
InkTag: Secure Applications on an
Untrusted Operating System

Owen Hofmann, Sangman Kim, Alan Dunn, Mike Lee,

Emmett Witchel

UT Austin

You trust your OS... should you?

• The OS is the software root
of trust on most systems

• The OS is a shared
vulnerability
• OS compromise infects all

• The OS is a vulnerable
vulnerability

• Syscall interface a complex
attack surface

•ioctl()

• Root often has OS-level
privilege

OS

A
pp

A
pp

A
pp

A
pp

2

You trust your OS... should you?

• The OS is the software root
of trust on most systems

• The OS is a shared
vulnerability
• OS compromise infects all

• The OS is a vulnerable
vulnerability

• Syscall interface a complex
attack surface

•ioctl()

• Root often has OS-level
privilege

OS

A
pp

A
pp

A
pp

A
pp

2
A

pp

You trust your OS... should you?

• The OS is the software root
of trust on most systems

• The OS is a shared
vulnerability
• OS compromise infects all

• The OS is a vulnerable
vulnerability

• Syscall interface a complex
attack surface

•ioctl()

• Root often has OS-level
privilege

OS

A
pp

A
pp

A
pp

A
pp

2
A

pp

OS

You trust your OS... should you?

• The OS is the software root
of trust on most systems

• The OS is a shared
vulnerability
• OS compromise infects all

• The OS is a vulnerable
vulnerability

• Syscall interface a complex
attack surface

•ioctl()

• Root often has OS-level
privilege

OS

A
pp

A
pp

A
pp

A
pp

2
A

pp

OS

A
pp

A
pp

A
pp

You should trust the hypervisor

• Hypervisors have become a
common part of the software
stack

• Provide a layer of indirection
under the OS

• Hypervisors can be more
trustworthy

• Fewer lines of code

• Thinner interface

• Fewer vulnerabilities

3

Hypervisor

OS

A
pp

A
pp

A
pp

A
pp

But the OS is still a problem

• Users want trustworthy
applications

• Applications still must trust
the OS

4

Hypervisor

OS

A
pp

A
pp

A
pp

A
pp

But the OS is still a problem

• Users want trustworthy
applications

• Applications still must trust
the OS

4

Hypervisor

OS

A
pp

A
pp

A
pp

A
pp

OS

But the OS is still a problem

• Users want trustworthy
applications

• Applications still must trust
the OS

4

Hypervisor

OS

A
pp

A
pp

A
pp

A
pp

A
pp

OS

A
pp

A
pp

A
pp

Removing OS trust

• Why can the kernel
compromise applications?

• No isolation

• OS still provides all essential
services

• File I/O

• Memory mapping

OS

A
pp

A
pp

A
pp

A
pp

5

Hypervisor

Isolate and verify

• Can the hypervisor improve
this situation?

• Previous systems have
examined this problem

• Overshadow [ASPLOS ’08]

• Trusted hypervisor isolates an
application from an untrusted
kernel

• Ensure that the OS follows its
contract with the application

OS

A
pp

A
pp

A
pp A

pp

6

Hypervisor

Verifying OS behavior

1. Application asks OS to update
high-level state
• V = mmap(NULL, ..., F, offset);

• Application expects pages from file F
at address V

2. OS updates low-level state

• Immediately

• On-demand (e.g. paging)

3. Do OS updates match application
requests?
• Did the OS map a frame containing

data from F at the correct offset?

7

OS

Hypervisor

App

page table

Verifying OS behavior

1. Application asks OS to update
high-level state
• V = mmap(NULL, ..., F, offset);

• Application expects pages from file F
at address V

2. OS updates low-level state

• Immediately

• On-demand (e.g. paging)

3. Do OS updates match application
requests?
• Did the OS map a frame containing

data from F at the correct offset?

7

OS

Hypervisor

mmap()

0x7FFCB...

App

page table

Verifying OS behavior

1. Application asks OS to update
high-level state
• V = mmap(file=F, offset=O);

• Application expects pages from file F
at address V

2. OS updates low-level state

• Immediately

• On-demand (e.g. paging)

3. Do OS updates match application
requests?
• Did the OS map a frame containing

data from F at the correct offset?

8

OS

Hypervisor

mmap()

0x7FFCB...

App

page table

Verifying OS behavior

1. Application asks OS to update
high-level state
• V = mmap(file=F, offset=O);

• Application expects pages from file F
at address V

2. OS updates low-level state

• Immediately

• On-demand (e.g. paging)

3. Do OS updates match application
requests?
• Did the OS map a frame containing

data from F at the correct offset?

9

OS

Hypervisor

App

page table

Verifying OS behavior

1. Application asks OS to update
high-level state
• V = mmap(file=F, offset=O);

• Application expects pages from file F
at address V

2. OS updates low-level state

• Immediately

• On-demand (e.g. paging)

3. Do OS updates match application
requests?
• Did the OS map a frame containing

data from F at the correct offset?

9

OS

Hypervisor

App

page table
page fault

Verifying OS behavior

1. Application asks OS to update
high-level state
• V = mmap(file=F, offset=O);

• Application expects pages from file F
at address V

2. OS updates low-level state

• Immediately

• On-demand (e.g. paging)

3. Do OS updates match application
requests?
• Did the OS map a frame containing

data from F at the correct offset?

9

OS

Hypervisor

App

page table
page fault

set_pte()

Verifying OS behavior

1. Application asks OS to update
high-level state
• V = mmap(file=F, offset=O);

• Application expects pages from file F
at address V

2. OS updates low-level state

• Immediately

• On-demand (e.g. paging)

3. Do OS updates match application
requests?
• Did the OS map a frame containing

data from F at the correct offset?

9

OS

Hypervisor

App

page table
page fault

Verifying OS behavior

1. Application asks OS to update
high-level state
• V = mmap(file=F, offset=O);

• Application expects pages from file F
at address V

2. OS updates low-level state

• Immediately

• On-demand (e.g. paging)

3. Do OS updates match application
requests?
• Did the OS map a frame containing

data from F at the correct offset?

10

OS

Hypervisor

App

page table
page fault

Verifying OS behavior

• Application and hypervisor
communicate
• Synchronize on high-level

application state

• Hypervisor interposes on
low-level updates
• Validate updates against

expected state

• Hypervisor requires deep
visibility into OS, application
(semantic gap)

11

OS

Hypervisor

App

page table

Verifying OS behavior

• Application and hypervisor
communicate
• Synchronize on high-level

application state

• Hypervisor interposes on
low-level updates
• Validate updates against

expected state

• Hypervisor requires deep
visibility into OS, application
(semantic gap)

11

OS

Hypervisor

App

page table

set_pte()

• InkTag: secure applications on an untrusted OS

• Paraverification: require active participation
from the untrusted OS for simpler, more
efficient hypervisor design

12

InkTag security guarantees

• Control flow integrity

• OS cannot change program counter, registers

• Address space integrity
• OS cannot read or modify application data

• File I/O

• Applications access the desired files

• Privacy and integrity for file data

• Built on address space integrity

• Process control

• Applications can fork(), exec()

• Access control and naming

• Applications can define access control policies, use string filenames

• Consistency

• OS-managed data and hypervisor-managed metadata remain in sync

13

InkTag security guarantees

• Control flow integrity

• OS cannot change program counter, registers

• Address space integrity
• OS cannot read or modify application data

• File I/O

• Applications access the desired files

• Privacy and integrity for file data

• Built on address space integrity

• Process control

• Applications can fork(), exec()

• Access control and naming

• Applications can define access control policies, use string filenames

• Consistency

• OS-managed data and hypervisor-managed metadata remain in sync

14

InkTag security guarantees

• Control flow integrity

• OS cannot change program counter, registers

• Address space integrity
• OS cannot read or modify application data

• File I/O

• Applications access the desired files

• Privacy and integrity for file data

• Built on address space integrity

• Process control

• Applications can fork(), exec()

• Access control and naming

• Applications can define access control policies, use string filenames

• Consistency

• OS-managed data and hypervisor-managed metadata remain in sync

15

InkTag security guarantees

• Control flow integrity

• OS cannot change program counter, registers

• Address space integrity
• OS cannot read or modify application data

• File I/O

• Applications access the desired files

• Privacy and integrity for file data

• Built on address space integrity

• Process control

• Applications can fork(), exec()

• Access control and naming

• Applications can define access control policies, use string filenames

• Consistency

• OS-managed data and hypervisor-managed metadata remain in sync

16

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

H

• Common mechanism
used by Overshadow,
InkTag, others

• OS expects to manage
memory

• Show cleartext to
application

• Show ciphertext to OS

• Hash for integrity

17

OS

Hypervisor

App

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

H

• Common mechanism
used by Overshadow,
InkTag, others

• OS expects to manage
memory

• Show cleartext to
application

• Show ciphertext to OS

• Hash for integrity

17

OS

Hypervisor

App

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

H

• Common mechanism
used by Overshadow,
InkTag, others

• OS expects to manage
memory

• Show cleartext to
application

• Show ciphertext to OS

• Hash for integrity

17

OS

Hypervisor

App

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

H

• Common mechanism
used by Overshadow,
InkTag, others

• OS expects to manage
memory

• Show cleartext to
application

• Show ciphertext to OS

• Hash for integrity

17

OS

Hypervisor

App

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

H

• Common mechanism
used by Overshadow,
InkTag, others

• OS expects to manage
memory

• Show cleartext to
application

• Show ciphertext to OS

• Hash for integrity

17

OS

Hypervisor

App

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

H

• Common mechanism
used by Overshadow,
InkTag, others

• OS expects to manage
memory

• Show cleartext to
application

• Show ciphertext to OS

• Hash for integrity

17

OS

Hypervisor

App

18

OS

Hypervisor

App

H

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

• Common mechanism
used by Overshadow,
InkTag, others

• OS expects to manage
memory

• Show cleartext to
application

• Show ciphertext to OS

• Hash for integrity

18

OS

Hypervisor

App

H

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

• Common mechanism
used by Overshadow,
InkTag, others

• OS expects to manage
memory

• Show cleartext to
application

• Show ciphertext to OS

• Hash for integrity

18

OS

Hypervisor

App

H

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

• Common mechanism
used by Overshadow,
InkTag, others

• OS expects to manage
memory

• Show cleartext to
application

• Show ciphertext to OS

• Hash for integrity

18

OS

Hypervisor

App

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

• Common mechanism
used by Overshadow,
InkTag, others

• OS expects to manage
memory

• Show cleartext to
application

• Show ciphertext to OS

• Hash for integrity

• Position of data in
address space must
match application
requests [mmap()]

• Ensure OS constructs
the correct address
space

19

OS

Hypervisor

App
1

3

2
OS

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

• Position of data in
address space must
match application
requests [mmap()]

• Ensure OS constructs
the correct address
space

19

OS

Hypervisor

App
1

3

2

1

2

3
OS

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

• Position of data in
address space must
match application
requests [mmap()]

• Ensure OS constructs
the correct address
space

19

OS

Hypervisor

App
1

3

2
1

2

3

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

• Position of data in
address space must
match application
requests [mmap()]

• Ensure OS constructs
the correct address
space

19

OS

Hypervisor

App
1

3

2
1

2

3

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

OS

Hypervisor

App

page table

• Ensure OS constructs the correct
address space

• Application maps file F at addr V

• Are page faults to V handled
correctly?

• Decrypted physical frame has
same hash as F

• Interpose on page table updates

• Disallow arbitrary OS mapping

• Determine high-level update implied by
low-level PTE change

• Match page table updates to
application requests

• Virtual address V = file F, offset O

• Result of previous mmap() call

20

OS

Hypervisor

mmap()

0x7FFCB...

App

page table

• Ensure OS constructs the correct
address space

• Application maps file F at addr V

• Are page faults to V handled
correctly?

• Decrypted physical frame has
same hash as F

• Interpose on page table updates

• Disallow arbitrary OS mapping

• Determine high-level update implied by
low-level PTE change

• Match page table updates to
application requests

• Virtual address V = file F, offset O

• Result of previous mmap() call

20

OS

Hypervisor

App

page table
page fault

• Ensure OS constructs the correct
address space

• Application maps file F at addr V

• Are page faults to V handled
correctly?

• Decrypted physical frame has
same hash as F

• Interpose on page table updates

• Disallow arbitrary OS mapping

• Determine high-level update implied by
low-level PTE change

• Match page table updates to
application requests

• Virtual address V = file F, offset O

• Result of previous mmap() call

20

OS

Hypervisor

App

page table
page fault

set_pte()

• Ensure OS constructs the correct
address space

• Application maps file F at addr V

• Are page faults to V handled
correctly?

• Decrypted physical frame has
same hash as F

• Interpose on page table updates

• Disallow arbitrary OS mapping

• Determine high-level update implied by
low-level PTE change

• Match page table updates to
application requests

• Virtual address V = file F, offset O

• Result of previous mmap() call

20

OS

Hypervisor

App

page table
page fault

• Ensure OS constructs the correct
address space

• Application maps file F at addr V

• Are page faults to V handled
correctly?

• Decrypted physical frame has
same hash as F

• Interpose on page table updates

• Disallow arbitrary OS mapping

• Determine high-level update implied by
low-level PTE change

• Match page table updates to
application requests

• Virtual address V = file F, offset O

• Result of previous mmap() call

20

OS

Hypervisor

App

page table
page fault

21

• Ensure OS constructs the correct
address space

• Application maps file F at addr V

• Are page faults to V handled
correctly?

• Decrypted physical frame has
same hash as F

• Interpose on page table updates

• Disallow arbitrary OS mapping

• Determine high-level update implied by
low-level PTE change

• Match page table updates to
application requests

• Virtual address V = file F, offset O

• Result of previous mmap() call

OS

Hypervisor

App

page table
page fault

22

• Ensure OS constructs the correct
address space

• Application maps file F at addr V

• Are page faults to V handled
correctly?

• Decrypted physical frame has
same hash as F

• Interpose on page table updates

• Disallow arbitrary OS mapping

• Determine high-level update implied by
low-level PTE change

• Match page table updates to
application requests

• Virtual address V = file F, offset O

• Result of previous mmap() call

• Interpreting low-level page
table updates

• OS can construct valid, but
confusing page tables

• Order in which updates are seen
matters

• Matching page table updates to
application requests

• Application and hypervisor must
communicate complete memory
map

OS

Hypervisor

PT (2)

App

23

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

PT

• Interpreting low-level page
table updates

• OS can construct valid, but
confusing page tables

• Order in which updates are seen
matters

• Matching page table updates to
application requests

• Application and hypervisor must
communicate complete memory
map

OS

Hypervisor

PT (2)

App

23

PT (1)

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

Hypervisor

PT (2)

App

24

PT (1)

OS

• Interpreting low-level page
table updates

• OS can construct valid, but
confusing page tables

• Order in which updates are seen
matters

• Matching page table updates to
application requests

• Application and hypervisor must
communicate complete memory
map

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

Hypervisor

PT (2)

App

24

PT (1)

OS

• Interpreting low-level page
table updates

• OS can construct valid, but
confusing page tables

• Order in which updates are seen
matters

• Matching page table updates to
application requests

• Application and hypervisor must
communicate complete memory
map

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

Hypervisor

PT (2)

App

24

PT (1)

OS

• Interpreting low-level page
table updates

• OS can construct valid, but
confusing page tables

• Order in which updates are seen
matters

• Matching page table updates to
application requests

• Application and hypervisor must
communicate complete memory
map

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

Hypervisor

PT (2)

App

25

PT (1)

OS

• Interpreting low-level page
table updates

• OS can construct valid, but
confusing page tables

• Order in which updates are seen
matters

• Matching page table updates to
application requests

• Application and hypervisor must
communicate complete memory
map

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

Hypervisor

PT (2)

App

25

PT (1)

OS

• Interpreting low-level page
table updates

• OS can construct valid, but
confusing page tables

• Order in which updates are seen
matters

• Matching page table updates to
application requests

• Application and hypervisor must
communicate complete memory
map

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

Hypervisor

PT (2)

App

25

PT (1)

OS

• Interpreting low-level page
table updates

• OS can construct valid, but
confusing page tables

• Order in which updates are seen
matters

• Matching page table updates to
application requests

• Application and hypervisor must
communicate complete memory
map

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

• Application must validate
pointer results returned from
kernel

• Iago attacks [ASPLOS ’13]

Hypervisor

App
 Stack

New region

OS

26

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

• Application must validate
pointer results returned from
kernel

• Iago attacks [ASPLOS ’13]

Hypervisor

App

mmap()

0x7FFCB...

 Stack New region

OS

26

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

• The OS updates page tables

• Can guarantee sanity and
ordering

• The OS maintains memory
maps

• Can expose that information to
hypervisor and application

Hypervisor

App

OS

27

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

• Paraverification: an untrusted
OS helping to verify its own
behavior
• Take inspiration from

paravirtualization

• Extensive use of existing
paravirtual interface

• OS must participate, but
information cannot be trusted

Hypervisor

App

OS

28

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

Paraverification: validating PTE updates

• Untrusted OS notifies hypervisor
on page table updates

• Regular structure

• In update order

App

Hypervisor

OS

29

Paraverification: validating PTE updates

• Untrusted OS notifies hypervisor
on page table updates

• Regular structure

• In update order

App

Hypervisor

OS

pte_update(
 addr=0x7FCB...

29

Paraverification: validating PTE updates

• Application maintains memory mappings
in an array of descriptors

• Interpose on mmap() in libc

• Generate a token for each mapping

• Unforgeable identifier describing requested
mapping

• e.g. HMAC(addr, file, offset)

• In implementation, integer index

App

Hypervisor

OS.file=...
.addr=...
.offset=...

30

Paraverification: validating PTE updates

• Application maintains memory mappings
in an array of descriptors

• Interpose on mmap() in libc

• Generate a token for each mapping

• Unforgeable identifier describing requested
mapping

• e.g. HMAC(addr, file, offset)

• In implementation, integer index

App

Hypervisor

OS.file=...
.addr=...
.offset=...

mmap(file=..., token=5

0x7FCB...

30

Paraverification: validating PTE updates

• Application maintains memory mappings
in an array of descriptors

• Interpose on mmap() in libc

• Generate a token for each mapping

• Unforgeable identifier describing requested
mapping

• e.g. HMAC(addr, file, offset)

• In implementation, integer index

App

Hypervisor

OS.file=...
.addr=...
.offset=...

30

Paraverification: validating PTE updates

• Application maintains memory mappings
in an array of descriptors

• Interpose on mmap() in libc

• Generate a token for each mapping

• Unforgeable identifier describing requested
mapping

• e.g. HMAC(addr, file, offset)

• In implementation, integer index

App

Hypervisor

OS.file=...
.addr=...
.offset=...

pte_update(
 addr=0x7FCB...
 token=5

30

Paraverification: validating PTE updates

• Application maintains memory mappings
in an array of descriptors

• Interpose on mmap() in libc

• Generate a token for each mapping

• Unforgeable identifier describing requested
mapping

• e.g. HMAC(addr, file, offset)

• In implementation, integer index

App

Hypervisor

OS.file=...
.addr=...
.offset=...

pte_update(
 addr=0x7FCB...
 token=5

30

Paraverification: validating PTE updates

• Application memory listing protected
from OS

• Entries always allocated in defined
virtual address range

• Invalid entries marked

App

Hypervisor

OS.file=...
.addr=...
.offset=...

31

Paraverification: validating PTE updates

• Application memory listing protected
from OS

• Entries always allocated in defined
virtual address range

• Invalid entries marked

App

Hypervisor

OS.file=...
.addr=...
.offset=...

pte_update(
 addr=0x7FCB...
 token=eleventy

31

Paraverification: validating PTE updates

• Application memory listing protected
from OS

• Entries always allocated in defined
virtual address range

• Invalid entries marked

App

Hypervisor

OS.file=...
.addr=...
.offset=...

pte_update(
 addr=0x7FCB...
 token=eleventy

31

Paraverification: validating PTE updates

• Application memory listing protected
from OS

• Entries always allocated in defined
virtual address range

• Invalid entries marked

App

Hypervisor

OS.file=...
.addr=...
.offset=...

pte_update(
 addr=0x7FCB...
 token=eleventy

31

Paraverification: validating syscall results

• OS returns tokens to application to assist
validation

• Application maintains linked list of
mappings

• OS specifies previous entry

• Application checks for overlap, updates
list

App

Hypervisor

OS.file=...
.addr=...
.offset=...

32

Paraverification: validating syscall results

• OS returns tokens to application to assist
validation

• Application maintains linked list of
mappings

• OS specifies previous entry

• Application checks for overlap, updates
list

App

Hypervisor

OS.file=...
.addr=...
.offset=...

mmap(file=..., token=5

0x7FCB...

32

Paraverification: validating syscall results

• OS returns tokens to application to assist
validation

• Application maintains linked list of
mappings

• OS specifies previous entry

• Application checks for overlap, updates
list

App

Hypervisor

OS.file=...
.addr=...
.offset=...

mmap(file=..., token=5

0x7FCB... , prev=2

32

Paraverification: validating syscall results

• OS returns tokens to application to assist
validation

• Application maintains linked list of
mappings

• OS specifies previous entry

• Application checks for overlap,
updates list

App

Hypervisor

OS.file=...
.addr=...
.offset=...

mmap(file=..., token=5

0x7FCB... , prev=2

33

• Basic memory isolation mechanisms

• Challenges: why is this difficult?

• Paraverification: how can the untrusted OS help?

• Guarantee sane address space updates

• Expose internal OS information to hypervisor
and application

Implementation & Evaluation

• Prototype built with KVM, qemu, uClibc

• ~3500 hypervisor LOC

• Modify libc to validate syscall results

• OS microbenchmarks

• LMBench

• Applications

• SPEC

• Apache

• DokuWiki

34

DokuWiki

• PHP CGI binary with InkTag extensions

• InkTag authentication module

• Use InkTag access control on wiki pages

• Result: hypervisor-enforced security for a
PHP application

• Integrity for all script files

• Privacy and integrity for application data

35

InkTag overheads

• LMBench

• Low-level OS microbenchmarks

• 5x - 55x slowdown (for µs operations)

• High context switch latency

• SPEC

• CPU-bound applications

• Most applications <= 1.03x

• gcc - 1.14x; perlbench, h264href - 1.10x

• Apache

• Long-lived processes, infrequent MM activity

• 1.02x throughput slowdown, 1.13x latency

• DokuWiki

• Many short-lived processes, frequent memory mapping

• 1.54x throughput slowdown
36

Related work

• Untrusted operating systems

• XOMOS [Lie et al. SOSP ’03]

• Overshadow [Chen et al. ASPLOS ’08]

• SP3 [Yang & Shin VEE ’08]

• Cloudvisor [Zhang et al. SOSP ’11]

37

Conclusion

• We can enforce trustworthy services from an
untrustworthy OS

• Paraverification simplifies crucial isolation
mechanisms

38

