel execution time on
synchronization in the Linux 2.4 kernel.

Although bad for performance, coarse-grained locking
requires less programming effort to resolve complicated is-
sues such as deadlocks and determining which locks are re-
quired to modify particular data structures. With TxLinux
2.4, we try to use HTM to turn the coarse-grained locking
vice into a virtue. If coarse locks guard distinct data, then
HTM should be able to achieve the synchronization perfor-
mance of 2.6 without the complexity associated with fine-
grained locking.

3.2 Automatic conversion of spinlocks

Nearly all critical sections guarded by spinlocks in the 2.4
kernel are converted to use transactions by modifying a sin-
gle header file. This conversion is identical to the conversion
of the 2.6 kernel [30]. Cooperative transactional spinlocks
(cxspinlocks, see Section 2.2) enable speculative critical sec-
tions that tolerate events such as I/O, making an automatic
conversion possible.

3.3 Atomic lock acquire

Cxspinlocks make it easy to convert lock-based code to use
transactions, but their adaptive implementation includes an
expensive transaction restart when a critical region shifts

void transition_to_locking() {
int depth = current ->aacq_depth;
for(int i = 0; i < depth; i++) {

current ->held_locks[i]->lockvar = 0;
}
for(int i = 0; i < depth; i++) {

xend;
}
current ->aacq_depth = 0;

}

Figure 1. Atomic lock acquire for critical regions in the current transaction.

void dput(struct dentry *dentry)
{
...

if (! atomic_dec_and_lock (&dentry ->d_count ,
&dcache_lock ))

return;

...
list_add (&dentry ->d_lru , &dentry_unused );
dentry_stat.nr_unused ++;
spin_unlock (& dcache_lock );
return;

}

Figure 2. A code sample from the Linux 2.4 dcache. All calls to dput will

always write the nr unused variable, restricting parallelism of unrelated

threads.

from using transactions to using locks. With TxLinux 2.4,
we apply atomic lock acquire (similar to a mechanism pro-
posed as a part of SLE), which switches from transactions
to locking more efficiently. A transaction tracks the locks
that it elides. If the thread transitions to mutual exclusion, it
acquires all of the elided locks as part of the current trans-
action. Finally, the thread commits the transaction. If suc-
cessful, the thread simultaneously commits the work done
in the transaction and acquires the locks necessary to ensure
continued exclusive access to the critical region.

Figure 1 shows code that is executed when a transaction
attempts to transition to locking. As the transaction executes,
it records the lock variables that would be held if the criti-
cal regions had not been executed speculatively. When ex-
clusion is required, the transition to locking function
iterates over the set of locks, speculatively acquiring each
one. All transactions are then committed, and the process
continues to execute non-speculatively. Atomic lock acquire
is efficient for coarse-grained critical regions protected by a
small number of locks.

Atomic lock acquire is safe: no non-transactional threads
will be executing in the same critical region as the acquiring
thread due to the use of cxspinlocks. If transactional thread
A is executing in the same critical region where transactional
thread B is attempting an atomic lock acquire, B will attempt
to write a lock variable that A has read. This conflict will
cause the contention manager to choose one thread to restart.
The lock variables themselves are protected by the HTM and
their presence ensures the safety of atomic lock acquire.

The kernel uses atomic lock acquire to guard regions
of code that require synchronization with locks rather than
transactions. For example, a device driver can insert a call
to transition to locking before performing I/O. If the



transition is successful, it avoids an expensive transaction
restart when the TM hardware detects the actual I/O opera-
tion.

3.4 Reducing transactional conflicts

Because kernel data structures were not designed with op-
timistic synchronization in mind, converting spinlocks to
cxspinlocks is insufficient to expose a high degree of ad-
ditional parallelism. Data structures such as linked lists and
statistics counters can be problematic for transactional mem-
ory. For example, in Figure 2, the update to the nr used

counter ensures that transactions executing concurrently in
that critical region will conflict even if they are otherwise
data parallel. Concurrent updates to linked lists are prone to
transactional conflicts on a list’s next pointers, even when
updates are made to disjoint parts of the list. In TxLinux 2.4,
minimization of such conflicts is important. For example,
the directory entry cache (dcache) relies on a counter and a
linked list to track unused directory entry structures. Because
the dcache is highly contended, conversion of these struc-
tures to per-CPU data structures reduces transaction restarts,
significantly improving performance. We modified 4 kernel
data structures, changing 120 lines of code to reduce trans-
actional conflicts.

4. Cooperative Transactional Mutex

The Linux kernel contains blocking synchronization, which,
unlike a spinlock, will deschedule a thread if the resource
is not available. In Linux 2.4, semaphores are the dominant
blocking synchronization primitive. Semaphores are often
acquired while holding the big kernel lock (or BKL—see
Section 3.1), which is converted from a spinlock to a cxspin-
lock in TxLinux 2.4. Because regions of code protected
by cxspinlocks (and hence the BKL) are executed within a
transaction, TxLinux 2.4 needs an alternative to semaphores
that also allows transactional execution. To enable specula-
tive execution of blocking critical regions, we introduce the
cxmutex primitive.

4.1 Cxmutex implementation

A cxmutex consists of a lock variable (a value of 0 indi-
cates that the lock is unavailable) and a queue of processes
waiting for the lock. Figure 3 shows the procedure for either
speculatively or non-speculatively entering a critical section
protected by a cxmutex. A cxmutex is acquired similarly
to a cxspinlock. A transactional thread that uses cxmutex-
optimistic tests the value of the lock variable with the
xtest instruction. If the lock is available (with a value of 1),
the lock variable is added to the read set of the current trans-
action. Other transactions will be able to enter the same crit-
ical section concurrently by also reading the lock variable,
thus adding it to their read set.

If the lock is not available, the thread calls cxmutex-

exclusive. While some HTM proposals allow a process
to block with an active transaction [35, 37], TxLinux 2.4

void cxmutex_optimistic(cxmutex_t *cxm)
{

/* Begin a transaction */
status = xbegin;
/* If exclusion is not required and

the mutex is available , continue
speculatively */

if(! status.need_exclusive &&
xtest(&cxm ->lockvar , 1))
return;

xend;
cxmutex_exclusive(cxm);

}

void cxmutex_exclusive(cxmutex_t *cxm) {
if(xgettxid ())

transition_to_locking ();
if(xcas(cxm ->lockvar , 1, 0))

return;
add_wait_queue (&lock ->wait_q , current );
for (;;) {

if(xcas(cxm ->lockvar , 1, 0))
break;

schedule ();
}
remove_wait_queue(&cxm ->wait_q , current );

}

Figure 3. Functions for acquiring a cxmutex speculatively or exclusively.

void cxmutex_end(cxmutex_t *lock) {
/* If the lock variable is 0, it must

have been locked by this thread */
if(lock ->lockvar == 0) {

lock ->lockvar = 1;
wake_up (&lock ->wait);
return;

}
xend ();
/* If this was nested inside another

transaction , sleepers must be woken
via commit action */

if(xgettxid ())
add_commit_action(cxmutex_wake_up , lock);

else
wake_up (&lock ->wait);

}

Figure 4. Function for releasing a cxmutex

immediately falls back to mutual exclusion, simplifying both
hardware and software.

A non-transactional thread acquires a cxmutex using the
cxmutex exclusive function. Using xcas, it attempts to
atomically change the lock variable from 1 to 0. This op-
eration will fail if the lock has already been locked by an-
other non-transactional thread. It will also fail if a transac-
tional thread has entered the lock variable in its read set, thus
providing fairness between cxmutex optimistic and cx-
mutex exclusive. This fairness mechanism is the same as
the mechanism used by cxspinlocks.

If the lock cannot be acquired, the thread adds itself to
the wait queue, and then deschedules itself. Upon waking
up, the thread attempts to acquire the lock again, removing
itself from the wait queue if it is successful. Otherwise, it
continues to block until it is able to acquire the lock.

4.2 Commit and abort actions

When a transactional or non-transactional thread releases
a cxmutex, it must wake up any waiting threads. In the
non-transactional case, the thread calls the wake up func-



tion (Figure 4). However, if the critical region is being exe-
cuted as a transaction, the region may be nested within other
transactional critical regions. As a result, releasing the cx-
mutex by calling xend does not end the current transaction,
but leaves the thread executing in the context of the parent
transaction. If the thread remains in a transaction, then the
lock variable remains in the read-write set of that transaction.
Waking other threads while the lock variable is protected by
a transaction is not useful because the lock is not available.
If the threads wake up and find the lock unavailable, they
will go back to sleep, possibly never to awake again. Threads
must be awakened only when the lock variable is not isolated
by any parent transaction.

The call to wake up must be delayed until the transac-
tion successfully commits and releases isolation. The call is
accomplished via a commit action, a function that is regis-
tered at the beginning of a transaction and called after the
transaction commits [37]. Similarly, an abort actionmust be
installed to wake up any sleepers if the transaction restarts.
Restarted transactions do not necessarily follow the same
dynamic code path, particularly when the transactions are
nested, so failure to wake sleepers on restart can result in
blocked threads. The abort action ensures that these threads
are not left to sleep indefinitely.

Proposals for commit actions that execute atomically with
a transaction exist in the literature [20]. This type of commit
action requires special hardware support. Writing such com-
mit handlers is delicate because the handlers must synchro-
nize without transactional memory. TxLinux 2.4 does not re-
quire atomicity for handlers. Our restricted implementation
of commit and abort handlers are simple function pointers,
called after a transaction commits or aborts. They are imple-
mented in software and require no special hardware support.

5. Virtualizing hardware transactions

MetaTM, like many HTM proposals, uses the L1 cache to
buffer transactional writes, and relies on cache coherence to
provide conflict detection. Versioning and conflict detection
for transactions that overflow hardware caches due to capac-
ity or associativity evictions require additional mechanisms
to virtualize overflow. Proposals exist in the literature to vir-
tualize overflow, but these proposals fall broadly into two
classes: systems that rely on complex hardware [1, 3, 4, 25,
36], and hybrid systems that use hardware to accelerate soft-
ware transactional memory [1, 5, 10, 15, 31]

MetaTM minimizes hardware complexity by providing
no assistance for overflowed transactions. When a hardware
transaction overflows the cache, MetaTM restarts the trans-
action and returns a status code to the caller indicating a fail-
ure occurred due to overflow. A runtime system is then re-
sponsible for providing virtualization. TxLinux 2.4 provides
a simple overflow model for both user and kernel program-
mers.

5.1 Overflow in the kernel

TxLinux handles overflow by providing a programming
model similar to speculative lock elision [23] rather than
full transactions. If a transaction cannot execute in hardware
because it has overflowed cache resources, it restarts. A re-
turn code from the xbegin primitive provides the reason for
the restart, and the transaction reverts to locking for syn-
chronization. Unlike SLE, MetaTM and TxLinux provide
flexibility through a combination of software and hardware.
Section 7 discusses SLE in more detail.

Locks remain in the kernel, but they can be much more
coarse-grained because, in the non-overflow case, the criti-
cal regions may execute in parallel. In the case of overflow,
the existing locking structure determines the degree of con-
currency. Locking on overflow conforms with the existing
Linux synchronization primitives and does not require addi-
tional programmer effort.

5.2 Overflow in userspace

As in the kernel, TxLinux 2.4 supports overflow of user
transactions by falling back on software. However, to pre-
serve the programming benefits of transactions, user over-
flow must not be exposed in the user programming model
the way it is in the kernel. On overflow, user transactions
are re-executed non-speculatively by having the runtime sys-
tem grab a single global lock. In the common case, the pro-
grammer can simply write transactional critical sections, and
overflow is handled transparently by the system.

While this solution provides safety for overflowed trans-
actions, it restricts concurrency. We use transaction ordering
to reintroduce some of this lost concurrency. We propose a
new protocol that allows multiple hardware transactions to
execute concurrently with overflowed transactions.

The single, user-level lock can be replaced with a kernel-
level lock for each virtual memory area (VMA). This kernel-
level lock provides support for multiple overflowed threads
within a single address space, as well as support for over-
flow occurring when multiple processes use shared memory.
The Linux kernel manages coarse-grained regions of virtual
address space with the VMA data structure, using at least
one VMA for every shared memory segment. As a result,
a typical address space consists of tens of VMAs. Kernel-
level locking of VMAs allows different threads within an
address space to overflow so long as their transactions are
guaranteed (by the programmer or compiler) to access mem-
ory from distinct VMAs. VMAs naturally extend to multiple
processes because the kernel uses them to implement shared
memory segments, such as mapped files.

5.2.1 Transaction ordering

Transaction ordering ensures isolation between overflowed
transactions and multiple, concurrent hardware transactions.
A global lock is sufficient to ensure consistency between
overflowed transactions. To allow concurrency between an
overflowed transaction and multiple non-overflowed trans-
actions (or hardware transactions), we use a commit protocol



Figure 5. Ordering between overflowed and hardware transactions. At

commit time, hardware transactions wait for any concurrent overflowed

transaction to commit first. Coordination between overflowed transactions

is achieved with a global lock. Ordering between overflowed and hardware

transactions is achieved with a counter incremented at the beginning and

end of a non-speculative transaction.

that restricts the commit order of hardware and overflowed
transactions. Section 5.2.2 explains why transaction ordering
is safe, but we first give an overview of how it works.

Transaction ordering ensures that when hardware and
overflowed transactions execute concurrently, the over-
flowed transaction will commit first. Figure 5 shows sev-
eral transactions participating in transaction ordering. Trans-
action A begins and completes its critical region without
overflowing hardware resources. Because there are no con-
current overflowed transactions, transaction A can commit
immediately. Transaction B begins, but overflows hardware
resources. On overflow, transaction B restarts, acquires the
global lock, and begins executing non-speculatively.

Transaction C begins and completes successfully without
overflowing hardware resources. However, when C attempts
to commit, transaction B has overflowed, restarted and is ex-
ecuting non-speculatively. Transaction C must remain active
and wait for B to commit before committing itself.

Transaction D begins, eventually overflows hardware re-
sources, and restarts. At the time it restarts, however, trans-
action B is still executing non-speculatively. Transaction
D attempts to acquire the global lock, but must wait un-
til it is released when transaction B commits. Transaction
D then acquires the lock and executes its transaction non-
speculatively. Note that transaction C may commit before
transaction D begins executing non-speculatively.

Transaction ordering is implemented by a simple library
that starts and ends transactions. Transaction start is im-
plemented with the xbegin instruction. Within a single ad-
dress space, the commit protocol is implemented as a simple
counter. Before entering the critical region, an overflowed,
non-speculative thread increments the counter, which is ini-
tialized to 0. The thread again increments the counter af-
ter exiting the critical region. Before committing a hardware
transaction, a thread suspends the transaction (using xpush)
and checks the value of the counter. If the value is odd, the
thread must wait for the counter to be incremented again be-
fore it can commit. For multi-process applications, the wait-

ing occurs in the kernel. The kernel identifies which threads
share data based on VMAs and runs a similar protocol for
each shared region.

5.2.2 Safety of transaction ordering

Several mechanisms contribute to the safety of transaction
ordering. The commit protocol leverages strong isolation to
detect conflicts between hardware and overflowed transac-
tions. The HTM contains the effects of transactions that read
inconsistent data. We also modify the OS exception handlers
to be aware of overflowed transactions. Finally, the hardware
ensures that non-overflowed transactions commit using the
commit protocol.

The commit protocol ensures that the strong isolation
of the HTM detects all conflicts between an overflowed
and hardware transaction, and serializes the transactions ap-
propriately. If a hardware transaction executes entirely be-
fore or after an overflowed transaction then they are seri-
alized in that order. A hardware transaction executing con-
currently and performing conflicting accesses with an over-
flowed transaction will always serialize after the overflowed
transaction. If the conflicting access occurs first in the over-
flowed transaction, it will appear as if the overflowed trans-
action performed the access first. If the access occurs first
in the hardware transaction, the overflowed transaction will
eventually perform its conflicting access, causing an asym-
metric conflict. The HTM will detect the conflict and restart
the transaction. The hardware transaction waits for the over-
flowed transaction to commit so that the HTM will detect all
such conflicts.

Non-speculative overflowed transactions allow zombie
hardware transactions that have read inconsistent state from
the non-speculative thread. However, zombies are easily
contained by a combination of simple hardware and oper-
ating system modifications [27, 29]. The commit protocol
ensures that the hardware transaction serializes after the
overflowed transaction and therefore will restart when the
overflowed thread writes the data to reestablish the data’s in-
variant. If the hardware transaction enters an infinite loop be-
cause of reading inconsistent data, it will be restarted when
the non-speculative thread reestablishes the data’s invari-
ant. If a zombie hardware transaction overflows, then it will
restart and execute non-speculatively, reading only consis-
tent data.

In the case that inconsistent state causes a fault in the
hardware transaction, wemodify the operating system’s fault
handlers. Page faults are allowed, so hardware transactions
can make forward progress. The fault handler counts faults
(excluding page faults) and if a hardware transaction has
300 of them (an arbitrary, but high threshold), it restarts the
transction in overflow mode. A transaction with a persistent
fault will eventually commit in overflowmode. Such transac-
tions cannot reasonably be considered performance critical.
TxLinux 2.4, like TxLinux 2.6, does not abort transactions
on an exception or interrupt (Section 2).



Finally, a hardware transaction might attempt to execute
an xend instruction outside of the commit protocol, because
of bad control flow due to reading inconsistent data from an
overflowed transaction. We ensure that all hardware trans-
actions execute the commit protocol by passing the xbegin

instruction a program counter value that must be executed
for any subsequent xend to succeed. By specifying the first
instruction of the commit protocol to the xbegin, we ensure
that the transaction commits safely.

5.2.3 Discussion of transaction ordering and overflow

The commit protocol described here allows for multiple
hardware transactions to execute concurrently with a single
overflowed transaction. However, the transaction ordering
mechanism is general enough to allow any HTM to use any
STM on overflow, executing multiple overflowed transac-
tions concurrently with multiple hardware transactions. Pre-
vious hybrid systems [1, 5, 10, 15, 31] paid close attention
to the coordination of the HTM and STM. Transaction or-
dering alleviates that burden, though prototyping an imple-
mentation is future work.

Transaction ordering is a limited form of dependence-
awareness [27, 29], where conflicting accesses in overflowed
and hardware transactions are ordered using the commit
protocol, and data is forwarded only from overflowed to
hardware transactions.

User-level overflow handling weakens the semantics pro-
vided byMetaTM from strong isolation, to single global lock
isolation. Although not as strict as strong isolation, single
global lock isolation is similarly easy for programmers to
reason about [16]. In particular, it has intuitive semantics for
programs that are properly synchronized, where all shared
data accesses are protected with transactions, as well as for
programs that are not properly synchronized.

6. Evaluation

In this section, we evaluate the ability of a minimal, bounded
HTM to improve the performance of a kernel designed with
coarse-grained synchronization. We find that HTM is often
able to approach the performance of fine-grained locking for
kernel synchronization.

For the user programmer, simple overflow virtualiza-
tion provides most of the benefits of unbounded transac-
tional memory at little cost for transactions that remain
mostly within hardware resources. At extremely low over-
flow rates, performance does not differ from zero-cost over-
flows. Benchmarks in which a few transactions overflow
hardware resources show small reductions in performance.
At significant overflow rates (13%), overflow virtualization
performs noticeably worse than the best-case HTM, but still
achieves some scaling with the number of processors.

6.1 Experimental setup

Our experimental system is built on the publicly avail-
able MetaTM hardware transactional memory simulator.
TxLinux 2.4 shares the implementation of cxspinlocks with

Processor 1.0 GHz x86 1 IPC

L1 Cache 32KB, 64 byte lines, 8-way, 1 cycle hit, transactional

L2 Cache 4MB, 64 byte lines, 8-way, 24 cycle hit

Main memory 1GB, 350 cycle access time

Table 2. Hardware parameters used in simulation.

TxLinux 2.6. All other modifications discussed in this paper
are new.

Table 2 summarizes the parameters of our hardware sim-
ulation. MetaTM is implemented as a module for the Simics
3.0.30 machine simulator [18]. MetaTM simulates an ea-
gerly versioned, eager conflict detection HTM with word
granularity. Cache coherence is maintained using a variant
of TMESI [32], extended to support multi-level caches and
restricted to eager version management and eager conflict
detection. L2 caches use a standard MESI protocol. Because
exercising an operating system imposes a heavy burden on
simulation time, we use Simics’ in-order processor model
at 1 cycle per instruction. Transaction commits and aborts
incur an additional 5 cycle latency, and we use a linear
backoff policy for transactional conflicts. L1, L2, and main
memory latencies are 1, 24, and 350 cycles respectively.
This model provides sequential consistency, but MetaTM
does not require it. The xbegin and xend instructions have
fence instruction semantics, allowing MetaTM to support re-
laxed consistency models. We do not model a processor store
buffer past instruction retirement.

First, we profile the Linux 2.4 and 2.6 kernels to evalu-
ate the possible gain from reducing or eliminating the over-
head of lock-based synchronization. We then evaluate the
performance of MetaTM and TxLinux 2.4 with the bench-
marks shown in Table 3. Two types of benchmarks comprise
our evaluation. To evaluate the performance of the TxLinux
2.4 kernel, we use the benchmarks from TxLinux 2.6. These
benchmarks are non-transactional user programs that stress
synchronization hot spots in the kernel.

To evaluate performance of overflow virtualization for
user programs, we use selected benchmarks from the STAMP
suite of parallel benchmarks [21]. These benchmarks exhibit
a variety of overflow behavior.

6.2 Profiling Linux 2.4 and 2.6

Figure 6 profiles the Linux 2.6, 2.4, and TxLinux 2.4 kernels
across our benchmarks. Across all benchmarks, the Linux
2.6 and 2.4 kernels spend similar amounts of time in kernel
subsystems, such as memory management and the file sys-
tem. However, Linux 2.4 spends significantly more time exe-
cuting synchronization code (almost exclusively spinlocks).
In the mab benchmark, for example, more than 50% of ker-
nel time is spent on synchronization. Linux 2.6, with its fine-
grained locking structure, spends a much smaller portion of
time synchronizing.

With transactions, we hope to greatly reduce the amount
of time spent on synchronization. Because of transaction
restarts, not all synchronization time can be eliminated.
However, benchmarks that dedicate a large amount of time



Figure 6. Execution time profile for 2.6, 2.4, and TxLinux 2.4 kernels

organized by kernel subsystem and normalized to execution time for the

2.4 kernel on 8 processors. Linux 2.4 spends a significant portion of its

execution time on synchronization.

mab File system benchmark simulating a software development

workload [22]. Runs one instance per processor of the

Modified Andrew Benchmark, without the compile phase.

dpunish A micro-benchmark from TxLinux 2.6 to stress synchro-

nization in VFS directory entry cache.

find Run 32 instances of the find command, each in a different

directory, searching files from the Linux 2.6.16 kernel for

a text string that is not found. Each directory is 4.6–5.0MB

and contains 333–751 files and 144–254 directories.

config Run several parallel instances of the configure script for a

large software package, one for each processor

pmake Runs make -j 2 * (number of processors) to compile 27

source files totaling 6031 lines of code from the libFLAC

1.1.2 source tree in parallel

vacation hc big smallws vacation -n1 -q10 -u80 -t 1000000

Simulate a travel reservation system.

Large high-contention, small working set

parameters.

vacation lc small vacation -q90 -u80 -t100000

Low-contention simulator vacation pa-

rameters.

vacation lc small smallws vacation -n1 -q90 -u80 -t100000

Low-contention vacation with small

working set size.

yada yada -a20 -i ttime10000.2

Performs Delauney mesh refinement.

ssca2 ssca2 -s13 -i1.0 -u1.0 -l3 -p3

A set of graph kernels.

Table 3. Benchmarks for exercising synchronization in the Linux Kernel,

and user-level parallel benchmarks with associated parameters from the

STAMP suite.

to synchronization should demonstrate improved scalability.
Benchmarks such as config and pmake, which spend less
time synchronizing, may not see significant gains.

6.3 TxLinux 2.4 Kernel

Figure 7 shows the scaling of kernel execution time with the
number of processor cores for 3 kernels. Linux 2.4 is the
base kernel. TxLinux 2.4 is the Linux 2.4 kernel converted
to use transactions for most synchronization, and includes
atomic lock acquire and cxmutex. Data is shown for both
idealized, zero-cost overflow, as well as for an HTM that
restarts transactions using locking in software on overflow.
Linux 2.6 is the unmodified Linux 2.6.16.1 kernel. Data is

not shown for TxLinux 2.6, the transactional version of the
Linux 2.6 kernel. Previous results show that the performance
of TxLinux 2.6 is identical to Linux 2.6 [30]. HTM does not
add concurrency to the fine-grained locking of Linux 2.6.

The mab and dpunish benchmarks place significant stress
on the coarse-grained locking of the Linux 2.4 kernel. For
these benchmarks, the Linux 2.6 kernel demonstrates greater
scalability in kernel execution time, in part due to its im-
proved fine-grained locking structure. TxLinux 2.4 is able
to use HTM in place of fine-grained locking to gain much of
the concurrency of 2.6. On the 32 processor mab benchmark,
TxLinux 2.4 gains a speedup of 1.8× over the unmodified
2.4 kernel. On the dpunish benchmark, TxLinux 2.4 tracks
closely the scalability of the 2.6 kernel, and has a speedup of
1.5× over the unmodified 2.4 kernel.

Figure 6 shows that TxLinux 2.4 greatly reduces the
amount of time mab and dpunish spend synchronizing
with spinlocks. However, not all synchronization time can
be eliminated. Non-speculative threads entering a criti-
cal region must wait for both transactions and other non-
speculative threads holding the same lock. In addition, the
time spent in kernel subsystems increases due to transaction
restarts and re-execution, which can be unavoidable due to
data structure contention.

The find benchmark represents a small performance win
for TxLinux 2.4, even though the unmodified 2.4 kernel
wastes a large amount of time synchronizing. However, scal-
ability in find appears to be limited by other factors, as even
the 2.6 kernel has relatively little scalability despite spending
much less time on synchronization. In addition, the trans-
action restart rate is much greater for find than other ker-
nel benchmarks, even given the data structure reorganiza-
tion in TxLinux 2.4 (Table 4). The config and pmake bench-
marks do not stress kernel synchronization, so there is little
room for TxLinux 2.4 to improve over the unmodified Linux
2.4 kernel. The pmake benchmark also has a significant rate
of transaction restarts (nearly 15% of kernel time is wasted
by transaction aborts on 32 processors). Transaction restarts
along with the small room for improvement causes TxLinux
2.4 to trail slightly in performance behind Linux 2.4.

For all of the kernel benchmarks, handling overflow by
reverting to locking performs as well as hypothetical zero-
cost overflow. Kernel transactions are short even for the
coarse-grained synchronization in the Linux 2.4 kernel, so
overflow is rare. No benchmark has an overflow rate greater
than 1%.

Table 4 presents data about the kernel transactions in
Linux 2.4. Adding cxmutex and data structure reorganiza-
tion to a rote transactional conversion of the Linux 2.4 ker-
nel decreases abort rates, the average number of aborts per
transaction and the time wasted in transactional aborts. For
the find benchmark on 8 processors, cxmutex and data struc-
ture reorganization reduced the time wasted by aborts from
23.9% to 9.5%.

Atomic acquire can save work over transaction restarts,
but may fail if multiple concurrent transactional critical re-
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Figure 7. Comparison of non-transactional and transactional 2.4 and 2.6 performance across our suite of benchmarks for 8, 16, and 32 processors. Data is

reported as speedup in kernel execution time relative to the Linux 2.4 kernel running on 8 processors.

Transactions % Abort Avg. Abort Waste Overflow CXM Success Atomic Acq AA Success

mab 8 9,452,747 1.2% 3.6% 0.06 0.17 4.18% 8.42% 0.21% 99.9% 3.12% 99.2%

16 11,796,923 1.9% 6.2% 0.16 0.44 14.73% 24.03% 0.18% 100.0% 3.12% 98.4%

32 12,519,786 2.0% 5.9% 0.18 0.41 15.27% 22.01% 0.21% 100.0% 3.08% 98.4%

dpunish 8 4,899,931 1.1% 3.9% 0.04 0.11 2.42% 7.10% 0.06% 99.7% 1.04% 99.9%

16 6,694,111 1.2% 4.0% 0.05 0.14 4.16% 10.64% 0.06% 99.7% 1.08% 99.7%

32 7,285,199 1.6% 3.8% 0.07 0.15 6.33% 11.63% 0.06% 99.8% 1.13% 99.6%

find 8 6,045,056 1.4% 1.6% 0.06 0.20 9.46% 23.93% 0.04% 100.0% 4.77% 98.8%

16 6,492,214 2.0% 2.1% 0.25 0.52 32.76% 48.14% 0.04% 100.0% 4.83% 96.0%

32 7,669,640 1.9% 1.7% 0.67 1.02 60.37% 70.18% 0.04% 100.0% 4.76% 94.4%

config 8 9,804,567 1.8% 1.9% 0.04 0.07 2.15% 3.70% 0.53% 99.9% 1.81% 99.0%

16 21,811,053 1.5% 1.6% 0.09 0.13 10.92% 10.79% 0.27% 99.8% 1.78% 95.3%

32 20,779,868 1.9% 1.2% 0.16 0.11 12.44% 12.25% 0.29% 99.8% 1.69% 93.6%

pmake 8 1,701,267 0.6% 0.7% 0.02 0.03 2.43% 2.82% 0.09% 100.0% 1.84% 96.8%

16 2,125,688 0.9% 1.1% 0.05 0.07 4.85% 6.71% 0.13% 100.0% 1.81% 96.4%

32 2,711,800 1.0% 1.1% 0.13 0.17 14.75% 19.52% 0.16% 100.0% 1.73% 95.1%

Table 4. Statistics for kernel benchmarks. Data is reported for the number of transactions, the percent of transactions that abort at least once, the average

number of aborts per transaction, and the percentage of execution time wasted by aborted transactions. For transaction abort statistics, data is shown for

the optimized TxLinux 2.4 kernel on the left, and TxLinux 2.4 without cxmutex or data structure reorganization on the right. Also shown is the percent of

transactions that overflow hardware resources, the percent of calls to cxmutex optimistic that execute speculatively instead of descheduling, the percent of

transactions that attempt to transition to locking with atomic lock acquire, and the success rate for atomic lock acquire.

gions require the same lock. However, nearly all attempts
at transitioning to locking via atomic lock acquire are suc-
cessful. All benchmarks have a success rate greater than
94%. While the overall percentage of atomic lock acquires
is small, it is large relative to the number of aborted transac-
tions. For example, if mab at 8 processors did not use atomic
lock acquire, its abort rate would more than double. Atomic
lock acquire is a more efficient way of transitioning from
transactions to locks than restarting.

6.4 User evaluation

We evaluate our overflow virtualization for user programs
using the STAMP benchmarks [21]. We expand the STAMP
macros for starting and ending a transaction to implement
virtualization via transaction ordering (Section 5.2). We al-
low system calls and library calls that may enter the ker-
nel (such as malloc) within critical sections. These calls are
preceded by a manual restart with the NEED EXCLUSIVE flag,
causing the transaction to restart in overflowed mode and to
execute the system call safely.

Figure 8 shows the performance of several STAMP
benchmarks using a transaction ordering MetaTM/locking
hybrid, compared with ideal zero-cost overflow and the TL2
STM [11]. Vacation has a highly variable amount of over-

flow given different parameters, so we use it to stress the
overflow virtualization of TxLinux 2.4.

For small overflow rates, transaction ordering tracks
closely the performance of zero-cost overflow. In ssca2,
only a few transactions overflow and performance is nearly
identical to zero-cost overflow. In vacation hc big smallws,
speedup at 16 processors drops from 4.2× to 3.6× given an
overflow rate of 4%. A 13% overflow rate on vacation lc -
small lowers performance, but maintains some scaling until
16 processors. The yada benchmark is limited by the simple
global lock software virtualization. Despite an overflow rate
of 7% at 32 processors, yada spends 85% of its execution
time in serially executed overflowed critical regions.

Table 5 reports statistics for the user benchmarks. For
benchmarks with noticeable overflow, the degree of overflow
varies with the number of processors. At high overflow rates
and processor counts, many overflowed threads contend for
the overflow lock, and many hardware transactions wait for
overflowed threads. At 32 processors in vacation lc small,
each transaction is expected to wait at least once for an
overflowed thread. Here, the MetaTM/locking hybrid loses
performance.
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Figure 8. Results for user-level STAMP benchmarks for ideal free overflow (free), transaction ordering (ordered), and the TL2 STM (tl2). Data is reported

as speedup relative to a sequential execution. The approximate percentage of transactions that overflow hardware resources at 16 processors is reported in the

title of each graph. Speedup for vacation hc big smallws is scaled separately from the other graphs.

Transactions Tx/Sec % Abort Abort/Tx % OV Wait OV Concur OV Abort

vacation hc big smallws 8 1,000,000 380,257 51.42% 3.73 3.08% 0.12 6.33 0.11

16 1,000,000 419,185 67.66% 10.37 3.64% 0.22 13.97 0.21

32 1,000,000 390,639 72.46% 22.38 3.19% 0.29 29.36 0.37

vacation lc small 8 100,000 255,045 48.07% 4.51 10.53% 0.38 5.31 0.10

16 100,000 255,707 72.48% 13.84 12.70% 0.78 11.65 0.25

32 100,000 253,611 83.29% 29.42 11.45% 1.14 26.36 0.32

vacation lc small smallws 8 100,000 613,625 32.23% 0.94 0.02% 0.00 6.09 0.00

16 100,000 965,214 50.47% 1.91 0.01% 0.00 12.71 0.00

32 100,000 1,385,713 70.10% 3.64 0.02% 0.00 22.95 0.00

yada 8 64,062 98,313 31.62% 31.83 5.25% 0.13 6.59 0.07

16 63,378 67,155 43.84% 107.16 11.45% 0.26 11.86 0.08

32 63,303 88,915 42.69% 170.75 7.84% 0.24 27.95 0.07

ssca2 8 1,418,807 2,789,556 0.00% 0.00 0.00% - - -

16 1,418,827 4,908,689 0.01% 0.00 0.00% - - -

32 1,418,863 8,204,413 0.02% 0.00 0.00% - - -

Table 5. Statistics for user benchmarks. Data is reported for the number and throughput of transactions, the abort rate and average number of aborts per

transaction. % OV is the percent of transactions that overflow hardware resources, Wait is the average number of times each hardware transaction waits for

an overflowed transaction by our commit protocol, OV Concur is the average number of hardware transactions that execute concurrently with an overflowed

transaction, and OV Abort is the average number of times each hardware transaction is restarted by an overflowed transaction. The ssca2 benchmark does not

overflow so data on transaction ordering are not reported.

7. Related Work

TxLinux 2.4 builds on the TxLinux 2.6 work and code dis-
tribution [26, 28, 30]. TxLinux virtualizes kernel transaction
overflow with the cxspinlock primitive from TxLinux 2.6
and the related cxmutex primitive. These primitives present a
programming model similar to Speculative Lock Elision [23,
24], in which lock-based critical sections are executed spec-
ulatively in hardware, falling back on the original locking
structure when necessary. However, cxspinlocks implement
lock elision in software on top of a more general hardware
substrate (HTM). They do not rely on hardware prediction of
critical regions, and so can be extended to many types of syn-
chronization primitives, such as mutexes or ticket spinlocks.
SLE is completely transparent to programmers because it
predicts critical regions in hardware. Cxspinlocks require
programmers to use a strictly controlled API to interface
with synchronization primitives. For example, a program-
mer reading the value of a lock variable to check the status
of a lock (e.g. to assert correct locking discipline) will read
different values depending on whether the critical region is
executed speculatively or non-speculatively. In Linux, all in-
teractions with locks are already performed through a lock-
ing API. Thus, TxLinux need only provide the correct im-

plementations of functions, such as spin is locked, to be-
have correctly.

In addition, SLE buffers updates in the processor store
buffer. By using the L1 cache for data versioning, MetaTM
allows for larger critical regions, such as those created by the
coarse-grained locks in Linux 2.4.

SLE proposes a mechanism similar to atomic lock acquire
for committing rather than restarting some critical regions.
As with cxspinlocks, a software implementation on an un-
derlying HTM allows this technique to be applied more flex-
ibly to arbitrarily nested critical regions using heterogeneous
synchronization primitives.

TxLinux 2.4 requires 1,500 lines lines of kernel code
changes, and is dramatically simpler in design than any pro-
posed OS support for TM [7, 8, 37]. It provides transactions
unbounded in size.

Chuang et al. [7] describe how to modify the memory
controller hardware to store transactional state bits with
pages but detect conflicts on overflowed transactions at
cache-line granularity. The proposed hardware is complex
and the OS paging support is modeled, but not implemented.

Chung et al. [8] describe several designs, ranging from
an all-software in-kernel page-based software transactional
memory implementation to various ways to accelerate STM



in hardware, including new page table bits, extra cache bits,
and possibly an eviction log buffer. The complexity of the
OS support, which includes a new, complicated data struc-
ture called the virtualization information table, would re-
quire a substantial development effort.

Swift et al. [35] present a design for virtualizing transac-
tions in the face of several operating system events, such as
context switching and paging. Transaction overflow is still
handled by hardware. Context switching and paging are in-
frequent; aborting the current transaction is a simpler solu-
tion that is unlikely to impact performance. In TxLinux 2.4,
a critical section unable to complete because of operating
system events could invoke software-provided overflow han-
dling and be guaranteed progress.

Similar to software-based overflow, Blundell et al. [3] re-
strict the concurrency of overflowed transactions in order to
virtualize overflow. However, Blundell restricts concurrency
in hardware, rather than the software solution of TxLinux 2.4
and transaction ordering. Because the kernel manages shared
memory, it can allow separate processes to synchronize us-
ing transactions. In systems that restrict concurrency in hard-
ware, synchronizing separate processes is not possible, be-
cause an overflowed transaction will stall transactions from
unrelated processes. Spear et al. [34] describe protocols for
concurrency in a software TM between a single “inevitable”
transaction and multiple non-inevitable transactions. These
are similar in purpose to transaction ordering, but are re-
stricted to software and require significant modifications to
synchronization for both inevitable and non-inevitable trans-
actions.

8. Conclusion

Many of the problems of HTM can be solved with software
that relies on a few core features, such as strong isolation,
without the tight integration of a hybrid system. In this pa-
per, we show that even a restricted version of HTM can ad-
dress the synchronization problems of large, complex code
bases by bringing the performance of fine-grained locking to
coarse critical regions.

A small runtime system can provide a simple, unbounded
programming model for user-level transactions. Unbounded
transactions proceed with the speed of HTM for most trans-
actions and gracefully degrade in performance for those that
overflow hardware resources.
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