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Abstract

We introduce TxFS, a novel transactional file system that
builds upon a file system’s atomic-update mechanism
such as journaling. Though prior work has explored a
number of transactional file systems, TxFS has a unique
set of properties: a simple API, portability across different
hardware, high performance, low complexity (by building
on the journal), and full ACID transactions. We port
SQLite and Git to use TxFS, and experimentally show that
TxFS provides strong crash consistency while providing
equal or better performance.

1 Introduction
Modern applications store persistent state across multiple
files [21]. Some applications split their state among em-
bedded databases, key-value stores, and file systems [27].
Such applications need to ensure that their data is not
corrupted or lost in the event of a crash. Unfortunately,
existing techniques for crash consistency, such as logging
or using atomic rename, result in complex protocols and
subtle bugs [21].

Transactions present an intuitive way to atomically
update persistent state [6]. Unfortunately, building trans-
actional systems is complex and error-prone. In this paper,
we introduce a novel approach to building a transactional
file system. We take advantage of a mature, well-tested
piece of functionality in the operating system: the file-
system journal, which is used to ensure atomic updates to
the internal state of the file system. We use the atomicity
and durability provided by journal transactions and lever-
age it to build ACID transactions available to user-space
transactions. Our approach greatly reduces the develop-
ment effort and complexity for building a transactional
file system.

We introduce TxFS, a transactional file system that
builds on the ext4 file system’s journaling mechanism.
We designed TxFS to be practical to implement and
to use. TxFS has a unique set of properties: it has a
small implementation (5,200 LOC) by building on the
journal (for example, TxFS has 25% the LOC of the
TxOS transactional operating system [22]); it provides
high performance unlike various solutions which built a
transactional file system over a user-space database [5,
16, 18, 31]; it has a simple API (just wrap code in
fs tx begin()and fs tx commit()) compared to

solutions like Valor [28] or TxF [24] which require multi-
ple system calls per transaction and can require the devel-
oper to understand implementation details like logging;
it provides all ACID guarantees unlike solutions such as
CFS [15] and AdvFS [30] which only offer some of the
guarantees; it provides transactions at the file level instead
of at the block level unlike Isotope [26], making several
optimizations easier to implement; finally, TxFS does not
depend upon specific properties of the underlying storage
unlike solutions such as MARS [3] and TxFlash [23].

The advantage to building TxFS on the file-system jour-
nal is that TxFS transactions obtain atomicity, consistency,
and durability by placing each one entirely within a single
file-system journal transaction (which is applied atomi-
cally to the file system). Using well-tested journal code
to obtain ACD reduces the implementation complexity of
TxFS, while limiting the maximum size of transactions to
the size of the journal.

The main challenge of building TxFS is providing iso-
lation. Isolation for TxFS transactions requires that in-
progress TxFS transactions are not visible to other pro-
cesses until the transaction commits. At a high level,
TxFS achieves isolation by making private copies of all
data that is read or written, and updating global data
during commit. However, the naive implementation of
this approach would be extremely inefficient: global data
structures such as bitmaps would cause conflicts for ev-
ery transaction, causing high abort rates and excessive
transaction retries. TxFS makes concurrent transactions
efficient by collecting logical updates to global structures,
and applying the updates at commit time. TxFS includes
a number of other optimizations such as eager conflict
detection that are tailored to the current implementation
of file-system data structures in ext4.

We find that the transactional framework allows us to
easily implement a number of file-system optimizations.
For example, one of the core techniques from our earlier
work, separating ordering from durability [2], is easily ac-
complished in TxFS. Similarly, we find TxFS transactions
allow us to identify and eliminate redundant application
IO where temporary files or logs are used to atomically
update a file: when the sequence is simply enclosed in a
transaction (and without any other changes), TxFS atom-
ically updates the file (maintaining functionality) while
eliminating the IO to logs or temporary files (provided



the temporary files and logs are deleted inside the trans-
action). As a result, TxFS improves performance while
simultaneously providing better crash-consistency seman-
tics: a crash does not leave ugly temporary files or logs
that need to be cleaned up.

To demonstrate the power and ease of use of TxFS
transactions, we modify SQLite and Git to incorporate
TxFS transactions. We show that when using TxFS trans-
actions, SQLite performance on the TPC-C benchmark
improves by 1.6× and a micro-benchmark which mim-
ics Android Mail obtains 2.3× better throughput. Using
TxFS transactions greatly simplifies Git’s code while pro-
viding crash consistency without performance overhead.
Thus, TxFS transactions increase performance, reduce
complexity, and provide crash consistency.

Our paper makes the following contributions.
• We present the design and implementation of TxFS,

a transactional file system for modern applications
built by leveraging the file-system journal (§3). We
have made TxFS publicly available at https://
github.com/ut-osa/txfs.
• We show that existing file systems optimizations,

such as separating ordering from durability, can be
effectively implemented for TxFS transactions (§4).
• We show that real applications can be easily modified

to use TxFS, resulting in better crash semantics and
significantly increased performance (§5).

2 Background and motivation
We first describe the protocols used by current applica-
tions to update state in a crash-consistent manner. We then
present a study of different applications and the challenges
they face in maintaining crash consistency across persis-
tent state stored in different abstractions. We describe
the file-system optimizations enabled by transactions and
finally summarize why we think transactional file systems
should be revisited.

2.1 How applications update state today

Given that applications today do not have access to trans-
actions, how do they consistently update state to multiple
storage locations? Even if the system crashes or power
fails, applications need to maintain invariants across state
in different files (e.g., an image file should match the
thumbnail in a picture Gallery). Applications achieve
this by using ad hoc protocols that are complex and error-
prone [21].

In this section, we show how difficult it is to implement
seemingly simple protocols for consistent updates to stor-
age. There are many details that are often overlooked,
like the persistence of directory contents. These protocols
are complex, error prone, and inefficient. With current
storage technologies, these protocols must sacrifice per-
formance to be correct because there is no efficient way

open(/dir/tmp) 
write(/dir/tmp) 
fsync(/dir/tmp) 
fsync(/dir) 
rename(/dir/tmp, /dir/orig) 
fsync(/dir/)

(a) Atomic Update via Rename

open(/dir/log) 
write(/dir/log) 
fsync(/dir/log) 
fsync(/dir/) 
write(/dir/orig) 
fsync(/dir/orig) 
unlink(/dir/log) 
fsync(/dir/)

(b) Atomic Update via Logging

// Write attachment 
open(/dir/attachment) 
write(/dir/attachment) 
fsync(/dir/attachment) 
fsync(/dir/) 

// Writing SQLite Database 
open(/dir/journal)     
write(/dir/journal) 
fsync(/dir/journal) 
fsync(/dir/) 
write(/dir/db) 
fsync(/dir/db) 
unlink(/dir/journal) 
fsync(/dir/)

(c) Atomically adding a email  
message with attachments  

in Android Mail

Figure 1: Different protocols used by applications to make
consistent updates to persistent data.

to order storage updates.
Currently, applications use the fsync() system call

to order updates to storage [2]; since fsync() forces
durability of data, the latency of a fsync() call varies
from a few milliseconds to several seconds. As a result,
applications do not call fsync() at all the places in the
update protocol where it is necessary, leading to severe
data loss and corruption bugs [21].

We now describe two common techniques used by ap-
plications to consistently update stable storage. Figure 1
illustrates these protocols.

Atomic rename. Protocol (a) shows how a file can be
updated via atomic rename. The atomic rename approach
is widely used by editors, such as Emacs and Vim, and
by GNOME applications that need to atomically update
dot configuration files. The application writes new data
to a temporary file, persists it with an fsync() call,
updates the parent directory with another fsync() call,
and then renames the temporary file over the original file,
effectively causing the directory entry of the original file
to point to the temporary file instead. The old contents
of the original file are unlinked and deleted. Finally, to
ensure that the temporary file has been unlinked properly,
the application calls fsync() on the parent directory.

Logging. Protocol (b) shows another popular tech-
nique for atomic updates, logging [8] (either write-ahead-
logging or undo logging). The log file is written with new
contents, and both the log file and the parent directory
(with the new pointer to log file) are persisted. The ap-
plication then updates the original file and persists the
original file; the parent directory does not change dur-
ing this step. Finally, the log is unlinked, and the parent
directory is persisted.

https://github.com/ut-osa/txfs
https://github.com/ut-osa/txfs


The situation becomes more complex when applica-
tions store state across multiple files. Protocol (c) il-
lustrates how the Android Mail application adds a new
email with an attachment. The attachment is stored on the
file system, while the email message (along with meta-
data) is stored in the database (which for SQLite, also
resides on the file system). Since the database has a
pointer to the attachment (i.e., a file name), the attach-
ment must be persisted first. Persisting the attachment
requires two fsync() calls (to the file and its containing
directory) [1, 21]. SQLite’s most performant mode uses
write-ahead-logging to atomically update the database. It
then follows a protocol similar to Protocol (b).

Removing fsync() calls in any of the presented pro-
tocols will lead to data loss or corruption. For instance,
in Protocol (b), if the parent directory is not persisted
with an fsync() call, the following scenario could oc-
cur: the application writes the log file, and then starts
overwriting the original file in place. The system crashes
at this point. Upon reboot, the log file does not exist,
since the directory entry pointing to the log file was not
persisted. Thus, the application file has been irreversibly
partially edited, and cannot be restored to a consistent
version. Many application developers avoid fsync()
calls due to the resulting decrease in performance, leading
to severe bugs that cause loss of data.

Safe update protocols for stable storage are com-
plex and low performance (e.g., Android Mail uses six
fsync() calls to persist a single email with an attach-
ment). System support for transactions will provide high
performance for these applications.

2.2 Application case studies

We now present four examples of applications that strug-
gle with obtaining crash consistency using primitives
available today. Several applications store data across
the file system, key-value stores, and embedded databases
such as SQLite [27]. While all of this data ultimately
resides in the file system, their APIs and performance
constraints are different and consistently updating state
across these systems is complex and error-prone.

Android mail. Android’s default mail application stores
mail messages using the SQLite embedded database [29].
Mail attachments are stored separately as a file, and the
database stores a pointer to the file. The user requires both
the file and the database to be updated atomically; SQLite
only ensures the database is updated correctly. For exam-
ple, a crash could leave the database consistent, but with
a dangling pointer to a missing attachment file. The mail
application handles this by first persisting the attachment
(via fsync()), and then persisting a database transac-
tion. Clearly, this harms performance – a transaction that
spans both the database and the file system would need to
persist data only at a single commit point.

Apple iWork and iLife. Analysis of the storage behavior
of Apple’s home-user, desktop applications [9] finds that
applications use a combination of the file system, key-
value stores, and SQLite to store data. iTunes uses SQLite
to store metadata similar to the Android Mail application.
When you download a new song via iTunes, the sound file
is transferred and the database updated with the song’s
metadata. Apple’s Pages application uses a combination
of SQLite and key-value stores for user preferences and
other metadata (two SQLite databases and 128 .plist
key-value store files). Similar to Android Mail, Apple
uses fsync() to order updates correctly.

Browsers. Mozilla Firefox stores user data in multiple
SQLite databases. For example, addons, cookies, and
download history are each stored in their separate SQLite
database. Since downloads and other files are stored on
the file system, a crash could leave a database with a
dangling pointer to a missing file.

Version control systems. Git and Mercurial are widely-
used version control systems. The git commit com-
mand requires two file-system operations to be atomic: a
file append (logs/HEAD) and a file rename (to a lock
file). Failure to achieve atomicity results in data loss and
a corrupted repository [21]. Mercurial uses a combination
of different files (journal, filelog, manifest)
to consistently update state. Mercurial’s commit com-
mand requires a long sequence of file-system operations
including file creations, appends, and renames be atomic;
if not, the repository is corrupted [21].

For these applications, transactional support would lead
directly to more understandable and more efficient idioms.
It is difficult for a user-level program to provide crash-
consistent transactional updates using the POSIX file-
system interface. A transactional file-system interface
will also enable high-performance idioms like editors
grouping updates into transactions rather than the less
efficient process they currently use of making temporary
file copies that are committed via rename.

Note that applications that use temporary files and tech-
niques like atomic rename do achieve crash consistency;
however, after a crash there may be temporary files which
need to be cleaned up. After a crash, the application runs
a recovery procedure and returns to a consistent state. Of-
ten, the “recovery procedure” forces a human user to look
for and manually delete stale files. A transactional file sys-
tem does not provide new crash-consistency guarantees
for these applications; rather, transactional file systems
remove the burden of recovery and cleanup, simplifying
the application and eliminating bugs [21].

2.3 Optimizing transactions

A transactional file-system interface enables a number of
interesting file-system optimizations. We now describe a
few of them.



Eliminate temporary durable files. A number of appli-
cations such as Vim, Emacs, Git, and LevelDB provide
reasonable crash semantics (i.e., the user sees either the
old version or the new version after an update) by making
a temporary copy of a file, editing it, then renaming it
atomically to the permanent name when the user updates
data. The application can simply enclose its writes inside
a transaction, avoiding the copy. For large files, the differ-
ence in performance can be significant. In addition, the
file system will not be cluttered with temporary files in
the event of a crash.

Group commit. Transactions buffer related file-system
updates in memory, which can all be sent to the storage
device at once. Batching updates is often more efficient,
enabling efficient allocation of file-system data structures
and better device-level scheduling. Without user-provided
transaction boundaries, the file system provides uniform,
best-effort persistence for all updates.

Eliminate redundant IO within transactions. Work-
loads often contain redundancy; for example, files are
often updated several times at the same offset, or a file is
created, written, read, and unlinked. Transaction bound-
aries allow the file system to eliminate some of this re-
dundant work because the entire transaction is visible
to the file system at commit time, which enables global
optimization.

Consolidate IO across transactions. Transactions often
update data written by prior transactions. When a work-
load anticipates data in its transaction will be updated by
another transaction shortly, it can prioritize throughput
over latency. Committing a transaction with a special flag
allows the system to delay a transaction commit, antici-
pating that the data will be overwritten, and then it can be
persisted once instead of twice. Note that consolidating
IO in this manner is different from eliminating redundant
IO within a transaction; this optimization operates across
multiple transactions. Optimizing multiple transactions,
especially from different applications, is best done by the
operating system, not by an individual application. This
non-work conserving strategy is similar to the anticipatory
disk scheduler [12].

Separate ordering from durability. When ending a
transaction, the programmer can specify if the transaction
should commit durably. If so, the call blocks until all
updates specified by the transaction have been written to
a persistent journal. If we commit non-durable transac-
tion A and then start non-durable transaction B, then A
is ordered before B, but neither is durable. A subsequent
transaction (e.g., C), can specify that it and all previous
transactions should be made durable. In this way we can
use transactions to gain much of the benefit of splitting
sync into ordering sync (osync), and durability sync
(dsync) [2].

In summary, we believe transactional file systems
should be revisited for two reasons. First, applications
routinely store persistent state in multiple files and across
different storage systems such as databases and key-value
stores, and maintaining crash consistency of this state
using techniques such as atomic rename results in com-
plexity and bugs. Second, using a transactional API en-
ables the file system to provide a number of optimizations
that would be significantly harder to introduce in a non-
transactional file system.

3 TxFS Design and implementation
We now present the design and implementation of TxFS.
TxFS avoids the pitfalls from earlier transactional file
systems (§6): it has a simple API; provides complete
ACID guarantees; does not depend on specific hardware;
and takes advantage of the file-system journal and how the
kernel is implemented to achieve a small implementation
(≈5,200 LOC).

3.1 API

A simple API was one of the key goals of TxFS. Thus,
TxFS provides developers with only three system calls:
fs tx begin(), which begins a transaction; fs tx -
commit(), which ends a transaction and attempts to
commit it; and fs tx abort(), which discards all file-
system updates contained in the current transaction. On
commit, all file-system updates in an application-level
transaction are persisted in an atomic fashion – after a
crash, users see all of the transaction updates, or none of
them. This API significantly simplifies application code
and provides clean crash semantics, since temporary files
or partially written logs will not need to be cleaned up
after a crash.
fs tx commit() returns a value indicating whether

the transaction was committed successfully, or if it failed,
why it failed. A transaction can fail for three reasons:
there was a conflict with another concurrent transaction,
there is no journal space for the transaction, or the file
system does not have enough resources for the transaction
to complete (no space or inodes). Depending upon the
error code, the application can choose to retry the transac-
tion. Nested TxFS transactions are flattened into a single
transaction, which succeed or fail as a unit. Flat nesting
is a common choice in transactional systems [22, 28].

A user can surround any sequence of file-system
related system calls with fs tx begin() and
fs tx commit() and the system will execute those
system calls in a single transaction. This interface is
easy for programmers to use and makes it simple to in-
crementally deploy file-system transactions into existing
applications. In contrast, some transactional file systems
(e.g., Window’s TxF [24] and Valor [28]) have far more
complex, difficult-to-use interfaces. TxF assigns a handle



to each transaction, and requires users to explicitly call
the transactional APIs with the handle. Valor exposes
operations on the kernel log to user-level code.

TxFS isolates file-system updates only. The applica-
tion is still responsible for synchronizing access to its own
user-level data structures. A transactional file system is
not intended to be an application’s sole concurrency con-
trol mechanism; it only coordinates file-system updates
which are difficult to coordinate without transactions.

3.2 Atomicity and durability

Most modern Linux file systems have an internal mecha-
nism for atomically updating multiple blocks on storage.
These mechanisms are crucial for maintaining file-system
crash consistency, and thus have well-tested and mature
implementations. TxFS takes advantage of these mecha-
nisms to obtain three of the ACID properties: atomicity,
consistency, and durability. This is the key insight which
allows TxFS to have a small implementation.

TxFS builds upon the ext4 file system’s journal. The
journal provides the guarantee that each journal transac-
tion is applied to the file system in an atomic fashion. We
could have instead used a different mechanism such as
copy-on-write [10] which provides the same guarantee in
btrfs and F2FS. TxFS can be built upon any file system
with a mechanism for atomic updates.

For each TxFS transaction, TxFS maintains a private
jbd2 transaction, and at commit, merges the private trans-
action into the global jbd2 transaction. While the global
jbd2 transaction contains only metadata by default, TxFS
also adds data blocks to the transaction to ensure atomic
updates. If, by chance, a block added to the private jbd2
transaction is also being committed by a previous global
jbd2 transaction, TxFS creates a shadow block. Ext4 also
creates a shadow block when a block is shared between
a running and a committing transaction. TxFS employs
selective data journaling [2], only journaling data blocks
that were already allocated (i.e., data blocks that are be-
ing updated), and avoids journaling newly allocated data
blocks (because it can write them directly). Selective
data journaling provides the same guarantees as full data
journaling at a fraction of the cost.

TxFS ensures that an entire transaction can be merged
into a single journal transaction; otherwise, an error is re-
turned to the user. As long as a TxFS transaction is added
to a single journal transaction, the journal will ensure it
is applied to the file system atomically. After merging a
user’s transaction into the journal transaction, TxFS per-
sists the journal transaction, ensuring the durability of the
TxFS transaction.

3.3 Isolation and conflict detection

Although the ext4 journal provides atomicity and dura-
bility, it does not provide isolation. Adding isolation for

file-system data structures in the Linux kernel is chal-
lenging because a large number of functions all over the
kernel modify file-system data structures without using
a common interface. In TxFS, we tailor our approach to
isolation for each data structure to simplify the implemen-
tation.

To provide isolation, TxFS has to ensure that all oper-
ations performed inside a transaction are not visible to
other transactions or the rest of the system until commit
time. TxFS achieves the isolation level of repeatable
reads [7] using a combination of different techniques.

Split file-system functions. System calls such as
write() and open() execute file-system functions
which often result in allocation of file-system resources
such as data blocks and inodes. TxFS splits such functions
into two parts: one part which does file-system allocation,
and one part which operates on in-memory structures.
The part doing file-system allocation is moved to the com-
mit point. The other part is executed as part of the system
call, and the in-memory changes are kept private to the
transaction.

Transaction-private copies. TxFS makes transaction-
private copies of all kernel data structures modified during
the transaction. File-system related system calls inside
a transaction operate on these private copies, allowing
transactions to read their own writes. In case of abort,
these private copies are discarded; in case of commit,
these private copies are carefully applied to the global
state of the file system in an atomic fashion. During a
transaction, file-system operations are redirected to the
local in-memory versions of the data structures. For ex-
ample, dentries updated by the transaction are modified to
point to a local inode which maintains a local radix tree
which has locally modified pages.

Two phase commit. TxFS transactions are committed
using a two-phase commit protocol. TxFS first obtains
a lock on all relevant file-system data structures using a
total order. The following order prevents deadlock: inode
mutexes, page locks, inode buffer head locks, the global
inode hash lock, the global inode sb list lock, in-
ode locks, and dentry locks. The Linux kernel orders the
acquiring of inode mutexes based on the pointer addresses
of their inodes; we adopt this locking discipline in TxFS.
Similarly, page locks are acquired in order of the address
of the page. Acquiring the locks for directory data block
buffers and inode metadata buffers is ordered by inode
number.

After obtaining the locks, all allocation decisions are
checked to see if they would succeed; for example, if
the transaction creates inodes, TxFS checks if there are
enough free inodes. Next, TxFS checks the journal to
ensure there is enough space in the global jbd2 transac-
tion to allow the transaction to be merged. Finally, TxFS
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Figure 2: TxFS relies on ext4’s own journal for atomic updates and maintains local copies of in-memory data structures,
such as inodes, dentries, and pages to provide isolation guarantees. At commit time, the local operations are made
global and durable.

checks for conflicts with other transactions (as described
below). If any of these checks fail, all locks are released,
and the commit returns an error to the user. Otherwise,
the in-memory data structures are updated, all file-system
allocation is performed, and the private jbd2 transac-
tion is merged with the global jbd2 transaction. At this
point, the transaction is committed, locks are released and
the changes are persisted to storage in a crash-consistent
manner.

Conflict detection. Conflict detection is a key part of
providing isolation. Since allocation structures such as
bitmaps are not modified until commit time, they cannot
be modified by multiple transactions at the same time,
and do not give rise to conflicts; as a result, TxFS avoids
false conflicts involving global allocation structures.

Conflict detection is challenging as file-system data
structures are modified all over the Linux kernel without
a standard interface. TxFS takes advantage of how file-
system data structures are implemented to detect conflicts
efficiently.

Conflict detection for pages. The struct page data
structure holds the data for cached files. TxFS adds two
fields to this structure: write flag and reader count.
The write flag indicates if there is another transaction
that has written this page. The reader count field in-
dicates the number of other transaction that have read
this page. Non-transactional threads will never see the
in-flight un-committed data in transactions, and thus can
always safely read data. TxFS does eager conflict detec-
tion for pages since there is a single interface to read and
write pages that TxFS interposes. The following rules are
followed on a page read or write:

1. When a transaction reads a page, it increments
reader count by one. If the page has the
write flag set, the transaction aborts.

2. If a transaction attempts to write a page that
has either the write flag set or reader count

greater than zero, it aborts. Otherwise, it sets the
write flag.

3. If a non-transactional thread attempts to write to a
page with reader count or write flag set, it is
put to sleep until the transaction commits or aborts.

4. When the transaction commits or aborts,
write flag is reset and reader count is
decremented.

Aborting transactions in this manner can lead to livelock,
but we have not found it a problem with our benchmarks
and the policy can be easily changed to resolve conflicts
in favor of the oldest transaction (which does not livelock).
TxFS favors transactional throughput, but for greater fair-
ness between transactional and non-transactional threads,
TxFS could allow a non-transactional thread to proceed by
aborting all transactions conflicted by its operation [22].

Conflict detection for dentries and inodes. Apart from
pages, TxFS must detect conflicts on two other data struc-
tures: dentries (directory entries) and inodes. Unfortu-
nately, unlike pages, inodes and dentries do not have a
standard interface and are modified throughout kernel
code. Therefore, TxFS uses lazy conflict detection for
inodes and dentries, detecting conflicts at commit time.
At commit time, TxFS needs to detect if the global copy
of the data structure has changed since it was copied into
the local transaction. Doing a byte-by-byte comparison of
each modified data structure would significantly increase
commit latency; instead, TxFS takes advantage of the
inode’s i ctime field that is changed whenever the inode
is changed; TxFS simply has to check that the i ctime

has not changed for each inode that TxFS has read or
written (writes are performed to a transaction-local copy
of the inode). TxFS similarly adds a new d ctime field
to the dentry data structure to track its last modified time.
We added kernel code in a number of places to update
d ctime whenever a dentry is changed. Creating differ-
ent named entries within a directory does not create a



conflict because the names are checked at commit time.
By taking advantage of i ctime and d ctime, TxFS
is able to perform conflict detection for these structures
without radically changing the Linux kernel.

Summary. Figure 2 shows how TxFS uses ext4’s journal
for atomically updating operations inside a transaction,
and maintaining local state to provide isolation guarantees.
File operations inside a TxFS transaction are redirected to
the transaction’s local copied data structures, hence they
do not affect the file system’s global state, while being
observable by subsequent operations in the same transac-
tion. Only after a TxFS transaction finishes its commit
(by calling fs tx commit()) will its modifications be
globally visible.

3.4 Implementation

We modified Linux version 3.18 and the ext4 file system.
The implementation requires a total of 5,200 lines of code,
with 1,300 in TxFS internal bookkeeping, 1,600 in the
VFS layer, 900 in the journal (JBD2) layer, 1,200 for ext4
and 200 for memory management (all measurements with
SLOCCount [4]). Except for the ext4 and jbd2 extensions,
all other code could be reused to port TxFS to other file
systems, such as ZFS, in the future.

3.5 Limitations

TxFS has two main limitations. First, the maximum size
of a TxFS transaction is limited to one fourth the size of
the journal (the maximum journal transaction size allowed
by ext4). We note that the journal can be configured to be
as large as required. Multi-gigabyte journals are common
today. Second, although parallel transactions can proceed
with ACID guarantees, each transaction can only contain
operations from a single process. Transactions spanning
multiple processes are future work.

4 Accelerating program idioms with TxFS

We now explore a number of programming idioms where
a transactional API can improve performance because
transactions provide the file system a sequence of oper-
ations which can be optimized as a group (§2). Whole
transaction optimization can result in dramatic perfor-
mance gains because the file system can eliminate tempo-
rary durable writes (such as the creation, use and deletion
of a log file). In some cases, we show that benefits pre-
viously obtained by new interfaces (such as osync [2])
can be obtained easily with transactions.

4.1 Eliminating file creation

When an application creates a temporary file, syncs it,
uses it, and then unlinks it (e.g., logging shown in Fig-
ure 1b), enclosing the entire sequence in a transaction
allows the file system to optimize out the file creation and

Workload FS TX
Create/unlink/sync 37.35s 0.28s (133×)
Logging 5.09s 4.23s (1.20×)
Ordering work 2.86 it/s 3.96 it/s (1.38×)

Table 1: Programming idioms sped up by TxFS trans-
actions. Performance is measured in seconds (s), and
iterations per second (it/s). Speedups for the transaction
case are reported in parentheses.

all writes while maintaining crash consistency.
The create/unlink/sync workload spawns six threads

(one per core) where each thread repeatedly creates a file,
unlinks it, and syncs the parent directory. Table 1 shows
that placing the operation within a transaction increases
performance by 133× because the transaction completely
eliminates the workload’s IO. While this test is an extreme
case, we next look at using transactions to automatically
convert a logging protocol into a more efficient update
protocol.

4.2 Eliminating logging IO

Figure 1b shows the logging idiom used by modern ap-
plications to achieve crash consistency. Enclosing the
entire protocol within a transaction allows the file system
to transparently optimize this protocol into a more effi-
cient direct modification. During a TxFS transaction, all
sync-family calls are functional nops. Because the log
file is created and deleted within the transaction, it does
not need to be made persistent on transaction commit.
Eliminating the persistence of the log file greatly reduces
the amount of user data but also file system metadata (e.g.,
block and inode bitmaps) that must be persisted.

Table 1 shows execution time for a microbenchmark
that writes and syncs a log, and a version that encloses the
entire protocol in a single TxFS transaction. Enclosing
the logging protocol within a transaction increases perfor-
mance by 20% and cuts the amount of IO performed in
half because the log file is never persisted. Rewriting the
code increases performance by 55% (3.28s, not shown in
the table). In this case getting the most performance out
of transactions requires rewriting the code to eliminate
work that transactions make redundant. But even without
a programmer rewrite, by just adding two lines of code
to wrap a protocol in a transaction achieves 47% of the
performance of doing a complete rewrite.

Optimizing SQLite logging with TxFS. Table 3 reports
results for SQLite. “Rollback with TxFS” represents
SQLite’s default logging mode encased within a TxFS
transaction. Just enclosing the logging activity with a
transaction increases performance for updates by 14%.
Modifying the code to eliminate the logging work that
transactions make redundant increases the performance
for updates to 31%, in part by reducing the number of



Experiment TxFS benefit Speed
Single-threaded SQLite Faster IO path, Less sync 1.31×
TPC-C Faster IO path, Less sync 1.61×
Android Mail Cross abstraction 2.31×
Git Crash consistency 1×

Table 2: The table summarizes the micro- and macro-
benchmarks used to evaluate TxFS, and the speedup ob-
tained in each experiment.

system calls by 2.5×.

4.3 Separating ordering and durability

Table 1 shows throughput for a workload that creates
three 10MB files and then updates 10MB of a separate
40MB file. The user would like to create the files first,
then update the data file. This type of ordering constraint
often occurs in systems like Git that create log files and
other files that hold intermediate state.

The first version uses fsync() to order the operations,
while the second uses transactions that allow the first three
file create operations to execute in any order, but they are
all serialized behind the final data update transaction (us-
ing flags to fs tx begin()and fs tx commit()).
The transactional approach has 38% higher throughput
because the ordering constraints are decoupled from the
persistence constraints. The work that first distinguished
ordering from persistence suggests adding different flavor
sync system calls [2], but TxFS can achieve the same
result with transactions.

5 Evaluation
We evaluate the performance and durability guarantees of
TxFS on a variety of micro-benchmarks and real work-
loads. The micro-benchmarks help point out how TxFS
achieves specific design goals while the larger bench-
marks validate that transactions provide stronger crash
semantics and improved performance to a variety of large
applications with minimal porting effort.

Testbed. Our experimental testbed consists of a machine
with a 4 core Intel Xeon E3-1220 CPU and 32 GB DDR3
RAM and a machine with a 6 core Intel Xeon E5-2620
CPU and 8 GB DDR3 RAM. All experiments are per-
formed on Ubuntu 16.04 LTS (Linux kernel 3.18.22).
The kernel is installed on a Samsung 850 (512 GB) SSD
and all experiments are done on a Samsung 850 (250
GB) SSD. The experimental SSD is run at low utilization
(around 20%) to prevent confounding factors from wear
leveling firmware.

Table 2 presents a summary of the different experi-
ments used to evaluate TxFS and the speedup obtained in
each experiment. In the Git experiment, TxFS provides
strong crash-consistency guarantees without degrading
performance. Note that if not explicitly mentioned, all

our baselines run on ext4 with its default journaling mode,
the ordered journaling mode.

5.1 Crash consistency

TxFS’s ACID transactions should be recoverable after a
system crash. In order to verify this crucial correctness
property, we boot a virtual machine and run a script that
creates many types of transactions in multiple threads
with random amounts of contained work and conflict
probabilities. We crash the VM at a random time and
make sure the file system journal is recoverable and that
the file system passes all fsck checks. We have run over
100 random crashes and can recover the file system in all
cases. An alternate way to test crash consistency would
use a testing framework such as CrashMonkey [13].

5.2 Stress testing TxFS

We performed stress testing on TxFS to ensure its cor-
rectness in the face of conflicts and multi-threaded op-
erations. Our stress tests had two main workloads. Our
first workload was a micro-benchmark with six threads
starting TxFS transactions and performing file-system
operations picked at random across two files before com-
mitting. These threads generate a lot of conflicts, stressing
TxFS conflict detection and isolation mechanisms. Our
second workload uses the SQLite embedded database,
performing a number of database operations with mul-
tiple threads. We were able to run both workloads for
over 24 hours on TxFS without a kernel crash or our unit
tests failing, giving us a measure of confidence in the
correctness and stability of the codebase.

5.3 SQLite

We modified SQLite to use TxFS transactions. Data and
metadata are first written safely to the journal and then
checkpointed in-place into the file system. Note that all
metadata is written into the file system exactly once. With
SQLite in write-ahead-logging (WAL) mode, metadata
is written twice: once to SQLite’s log and once to the
actual database file. The size and frequency of metadata
updates for SQLite is significant because in order to be
recoverable, it must update the parent directory whenever
log files are created or deleted [29]. We use PRAGMA
synchronous=NORMAL (default) for all modes, and
PRAGMA wal checkpoint(FULL) for WAL mode
to guarantee all ACID properties.

When SQLite uses TxFS transactions, crashes do not
leave any residual files on storage. Currently, users often
must remove these residual files by hand which is tedious
and error-prone. TxFS transactions eliminate user-visible
log files; user-level code sees only the before and after
state of the database, not messy in-flight data.

Single-threaded SQLite. Table 3 shows that TxFS is
the best performing option for SQLite updates. Data is



Performance (kOps/s) IO (GB) Sync/tx
Journal
mode

Insert Update Insert Update Insert Update

Rollback
(default)

53.9 28.0 1.9 3.9 4 10

Truncate 53.5
(0.99×)

28.9
(1.03×)

1.9 3.9 4 10

WAL 39.8
(0.74×)

34.6
(1.23×)

3.9 3.8 3 3

TxFS 51.4
(0.95×)

36.7
(1.31×)

1.9 3.8 1 1

Rollback
with TxFS

52.1
(0.97×)

31.9
(1.14×)

1.9 3.8 1 1

No journal
(unsafe)

54.9
(1.02×)

50.6
(1.81×)

1.9 1.9 1 1

Table 3: The table compares operations per second (larger
is better) and total amount of IO for SQLite executing
1.5M 1KB operations grouping 10K operations in a trans-
action using different journaling modes (including TxFS).
The database is pre-populated with 15M rows. All ex-
periments use SQLite’s synchronous mode (its default).

the average of five trials with standard deviations below
2.2% of the mean. For the update workload, TxFS is
31% faster than the default. We report IO totals as part
of our validation that TxFS correctly writes all data in a
crash-consistent manner. Several choices for SQLite log-
ging mode, including TxFS, result in similar levels of IO
that resemble the no-journal lower bound. Write-ahead
logging mode (WAL) writes more data for the insert work-
load, which harms its performance. Note that TxFS does
not suffer WAL’s performance shortfall on insert, and
TxFS surpasses WAL’s performance on update, making
it a better alternative. Although the file system journal
shares similarity with a WAL log, TxFS does not gener-
ate redundant IO on insert because of its selective data
journaling.

We run similar experiments with small updates (16
bytes) and find that there is little difference in perfor-
mance between SQLite’s different modes and TxFS. This
shows that small transactions do not have significant over-
head in TxFS.

TxFS’s improves performance for the update workload
is due to several factors. TxFS reduces the number of
data syncs from 10 (in Rollback and Truncate mode) or 3
(in WAL mode) to only 1, which leads to better batching
and re-ordering of writes inside a single transaction. It
performs half of its IO to the journal, which is written se-
quentially. The remaining IO is done asynchronously via
a periodic file-system checkpoint that writes the journaled
blocks to in-place files. Since TxFS uses the file-system
journal instead of an application-level journal for logging
the transaction, it avoids the journaling on journal prob-

Rollback
(default)

Truncate WAL TxFS No
journal

(unsafe)
Delivery 110.52 123.33 157.01 188 300.4

New
Order

142.38 165.15 216.8 240.34 445.14

Order
Status

1998.53 2067.29 3317.1 2489.94 3141.13

Payment 198.45 240.21 367.26 300.61 909.91
Stock levl 575.03 602.33 765.41 684.06 1079.85

Total 172.97 203.3
(1.18×)

280.01
(1.62×)

278.97
(1.61×)

600.15
(3.47×)

Syscall/tx 208.0 207.95 138.26 100.35 146.9
Sync/tx 2.76 2.75 2.76 0.92 0.92
R MB/tx 0.018 0.016 0.013 0.013 0.007
W MB/tx 0.17 0.158 0.131 0.129 0.066
T MB/tx 0.187 0.174

(0.93×)
0.144

(0.77×)
0.142

(0.76×)
0.073

(0.39×)

Table 4: Rates (in transactions per second) for the TPC-C
workload using different SQLite journaling modes. Each
workload runs continuously for a fixed amount of time.

lem [25], where the journaling of the application-level log
causes a significant slowdown. Even in realistic settings
where performance is at a premium, transactions provide
a simple, clean interface to get significantly increased
file-system performance, while maintaining crash safety.

5.4 TPC-C

We run a version of the TPC-C benchmark [17], ported
to use single-threaded SQLite1. TPC-C is a standard
online transaction processing benchmark for an order-
entry environment. R MB/tx is the amount of read IO per
transaction, W is written IO and T is total.

Table 4 shows that TxFS outperforms SQLite’s default
mode by 1.61×. The performance advantage comes from
two sources. First, TxFS writes less data and batches
its writes. TxFS writes much of its data sequentially to
the file system journal on fs tx commit()and writes
back the journal data asynchronously. SQLite’s default
mode must write data to the SQLite journal and to the
database file on fsync(). Therefore, TxFS writes only
once in the critical path (to the journal), while SQLite (as
configured in Section 5.3) must write to the journal plus
database in the critical path. Second, TxFS decreases the
number of system calls, especially sync-family calls. Ta-
ble 4 shows that TxFS reduces the number of sync-family
calls per transaction by 3×. By reducing the sync-familly
calls, TxFS can batch writes in a transaction, reducing the
amount of writes by 31.7% compared to default mode.

The performance of TxFS and WAL is similar. When
transactions contain writes, TxFS has better performance
than WAL, but it has worse performance for read-only

1https://github.com/apavlo/py-tpcc/wiki/
SQLite-Driver

https://github.com/apavlo/py-tpcc/wiki/SQLite-Driver
https://github.com/apavlo/py-tpcc/wiki/SQLite-Driver


Journal mode Throughput IO(MB)
Rollback
(default)

45.73 3269

Truncate 45.48 (0.99×) 3154
WAL 53.43 (1.17×) 3539
TxFS 105.68(2.31×) 6797

TxFS Small tx 60.85 (1.33×) 4052
No journal
(unsafe)

61.88 (1.35×) 3995

Table 5: TxFS supports transactions across storage ab-
stractions. Performance is measured in iterations per
second.

transactions: WAL is 28% faster than TxFS for read-only
transactions. “Order status” and “Stock level” consist of
3 select queries and 2 select queries respectively, result-
ing in lower throughput for TxFS compared with WAL.
However, “Delivery” consists of 3 select, 3 update, and 1
delete queries, so TxFS outperforms WAL by 20%.

5.5 Abstractions built on files

Modern file systems support storage of not only files
but databases (e.g., SQLite) and key-value stores (e.g.,
LevelDB and RocksDB). These abstractions are built on
the file system and generally are a lower-performing, but
easier to set up and maintain alternative to their dedicated
counterparts.

TxFS supports transactions that span storage abstrac-
tions. Table 5 shows the throughput for a workload that
models the core activity of Android mail, storing an im-
age file and recording the path to that file in a SQLite
database along with other metadata. The database is pre-
populated with 100,000 1KB rows, image files are 1 MB.
The workload creates the database record in one transac-
tion, creates a uniquely named file where it stores the file
data, syncs the data, and then updates the database record
in a second transaction.

TxFS outperforms default SQLite by 2.31× and the
best alternative (WAL mode) by 1.98×. It is essential to
TxFS’s performance that both database transactions as
well as the file system operation are all contained in a
single transaction. When they are separate transactions
(TxFS Small tx), performance is bounded by SQLite (i.e.,
it is close to no journaling). IO is not a bottleneck for this
workload. The amount of IO performed is proportional to
the amount of work done: TxFS has higher throughput,
so it performs more IO.

5.6 Git

Git is a widely-used version control system. Git com-
mands such as git add and git commit result in
a large number of file-system operations. Git updates
files by creating a temporary file, writing the desired
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In-kernel transac-
tional FS

TXFS 3 3 3 3 H L

Valor 3 3 7 3 H L
TxF 3 3 7 3 H H

Transactional OS TxOS 3 3 3 3 H H
FS over
userspace
databases

OdeFS

R
el

yi
ng

on
da

ta
ba

se
s

7 3 L L
Inversion

DBFS
Amino

Transactional
storage

CFS 7 3 3 7 H L
MARS 3 3 7 7 H H
Isotope 3 3 3 3 H H

Failure atomicity msync 7 3 3 3 H L
AdvFS 7 3 3 3 H L

Table 6: The table compares prior work providing ACID
transactions or failure atomicity in a local file system.
Legend: 3- supported, 7- unsupported, L - Low, H - High.
Note that only TxFS provides isolation and durability with
high performance and low implementation complexity
without restrictions or hardware modifications.

data to it, and renaming it over the old file. To enable
high performance, Git does not order its operations via
fsync() [21], leaving it vulnerable to garbage files and
outright data corruption on a system crash.

In our experiment, we run Git inside a virtual machine.
We instrument the Git code to crash the VM at vulnerable
points (such as after the temp file rename, but before
the file is persistent). The workload first initializes a Git
repository, populates it with 20,000 empty files, then adds
all files at once.

After a VM restart, we find that the .git/index file
has been truncated to zero bytes, resulting in a loss of
the working tree. Running the Git recovery command
git fsck simply reports a fatal error. Recovery is not
possible unless the data has been backed up in another
location. In contrast, when we change Git to use TxFS
transactions, we find that crashes no longer produce such
catastrophic errors. Furthermore, we do not find a sig-
nificant difference in performance between the code that
use TxFS transactions, and the code that does not. Thus,
using TxFS transactions provides crash consistency for
Git without any performance overhead.

6 Related work
There have been a number of efforts over the years to pro-
vide systems support for file-system transactions. Each



of these systems failed to gain adoption due to one of the
following reasons: they had severe restrictions on what
could be placed inside a transaction, they were compli-
cated to use, they added complexity to the kernel, or they
caused significant performance degradation. Learning
from prior systems, TxFS avoids all of these mistakes.
Table 6 summarizes related work and demonstrates that
TxFS is unique among transactional file systems.

Building file systems on top of user-space databases.
One way to provide transactional updates for applications
is to build a file system over a user-space transactional
database. OdeFS [5], Inversion [18], and DBFS [16] use
a database (such as Berkeley DB [19]) to provide ACID
transactions to applications via NFS. Amino [31] tracks
all user updates via ptrace and employs a user-level
database to provide transactional updates. Such systems
come with significant performance cost (e.g., 50-80% for
large operations in DBFS [16]).

In-kernel transactional file systems. An approach that
leads to higher performance is adding transactions to in-
kernel file systems. Valor [28] provides kernel support for
file-system transactions. However, Valor does not provide
a simple begin/end transaction interface, and it forces
programmers to use seven new system calls to manage
the transaction log.

Microsoft introduced Transactional NTFS (TxF),
Transaction Registry (TxR), and the kernel transaction
manager (KTM) in Windows Vista [24]. Using TxF re-
quires all transactional operations be explicit (i.e., instead
of using read() in a transaction, the programmer must
add an explicit transactional read). Therefore TxF had a
high barrier to entry and code that used it required sep-
arate maintenance. TxF also had significant limitations,
like no transactions on the root file system.

Transactional operating systems. A third, somewhat
heavyweight, approach is modifying the entire operat-
ing system to provide transactions. Our prior work,
TxOS [22], is an operating system that provides trans-
actions. This approach adds significant complexity to the
kernel. For example, TxOS modified tens of thousands
of lines of code and changed core OS data structures like
the inode. Maintaining such a kernel will be tricky – Win-
dows abandoned its transactional file system and kernel
transaction manager [14].

The transactional capabilities of the file system sup-
ported by TxOS is similar in approach to TxFS. It also
uses the file-system journal and modifies the virtual file
system (VFS) code to provide isolation. One could view
TxFS as specializing TxOS to the file system, achieving a
transactional file system at significantly lower cost, while
adding file-system specific optimizations like selective
journaling and eliminating redundant work within trans-
actions.

Transactional storage systems. Similar to our work,
CFS [15] provides a lightweight mechanism for atomic
updates of multiple files, building on top of transactional
flash storage. MARS [3] builds on hardware-provided
atomicity to build a transactional system. TxFlash [23]
uses the copy-on-write nature of Flash SSDs to provide
transactions at low cost. In contrast to these systems,
TxFS provides transactions without assuming any hard-
ware support (beside device cache flush and atomic sector
updates). Isotope [26] uses multi-version concurrency
control to provide isolation, significantly increasing its
complexity. Isotope builds a user-space transactional file
system using FUSE, which limits its performance for cer-
tain workloads. The higher abstraction level of TxFS
makes implementing transactional optimizations and tai-
lored isolation significantly easier than the lower level of
Isotope.

Failure atomicity. Failure-atomic msync [20] is similar
to TxFS in that it re-uses the journal for providing atom-
icity to application updates; in contrast, TxFS provides
full ACID transactions at significantly higher complexity.
AdvFS [30] is also limited in the same way, is specific to
the Tru64 file system, and is not available as open-source
(latest version available was from 2008). The principles
behind TxFS could be used in any file system that has an
internal mechanism for atomic updates.

We previewed the ideas behind TxFS at HotOS [11],
but this paper reports on the completed system with com-
prehensive evaluation.

7 Conclusion
We present TxFS, a transactional file system built with
less development effort than previous systems by lever-
aging the file-system journal. TxFS is easy to develop, it
is easy to use, and it does not have significant overhead
for transactions. We show that using TxFS transactions
increases performance significantly for a number of dif-
ferent workloads.

Transactional file systems have not been successful for
a variety of reasons. TxFS shows that it is possible to
avoid the mistakes of the past, and build a transactional
file system with low complexity. Given the power and
flexibility of file-system transactions, we believe they
should be examined again by file-system researchers and
developers. Adopting a transactional interface would
allow us to borrow decades of research on optimizations
from the database community while greatly simplifying
the development of crash-consistent applications.
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