
From Crash Consistency to
Transactions

Yige Hu
Youngjin Kwon
Vijay Chidambaram
Emmett Witchel

Persistent data is structured; crash consistency hard

2

● Structured data abstractions built on file system

○ SQLite, BerkeleyDB... -- Embedded DB

○ LevelDB, Redis, MongoDB… -- Key-value store

○ Images, binary blobs... -- Files

● Applications manage storage themselves

○ ...and poorly!

○ The POSIX interface is no longer sufficient
Data safe on crash

High performance

ACID across abstractions

Easy to use & deploy

A transactional file system is the answer

3

● Structured data uses file system storage

○ Easy management often outweighs high performance

● File system transactions provides API and mechanisms

○

○ Transactions preserve consistency

○

○ Transactions reduce work & syncs

○ Concurrent transactions scalable

○

○ Unify different types of updates

High performance

Data safe on crash

ACID across abstractions

Easy to use & deploy

We need transactions across storage abstractions

● The Android mail client receives an email with attachment

○ Stores attachment as a regular file

○ File name of attachment stored in SQLite

○ Stores email text in SQLite

● Great work when you can get it, but what can go wrong?

○ Crashes can orphan attachment files

○ Crashes can leave incomplete attachments

○ And this level of crash consistency costs dearly in performance!

4

How many syncs do you need?

● The Android mail client receives an email with attachment

○ Stores attachment as a regular file (maybe 1 sync?)

○ File name of attachment stored in SQLite

○ Stores email text in SQLite (maybe 1 sync for db? 2 total?)

5

How many syncs do you need?

● The Android mail client receives an email with attachment

○ Stores attachment as a regular file (maybe 1 sync?)

○ File name of attachment stored in SQLite

○ Stores email text in SQLite (maybe 1 sync for db? 2?)

● Requires 6 syncs!

○ If you create/delete a file, sync the parent directory

Example: Android mail

Atomically inserting a message with attachment.

7

Database file

SQLiteRaw files

1.create(/dir/attachment)
 write(/dir/attachment)
 fsync(/dir/attachment)
 fsync(/dir/)

Example: Android mail

Atomically inserting a message with attachment.

Content

8

Database fileAttachment file

SQLiteRaw files

Example: Android mail

Atomically inserting a message with attachment.

2.create(/dir/journal)
 write(/dir/journal)
 fsync(/dir/journal)
 fsync(/dir/)
 /*safe append*/
 fsync(/dir/journal)

9

Database fileAttachment file Roll-back log

SQLite

Rollback
info

Raw files

1.create(/dir/attachment)
 write(/dir/attachment)
 fsync(/dir/attachment)
 fsync(/dir/)

Content

Example: Android mail

Atomically inserting a message with attachment.

10

/dir/attachment

Database fileAttachment file Roll-back log

Rollback
info

SQLiteRaw files

2.create(/dir/journal)
 write(/dir/journal)
 fsync(/dir/journal)
 fsync(/dir/)
 /*safe append*/
 fsync(/dir/journal)

1.create(/dir/attachment)
 write(/dir/attachment)
 fsync(/dir/attachment)
 fsync(/dir/)

3.write(/dir/db)
 fsync(/dir/db)

Content

Example: Android mail

Atomically inserting a message with attachment.

2.create(/dir/journal)
 write(/dir/journal)
 fsync(/dir/journal)
 fsync(/dir/)
 /*safe append*/
 fsync(/dir/journal)

4.unlink(/dir/journal)

11

Database fileAttachment file Roll-back log

Rollback
info

SQLiteRaw files

1.create(/dir/attachment)
 write(/dir/attachment)
 fsync(/dir/attachment)
 fsync(/dir/)

/dir/attachment

3.write(/dir/db)
 fsync(/dir/db)

Content

Application consistency using POSIX is slow

● SQLite on ext4: fsync() per transaction (1kB/tx), with FULL

synchronization level.

fsync/tx

Journal mode Insert Update

Rollback (default) 4 4

Write ahead log (WAL) 5 5

No journal (unsafe) 1 1

12

System support for crash
consistent updates

● Application needs consistent, persistent updates

○ Complicated and ad hoc implementation

○ Crashes can orphan attachment files

○ Crashes can create incomplete attachment files.

● Sync and redundant writes lead to poor performance.

● Need mechanism for cross-abstraction commit

The file system should provide transactional services!

13

But haven’t we tried this before?

Haven’t we seen this movie before?

● Complex implementation
○ Transactional OS: QuickSilver [TOCS 88], TxOS [SOSP 09] (10k LOC)

○ In-kernel transactional file systems: Valor [FAST 09]

● Hardware dependent
○ CFS [ATC 15], MARS [SOSP 13], TxFLash [OSDI 08], Isotope [FAST 16]

● Performance overhead
○ Valor [FAST 09] (35% overhead).

● Hard to use
○ Windows NTFS (TxF), released 2006 (deprecated 2012)

14

Windows TxF was hard to use

Modify the following code to use Windows NTFS (TxF) transactions.

HANDLE hFile = CreateFile(_T("test.file"),
GENERIC_WRITE, 0, 0, CREATE_ALWAYS, 0, 0);
if (hFile == INVALID_HANDLE_VALUE)
{

cerr << "CreateFile failed" << endl;
return 1;

}

CloseHandle(hFile);

15

Windows TxF was hard to use

Modify the following code to use Windows NTFS (TxF) transactions.

HANDLE hFile = CreateFile(_T("test.file"),
GENERIC_WRITE, 0, 0, CREATE_ALWAYS, 0, 0);
if (hFile == INVALID_HANDLE_VALUE)
{

cerr << "CreateFile failed" << endl;
return 1;

}

CloseHandle(hFile);

#include <ktmw32.h>
#pragma comment(lib, "KtmW32.lib")

......
HANDLE hTrans = CreateTransaction(NULL,0, 0, 0, 0, NULL,
_T("My NTFS Transaction"));
if (hTrans == INVALID_HANDLE_VALUE)
{

cerr << "CreateTransaction failed" << endl;
return 1;

}

USHORT view = 0xFFFE; // TXFS_MINIVERSION_DEFAULT_VIEW
HANDLE hFile = CreateFileTransacted(_T("test.file"),

GENERIC_WRITE,0, 0, CREATE_ALWAYS, 0, 0,
 hTrans, &view, NULL);
if (hFile == INVALID_HANDLE_VALUE)
{

cerr << "CreateFileTransacted failed" << endl;
return 1;

}

CloseHandle(hFile);

CommitTransaction(hTrans);
CloseHandle(hTrans); 16

Windows TxF was hard to use

Modify the following code to use Windows NTFS (TxF) transactions.

HANDLE hFile = CreateFile(_T("test.file"),
GENERIC_WRITE, 0, 0, CREATE_ALWAYS, 0, 0);
if (hFile == INVALID_HANDLE_VALUE)
{

cerr << "CreateFile failed" << endl;
return 1;

}

CloseHandle(hFile);

#include <ktmw32.h>
#pragma comment(lib, "KtmW32.lib")

......
HANDLE hTrans = CreateTransaction(NULL,0, 0, 0, 0, NULL,
_T("My NTFS Transaction"));
if (hTrans == INVALID_HANDLE_VALUE)
{

cerr << "CreateTransaction failed" << endl;
return 1;

}

USHORT view = 0xFFFE; // TXFS_MINIVERSION_DEFAULT_VIEW
HANDLE hFile = CreateFileTransacted(_T("test.file"),

GENERIC_WRITE,0, 0, CREATE_ALWAYS, 0, 0,
 hTrans, &view, NULL);
if (hFile == INVALID_HANDLE_VALUE)
{

cerr << "CreateFileTransacted failed" << endl;
return 1;

}

CloseHandle(hFile);

CommitTransaction(hTrans);
CloseHandle(hTrans);

GetFileAttributesTransacted

CopyFileTransacted

DeleteFileTransacted

……
+ 16 new transactional file

operations

17

Windows TxF was hard to use

Modify the following code to use Windows NTFS (TxF) transactions.

HANDLE hFile = CreateFile(_T("test.file"),
GENERIC_WRITE, 0, 0, CREATE_ALWAYS, 0, 0);
if (hFile == INVALID_HANDLE_VALUE)
{

cerr << "CreateFile failed" << endl;
return 1;

}

CloseHandle(hFile);

#include <ktmw32.h>
#pragma comment(lib, "KtmW32.lib")

......
HANDLE hTrans = CreateTransaction(NULL,0, 0, 0, 0, NULL,
_T("My NTFS Transaction"));
if (hTrans == INVALID_HANDLE_VALUE)
{

cerr << "CreateTransaction failed" << endl;
return 1;

}

USHORT view = 0xFFFE; // TXFS_MINIVERSION_DEFAULT_VIEW
HANDLE hFile = CreateFileTransacted(_T("test.file"),

GENERIC_WRITE,0, 0, CREATE_ALWAYS, 0, 0,
 hTrans, &view, NULL);
if (hFile == INVALID_HANDLE_VALUE)
{

cerr << "CreateFileTransacted failed" << endl;
return 1;

}

CloseHandle(hFile);

CommitTransaction(hTrans);
CloseHandle(hTrans);

GetFileAttributesTransacted

CopyFileTransacted

DeleteFileTransacted

……
+ 16 new transactional file

operations

18

● Microsoft deprecates TxF (2012)

“While TxF is a powerful set of APIs, there has

been extremely limited developer interest in this

API platform since Windows Vista primarily due

to its complexity and various nuances which

developers need to consider as part of

application development.”

T2FS (Texas Transactional File System)

19

● Based on Linux ext4

○ Uses file system journal

● Simple interface

○ fs_tx_begin, fs_tx_end, fs_tx_abort

● Usable by any abstraction that stores data in the file system

○ E.g., embedded databases, key-value stores

● Improves performance for structured data

○ Fewer sync calls

● Increases scalability
High performance

ACID across
abstractions

Data safe on crash

Easy to use & deploy

T2FS API

Modify the following code to use T2FS transactions.

HANDLE hFile = CreateFile(_T("test.file"),
GENERIC_WRITE, 0, 0, CREATE_ALWAYS, 0, 0);
if (hFile == INVALID_HANDLE_VALUE)
{

cerr << "CreateFile failed" << endl;
return 1;

}

CloseHandle(hFile);

20

Easy to use & deploy

T2FS API

Modify the following code to use T2FS transactions.

fs_tx_end();

fs_tx_begin();

HANDLE hFile = CreateFile(_T("test.file"),
GENERIC_WRITE, 0, 0, CREATE_ALWAYS, 0, 0);
if (hFile == INVALID_HANDLE_VALUE)
{

cerr << "CreateFile failed" << endl;
return 1;

}

CloseHandle(hFile);

21

Easy to use & deploy

Modify the following code to use T2FS transactions.

#include <ktmw32.h>
#pragma comment(lib, "KtmW32.lib")

......
HANDLE hTrans = CreateTransaction(NULL,0, 0, 0, 0, NULL,
_T("My NTFS Transaction"));
if (hTrans == INVALID_HANDLE_VALUE)
{

cerr << "CreateTransaction failed" << endl;
return 1;

}

USHORT view = 0xFFFE; // TXFS_MINIVERSION_DEFAULT_VIEW
HANDLE hFile = CreateFileTransacted(_T("test.file"),

GENERIC_WRITE,0, 0, CREATE_ALWAYS, 0, 0,
 hTrans, &view, NULL);
if (hFile == INVALID_HANDLE_VALUE)
{

cerr << "CreateFileTransacted failed" << endl;
return 1;

}

CloseHandle(hFile);

CommitTransaction(hTrans);
CloseHandle(hTrans);

T2FS API

fs_tx_end();

fs_tx_begin();

HANDLE hFile = CreateFile(_T("test.file"),
GENERIC_WRITE, 0, 0, CREATE_ALWAYS, 0, 0);
if (hFile == INVALID_HANDLE_VALUE)
{

cerr << "CreateFile failed" << endl;
return 1;

}

CloseHandle(hFile);

22

Easy to use & deploy

T2FS API Windows NTFS (TxF) API

T2FS managing and persisting transactions
● Decreased complexity: use the file systems’ crash consistency

mechanism to create transactions.

○ Ext4 journal or ZFS copy-on-write

23

Transaction
local state

1. fs_tx_end completes
in-memory transaction

In-memory
file system
transactions

On-disk
journal

File metadata
and data blocks

2. Transaction
written to journal

3. Asynchronous
journal write back
(checkpoint)

Data safe on crash

Isolation and Conflict detection

● In-progress writes are all local to kernel thread

● Eager conflict detection on inodes, directory

entries

○ Enables flexible contention management

● Fine-grained page locks

○ More scalable than reader/writer lock

24

Data safe on crash

Modify the Android mail application to use T2FS transactions.

25

T2FS API: Cross-abstraction transactions

Content

2.create(/dir/journal)
 write(/dir/journal)
 fsync(/dir/journal)
 fsync(/dir/)
 /*safe append*/
 fsync(/dir/journal)

4.unlink(/dir/journal)

Database fileAttachment file Roll-back log

Rollback
info

SQLiteRaw files

1.create(/dir/attachment)
 write(/dir/attachment)
 fsync(/dir/attachment)
 fsync(/dir/)

/dir/attachment

3.write(/dir/db)
 fsync(/dir/db)

Content

ACID across abstractions

Modify the Android mail application to use T2FS transactions.

26

Content

Database fileAttachment file

SQLiteRaw files

1.create(/dir/attachment)
 write(/dir/attachment)
 fsync(/dir/attachment)
 fsync(/dir/)

T2FS API: Cross-abstraction transactions

/dir/attachment

3.write(/dir/db)
 fsync(/dir/db)

Content

ACID across abstractions

Modify the Android mail application to use T2FS transactions.

27

Attachment file

SQLiteRaw files

1.create(/dir/attachment)
 write(/dir/attachment)
 fsync(/dir/attachment)
 fsync(/dir/)

T2FS API: Cross-abstraction transactions

Database file

/dir/attachment

2.write(/dir/db)
 fsync(/dir/db)

Content

ACID across abstractions

Modify the Android mail application to use T2FS transactions.

28

Database fileAttachment file

SQLiteRaw files

1.create(/dir/attachment)
 write(/dir/attachment)
 fsync(/dir/attachment)
 fsync(/dir/)

T2FS API: Cross-abstraction transactions

T2FS transaction

/dir/attachment

2.write(/dir/db)
 fsync(/dir/db)

Content

ACID across abstractions

Modify the Android mail application to use T2FS transactions.

29

Database fileAttachment file

SQLiteRaw files

1.create(/dir/attachment)
 write(/dir/attachment)

T2FS API: Cross-abstraction transactions

T2FS transaction

/dir/attachment

2.write(/dir/db)

Content

ACID across abstractions

Modify the Android mail application to use T2FS transactions.

30

Attachment file

SQLiteRaw files

2.create(/dir/attachment)
 write(/dir/attachment)

T2FS API: Cross-abstraction transactions

T2FS transaction

4.fs_tx_end()

Database file

/dir/attachment

3.write(/dir/db)

Content

ACID across abstractions

1.fs_tx_begin()

Evaluation: single-threaded SQLite

31

1.5M 1KB operations. 10K operations grouped in a transaction.
Database prepopulated with 15M rows.

High performance

Transactions as a foundation for other optimizations

● Enable automatic file system optimizations

○ Eliminate temporary durable files.

■ e.g. SQLite delete mode, directly wrapped by T2FS transaction

○ Consolidate IO across transactions.

■ Delay persistence during commit

● Use transactional mechanism to implement unrelated file

system optimizations

○ Separate ordering from durability (osync [SOSP 13]).

32

High performance

Summary

● Persistent data is structured; tough to make crash consistent

○ All data stored in the file system

● A transactional file system has the right API and mechanisms

● The file system journal makes implementing transactions easier

● Need transactions across storage abstractions

33

Data safe on crash

High performance

ACID across abstractions

Easy to use & deploy

Thank you!

34

