Isolation and Beyond: Challenges for System Security

Tyler Hunt
The University of Texas at Austin

Christopher]. Rossbach
The University of Texas at Austin and
VMware Research Group

Abstract

System security has historically relied on hardware-provided
isolation primitives. However, Meltdown [36] and Spec-
tre [30] demonstrate that basic user/kernel isolation could be
bypassed in every widely deployed ISA for decades; they are
a caution to system designers who accept hardware isolation
guarantees as an article of faith. Hardware isolation is fallible
and should be considered fallible by software systems.

We argue that future systems should broaden their view
to adopt techniques that compensate for weaknesses in hard-
ware isolation and should secure and optimize the commu-
nication among isolated components. Changing algorithms
to be data oblivious, so that their externally observable be-
havior is independent of their (secret) input data is one such
technique. Securing communication requires that the tim-
ing and size of messages be independent of secret data, but
how best to achieve that independence so as to limit perfor-
mance and energy overheads will vary from application to
application.

* CCS Conceptse Security and privacy — Systems secu-
rity; Operating systems security;

ACM Reference Format:

Tyler Hunt, Zhipeng Jia, Vance Miller, Christopher J. Rossbach,
and Emmett Witchel. 2019. Isolation and Beyond: Challenges for
System Security. In Workshop on Hot Topics in Operating Systems
(HotOS °19), May 13-15, 2019, Bertinoro, Italy. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3317550.3321427

1 Introduction

Historically, software system designers have leveraged hard-
ware isolation mechanisms as the basis for secure systems.
The user/kernel processor mode bit, page tables on CPUs
and GPUs, and more recently hardware-supported trusted

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

HotOS ’19, May 13-15, 2019, Bertinoro, Italy

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6727-1/19/05...$15.00
https://doi.org/10.1145/3317550.3321427

Zhipeng Jia
The University of Texas at Austin

Vance Miller
The University of Texas at Austin

Emmett Witchel
The University of Texas at Austin

execution environments (TEEs) like Intel’s software guard
extensions (SGX) are all examples of hardware-enforced iso-
lation mechanisms. These primitives have found favor for
decades because they are efficiently implemented in hard-
ware, and have clear semantics that system software can use
as the basis for security.

While isolation is and will remain an important building
block for secure systems, the focus on isolation mechanisms
obscures two difficult, recent lessons. First, modern hard-
ware is highly optimized for performance which makes iso-
lation difficult. Second, even with fully effective isolation
mechanisms, secure systems will likely consist of multiple
isolated but communicating environments, where the com-
munication creates new side channels. This paper advocates
redundant protections for isolated computation using a com-
bination of software and hardware techniques. It also advo-
cates securing and optimizing the communication among
multiple, distinct isolated computations, often within the
same machine.

Modern CPUs and GPUs achieve their impressive perfor-
mance using numerous hardware structures shared across
protection boundaries such as memory caches, memory
prefetchers, and prediction structures like branch and tar-
get buffers. The number, complexity, and shared nature of
these structures make isolation difficult. Isolation is a non-
interference property: computational entity A’s execution
history (including timing) should be independent of entity
B’s, even if both are concurrently executed on the same
physically-shared hardware. Recent security failures (e.g.,
Meltdown [36] and Spectre [30]) have shown how difficult
it is for hardware to provide non-interference. The timing
of computations using shared hardware structures leaks pri-
vate data across protection boundaries. As another example,
Graviton [65], a recent design for GPU-based trusted execu-
tion environments, trusts GPU memory because it cannot be
snooped. However, recent side-channel attacks on GPUs [46]
have shown practical methods to fingerprint websites using
performance counters observed during GPU rendering in
the browser, rather than by monitoring memory accesses.

While improving isolation is itself important, recent fail-
ures of isolation mechanisms should motivate systems de-
signers to examine how computations can remain secure
despite imperfect isolation. Hardware isolation is fallible
and should be considered fallible by software systems. Some

https://doi.org/10.1145/3317550.3321427
https://doi.org/10.1145/3317550.3321427

HotOS ’19, May 13-15, 2019, Bertinoro, Italy

algorithms are easier to secure than others. For example,
machine learning algorithms (e.g., support vector machines,
matrix factorization, neural networks, decision trees, and k-
means clustering) can be data oblivious: constructed so their
externally visible behavior (e.g., memory references, system
calls, branch behavior) does not disclose anything about
their secret input data [47]. Limiting information leakage via
hardware usage patterns reduces the burden on hardware
to provide isolation by eliminating unintended communica-
tion. Forcing the programmer to modify their algorithms to
strengthen security is burdensome but necessary to reduce
reliance on side-channel-ridden isolation primitives.

We believe that secure, complex computations will be
broken up across multiple TEEs on CPUs and eventually on
GPUs. The principle of least privilege [56] argues for splitting
monolithic systems into a number of smaller components,
with deliberately simple ones responsible for security-critical
functionality [16, 52]. The evolution of modern hardware
support for security, from trusted platform modules (TPMs)
that can verify boot to enclaves that can verify the start state
of a smaller, user-level computation reflects the principle
that minimizing and simplifying the trusted computing base
(TCB) is valuable for security. Also, as hardware TEEs have
limited resources (such as hardware thread contexts and
physical memory), larger computations must communicate
across TEEs: decomposition is inevitable.

Unfortunately, dividing computation among many com-
municating TEEs creates further side channels. An attacker
with control of the operating system can transparently inter-
pose on most communication mechanisms within a single
computer (e.g., enclaves cannot share memory) and collect
fine-grained, high-precision timing information. The com-
munication of these isolated components must be secured,
so an adversary cannot learn anything about the data being
processed by observing the communication (which includes
sizes and timings).

We survey recent attempts at providing isolation for CPUs
(§3) and for GPUs (§4) and find that unintended side-channel
leaks have undermined the isolation of both commercial
and research systems. We then consider communication be-
tween isolated components and how to secure it efficiently
(§5). Secure communication is straightforward in theory—
communication patterns should be independent of secret
data-but it is difficult to achieve in practice at a reasonable
cost. We then discuss ways for future systems to be robust
in the face of compromised isolation (§6), including changes
to the programming model for secure software. Specialized
programming models hold promise for achieving robust,
practical system security.

2 Background and related work

System security is a broad area and this paper is not a com-
prehensive review. We focus on issues relevant to operating

T. Hunt et al.

system designers for cloud services, given their popularity,
requirement for multi-tenancy, and need for security. Cloud
services maximize hardware utilization by sharing hardware
resources among many mutually distrustful cloud tenants.
Cloud tenants are isolated from each other by the hyper-
visor (e.g., virtual machines) or the operating system (e.g.,
containers). We assume cloud applications are processing
private, personal data, e.g., genome information, financial
information, or health records.

Side channels. Side channels are communication channels
based on mechanisms that were not intended for communi-
cation. Data communication over side channels is typically
unintentional and can be exploited by an attacker to extract
secrets. Mechanisms for side channels can exploit any state
that depends on secrets and is visible to the attacker, e.g.,
the timing of accesses to the CPU’s cache [27, 39], power
draw [31], or temperature [42]. We focus on side channels
available to the observer without physical access, primarily
channels based on timing.

Threat Model. We are concerned with software attacks
launched by a locally-resident adversary. For cloud services,
attackers can run malicious code on the same physical de-
vice as a target cloud application [55]). The attacker’s priv-
ileges could be as limited as another cloud tenant’s or as
far-reaching as a disgruntled data center employee’s. Denial-
of-service attacks are out of scope. Physical attacks such as
bus snooping are also out of scope.

Isolation using TEEs. Researchers and industry continue
the search for strong isolation mechanisms. For example,
Sanctum [9] and Keystone [34] are successive designs for
TEEs for RISC-V processors. Keystone corrects some of the
security problems with SGX (e.g., securing page faults) and
some of the performance issues (e.g., a limited pool of BIOS-
segregated enclave memory) while maintaining the SGX pro-
gramming model. Ongoing work expands the threat model to
some side-channel attacks, specifically cache timing attacks.

Several recently proposed systems aim to protect applica-
tions from an untrusted platform [4, 7, 13, 62] by leveraging
hardware supported TEEs [19, 57, 75].

GPU Security and Protection. GPU security properties,
vulnerabilities of GPUs [79], and techniques to exfiltrate
data from the GPU [49] are increasingly well-explored. Pix-
elVault [64] exploits physical isolation between CPUs and
GPUs to implement secure key storage for keys, although
it was shown to be insecure [79]. Attacks leveraging GPU
memory reuse without re-initialization [17, 35, 78] are a
common theme. Techniques to isolate malicious device dri-
vers [8], protect the system from malicious accelerators [48],
or provide trusted I/O paths for accelerators [29, 71, 77] are
applicable to securing GPUs as well.

Isolation and Beyond: Challenges for System Security

Graviton [65] provides TEEs on GPUs using cryptograph-
ically secured communication, and relying on the GPU com-
mand processor to protect memory from other concurrently
active contexts. HIX [23] extends an SGX-like design with
support for secure MMIO to GPUs to enable enclave access
to GPUs. Neither HIX or Graviton make communication
patterns with the GPU data oblivious.

Microarchitectural side-channel attacks. CPU side-
channel attacks [12, 18, 27, 39, 43, 68, 74] are well-studied,
leading to defenses based on static or dynamic partitioning of
caches [11, 21, 22, 53, 69], OS- and compiler-supported cache
line locking [33, 69], randomization of replacement [70] and
fill [38] policies, timing noise injection [41], or managing
traffic at the memory controller [59, 67, 76]. Covert Channels
using shared GPU hardware [45] are a nascent area, includ-
ing AES Key extraction using shared GPU hardware [24, 25].
Sub-warp randomization techniques to obscure timing re-
lationships between execution and memory accesses [24]
have been proposed to alleviate correlation-based timing
attacks [26].

3 Isolation on the CPU

CPUs provide distinct virtual address spaces managed by the
operating system (and the hypervisor) to provide isolation.
Relying on address space separation requires trusting the op-
erating system and hardware. Remote users can verify that
the operating system provided by the cloud is not malicious
by using a TPM for trusted boot (e.g., Google developed Ti-
tan, a custom chip that provides trusted boot [61]). But the
initial state of an operating system is not a strong indicator
of the system’s security. Operating systems are complex, con-
stantly changing, and constantly under attack. The national
vulnerability database lists 207 critical vulnerabilities (9 or
10 on CVSS V3 scale) in 2016 and 127 in 2017.

ARM’s TrustZone [3] creates two worlds—a secure world
and a normal world—-enforced by privilege levels of the CPU.
Software running in the secure world can access memory
that is not accessible by the normal world, and can use trusted
devices (which are beyond the capabilities of TPMs) over a
secure bus. TrustZone has advantages over trusted boot and
TPMs, but it shares many of their limitations by subsuming
the entire OS into the TCB. An OS is too large a software
unit for secure systems.

As a response to the relatively weak guarantee of a whole
trusted operating system, recent hardware supports protec-
tion for small, user-level components. Intel’s SGX and RISC-
V’s Keystone enclaves are examples of this “trusted execution
environment”(TEE) abstraction. The hardware generates a
secure certificate that identifies the initial code and data of
an enclave so a remote user can be convinced the expected
code is running on a legitimate hardware platform'. Remote

The part of Intel’s remote attestation protocol that validates the hardware
platform additionally requires a software service.

HotOS 19, May 13-15, 2019, Bertinoro, Italy

attestation for the initial state of enclaves is similar to trusted
boot for operating systems. Enclaves can run on any CPU
core at any time. They can make system calls, as long as they
copy the arguments out of the enclave and the untrusted
result back into the enclave. Enclaves run unprivileged code,
so the OS and hypervisor have control over their resource
usage, including the number of physical memory frames
they occupy.

Both address space separation and TEEs fail to provide
true isolation since an attacker may still observe the iso-
lated execution’s effect on shared hardware resources via
timing [30, 36]. Addressing side channels in Keystone is on-
going work [34].

Violating SGX isolation with page faults. Providing
hardware isolation for enclave data while allowing privi-
leged software free reign to manage memory has created a
security problem for enclaves [73]. The operating system can
mark pages as not present, creating hardware page faults that
the OS must handle, allowing it to receive a page-granularity
trace of accesses to enclave code and data. This coarse-
granularity trace is sufficient to recover the fine-grained
content of many data structures (e.g., hash tables) given that
application code is public (or can be reverse engineered).

The attack’s designers do not offer a comprehensive fix
and Intel has not included one in the specification for ver-
sion two of the SGX hardware. The attack’s designers note
that allowing the enclave to pin all code pages in memory
would defeat all of their attacks, but they do not know if it is
sufficient to defeat all attacks. Allowing unprivileged code to
pin memory pages in the hardware undercuts the function-
ality of privileged software and can be the basis for denial
of service attacks. Sanctum and Keystone enclaves route
page faults to the enclave itself, which increases security, but
both systems reduce the flexibility of the OS/hypervisor to
manage memory [9, 34].

Making application memory references data oblivious
thwarts the page fault monitoring attack while also clos-
ing cache side channels. There are algorithm-independent
methods for making memory references data oblivious (e.g.,
oblivious RAM (ORAM) [15]), but they tend to have high
overhead; PHANTOM [40], which uses an optimized FPGA
implementation of ORAM, still incurs a slowdown of 14.7x.
GhostRider [37] uses a compiler to optimize application code
for ORAM, reducing the slowdown to 10.68%. Hyperflow [14]
eliminates side channels using hardware-supported infor-
mation flow. Some workloads are slowed down significantly,
some are not, but the performance implications are diffi-
cult to extrapolate to a high-performance processor. Data-
oblivious algorithms [47, 66] and data structures (e.g., prior-
ity queues [20]) can be more efficient than these alternatives,
but require programmer effort.

HotOS ’19, May 13-15, 2019, Bertinoro, Italy

4 Isolation on the GPU

Discrete GPUs are the de facto accelerator of choice for im-
portant workloads like neural networks. While the hardware
organization of GPUs isolates them from the CPU, they re-
main under control of driver software running on the host
CPU. Leveraging their physical isolation for security is tricky.

Whole GPU. Early attempts to use a GPU as an isolated
secure coprocessor [64] were unsuccessful [79]. GPUs lack
a clear software/hardware boundary by design, to provide
vendors with flexibility and compatibility over successive
generations. The resulting porous boundary creates the secu-
rity problem that a non-bypassable hardware feature in one
version of a GPU can become a bypassable software feature
in another version. Also, GPUs are less isolated from CPUs
then they appear: PCle-attached GPUs rely heavily on MMIO
to expose command queues and registers and the IOMMU en-
forces their isolation. The IOMMU can be reconfigured at any
time by untrusted privileged software, so the IOMMU is not
a reliable isolation mechanism against privileged software.

Enclaves. It is natural to wonder if the protected enclaves
on CPUs can be implemented for GPUs. HIX [23] extends
an SGX design with a duplicate copy of all the memory
protection hardware to enable the hardware to guarantee
that a single enclave has exclusive access to MMIO regions
exported by a GPU. This, in principle, defeats a malicious
OS that wants to interpose or create its own mappings to
them. While this design provides stronger isolation than
what current enclaves can achieve for the GPU, it remains
vulnerable to the same set of side-channel attacks described
in §3, because communication is not data oblivious.

Graviton [65] postulates changes in GPU firmware (and
some GPU hardware) to create enclaves called “secure con-
texts” Secure contexts are protected by a Graviton-enabled
GPU, which enforces rules when manipulating GPU page
tables to enforce its isolation guarantees.

An application creates a secure context by establishing
an encrypted and authenticated communication channel
with the GPU. The kernel driver is not trusted. The GPU
requires authentication from the application to approve all
changes to memory mappings and only accepts commands
and returns results for a secure context over the associated
secure channel.

A fundamental challenge for Graviton is that it supports
multiple, distrustful principals concurrently using the GPU,
creating the possibility of attacks which leverage shared
resource contention. Contention on shared GPU resources
(caches, functional units, and memory) has been used to
create covert channels between otherwise isolated GPU con-
texts [45]. Side channels based on shared resource contention
were also used to fingerprint websites, and infer parameters
about neural networks [46]. On GPUs too, shared hardware
resources make isolation difficult.

T. Hunt et al.

5 Securing communication

Finer-grained protection granularity from hardware (e.g.,
SGX) and impossible-to-ignore performance gains from ac-
celerators (e.g., GPUs) are driving application design toward
a system of communicating components. Independent of the
strength of isolation achievable on CPUs and GPUs, isolated
components currently must communicate over an untrusted
communication medium.

Also, as a practical consideration, current enclave users
may wish to split their applications across multiple enclaves
for performance. Current SGX enclaves can only use 128MB
of physical memory per CPU. This is a limitation of the
implementation due to the size of on-chip data structures that
track enclave physical memory pages. While this limitation
should be reduced in future hardware revisions, it has been
a limitation since SGX became available in 2015.

Using encrypted channels to communicate protects the
secrecy and integrity of every message, but the size and the
timing of those messages (i.e., the communication pattern)
are still available to untrusted code. Communication patterns
can reveal secrets. For a network communication example,
Schuster et al. were able to infer the movie being streamed
over an encrypted connection [58] based on sizes and timing
of encrypted packets.

CPU/Enclave and GPUs. Software running on the CPU
communicates with the GPU over the PCle bus, mostly mov-
ing data or controlling the execution of GPU programs (ker-
nels). The PCle bus is generally under the control of the
hypervisor and/or host operating system, and routes packets
to multiple devices connected to the PCle root complex in
a tree topology, so packets in transit to/from the GPU may
be visible to other devices. In fact, the host software may
change the routing topology dynamically and can install
pseudo-devices that allow it to sniff traffic.

Even simple observations of encrypted traffic to and from
the GPU can leak critical pieces of information like kernel
execution time. For instance, if the application sends a large
batch of data to the GPU and no other messages are ex-
changed until the GPU has finished processing the batch, the
attacker can trivially compute the execution time for that
batch. Using execution time, Jiang et al. were able to extract
AES-128 encryption keys from encryption kernels running
on the GPU by reasoning about the number of unique cache
line fetches [24] and the number of memory bank stalls [25].

Oblivious communication. There is really only a single
technique to secure communication—communication pat-
terns must be made oblivious of any secret data. A simple
way to make communication oblivious to secret data is to
establish a schedule for sending and receiving messages that
is independent of secret data. As an example, consider a
fixed-rate schedule (shown in Figure 1) in which an applica-
tion sends an encrypted message of a particular size after a
constant amount of time.

Isolation and Beyond: Challenges for System Security

Leaky H 1 Im
Communication

i 1

Data-oblivious H[(EC 1.

Communication fm] I

Figure 1. Leaky communication is made secure by split-
ting/padding messages into a fixed size (black data with
white padding) and sending them at fixed rate. Messages
and padding are indistinguishable to the attacker because all
communication is encrypted.

Using a fixed-rate schedule is secure and enables a range
of interesting system engineering tradeoffs. One example
tradeoff is how to optimize for latency. For example, appli-
cation A could adopt a fixed-rate schedule of sending an
8KB message every 5 milliseconds; actual data is divided
between messages when it is larger than 8KB, and messages
are padded to 8KB when there is not enough data. Such a
schedule consumes 1.6MB/s of bandwidth. However, if ap-
plication B has control messages that benefit from sub-5-ms
transmission time, a schedule of 4KB every 2.5ms would
consume identical bandwidth but would be preferable.

Note that tuning the fixed-rate communication schedule to
a computation does leak information about that computation.
In our example, both fixed-rate schedules consume identical
bandwidth, but the timing leaks whether application A or
B is running. This level of information leakage may or may
not be acceptable for a given use.

Another challenge with securing communication by fixing
rates is minimizing cost (e.g., in performance or energy con-
sumption). Our example fixed-rate schedule will consume
energy to encrypt and transport unused parts (or whole)
messages that will only be discarded. New hardware mecha-
nisms could reduce the energy costs of reserving bandwidth.
For example, hardware could hide information about how
many CPU enclaves are communicating with the GPU by
providing a fixed bandwidth to the GPU to each enclave.
Any such hardware would need to make difficult tradeoffs
of safety versus utilization.

Another way to minimize the cost of securing commu-
nication is to weaken security guarantees. Hermetic is an
enclave-based analytics system that is differentially private
in the face of important side channels including timing [72].
Askarov et al. provide a timing channel mitigation scheme
that trades information leakage rather than resource utiliza-
tion for performance [5].

6 Securing future systems

Faced with frequent and high-profile failures of hardware-
supported isolation, we ask whether it is possible to build

HotOS 19, May 13-15, 2019, Bertinoro, Italy

systems whose security properties depend less on isolation,
or that can still provide meaningful, perhaps degraded guar-
antees when hardware isolation is compromised. The more
pervasively secret-oblivious techniques are used at all stack
layers, the less likely it is that observable behaviors can en-
able unintended communication that exposes secrets.

Future work in secure systems will surely include hard-
ware isolation mechanisms, but it will broaden to include
communication mechanisms and also software/program-
ming model changes.

Improving enclaves. Improved enclave support that lifts
restrictions (e.g., limited enclave memory size) in current
implementations will make it easier to build secure systems.
For example, Keystone enclaves can be built from system
memory without requiring a BIOS-sequestered enclave page
cache like SGX does.

While both Sanctum [9] and Keystone [34] address side
channel information leakage as an explicit design goal (at
least for cache timing side channels), it is notable that after
years of effort, side channel mitigation remains an ongoing
effort for Keystone.

Hardware to make isolation easier. Given the end of Den-
nard scaling and the limited range of options modern archi-
tects have to optimize performance, hardware manufacturers
are likely to continue to prioritize performance over secu-
rity. To increase security, hardware could expand to include
redundant but isolated structures, such as multiple memory
controllers, isolated or partitioned caches, or multiple branch
predictors.

Additionally, hardware might expose a “slow but secure”
mode that includes features like fixed-latency floating point
operations, no cache prefetching, and no branch prediction.
Use of such a hardware mode would likely be detectable by
an adversary and the performance penalty would likely be
severe enough to motivate developers to minimize its use.
However, bear in mind that there are significant performance
costs to current software remediation for side channel attacks
(e.g., KPTI [28]).

Restricting access to time. To extract information from
timing side channels the attacker must learn the time
at which events occur, or the time between events. In-
tuitively, denying the attacker exact information about
when an event occurred could prevent or mitigate leaks.
The problem is that modern computer platforms have a
large variety of resources that can help reconstruct tim-
ing: high-precision, user-level CPU counters (e.g., rdtsc
on Intel processors), explicit system-level resources like OS
timekeeping APIs, and implicit resources like file-system
timestamps and networked communication. For example,
to make it harder for Javascript code to exploit Spectre
and Meltdown, Chrome and other web browsers have ad-
dressed explicit and implicit timing sources. They decreased

HotOS ’19, May 13-15, 2019, Bertinoro, Italy

the resolution of performance.now() and they have dis-
abled SharedArrayBuffer which allows a dedicated worker
thread to increment a counter regularly enough to act as a
high-precision time source for another thread [60].

Enforcing principled fuzzing of all time sources can signif-
icantly reduce the channel bandwidth [32]. But such an ap-
proach must be completely comprehensive. Any overlooked
time source negates the value of fuzzing. Adding noise is en-
tirely insufficient. As measurements across a network show,
noise is highly vulnerable to filtering, providing little secu-
rity value [10]. Unfortunately, restricting access to accurate
time sources is a brittle defense.

Software-visible remediation. Security is notorious as a
goal that everyone wants but no one wants to pay for. One
of the heaviest costs for software systems is software-visible
changes. These could be changes to the toolchain such as
compilers or even programmer-visible changes including
programming languages or programming models.

Retpoline [63] is an example of a software-visible change
that prevents Spectre variant 2 (which can be used by user-
level code to steal kernel-level secrets). It performs better
than disabling indirect branch speculation in hardware. How-
ever, it relies on specific microarchitectural details of spec-
ulation, so it is only secure on AMD processors and Intel
Broadwell (and earlier) processors [44].

Cryptographic codes have made algorithmic changes to
eliminate side channels. Code that branches or accesses mem-
ory based on the secret key can end up leaking the key it-
self [6]. Even widely deployed hardware functionality like
floating point operations can be too dangerous to use be-
cause of the timing channels they create [1], although there
is work on a constant time standard [2].

We anticipate this trend will continue, with security-
sensitive code using specialized libraries and possibly
toolchains. Widely deployed cryptography [51] and other
security-sensitive [50] libraries have the explicit goal of being
constant time (execution time is independent of input data).
While this strategy can be effective and reasonably efficient,
it only applies to certain sensitive codes, like cryptographic
codes, that justify the extensive programmer effort.

Algorithms whose memory access patterns and whose
communication patterns are independent of their processing
requirements are more robust to isolation violations [47].
Oblivious algorithms also require toolchain support to make
sure the compiler does not undermine the programmer’s
intent, and they rely on assumptions about the hardware,
e.g., fixed-time floating point operations. Raccoon [54] is an
example of toolchain support, where a compiler transforms
normal program source to equivalent source that appears
to execute all possible program paths. While the cost of
security is still significant, Raccoon reduces slowdowns of
the ORAM-based GhostRider [37] from 195X to 21.8X.

T. Hunt et al.

7 Conclusion

Computer use continues to permeate society, raising the
importance of secure systems. While some recent security
problems have been shocking in their severity, there has also
been significant progress in understanding and efficiently
addressing information leakage via side channels. As we
progress to a world of communicating, protected computa-
tional environments, we should use this understanding to
build systems that are secure, efficient, and robust to partial
failures in security assumptions.

Acknowledgments

We thank our shepherd Brad Karp and we thank Hovav
Shacham for help with references. This research was sup-
ported in part by NSF grant CNS-1618563.

Isolation and Beyond: Challenges for System Security

References

(1]

—
[e)
—

—
A=)
—

(10]

(11]

[12

—

[13]

(14]

(15]

Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala,
Sorin Lerner, and Hovav Shacham. On subnormal floating point and
abnormal timing. In Proceedings of the 2015 IEEE Symposium on Security
and Privacy, SP 15, pages 623-639, Washington, DC, USA, 2015. IEEE
Computer Society.

Marc Andrysco, Andres Noétzli, Fraser Brown, Ranjit Jhala, and Deian
Stefan. Towards verified, constant-time floating point operations.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, pages 1369-1382, New York, NY,
USA, 2018. ACM.

Arm Limited. Introducing Arm TrustZone. https://developer.arm.com/
technologies/trustzone. (Accessed: January 2019).

Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L. Stillwell, David Goltzsche, David Eyers, Riidiger
Kapitza, Peter Pietzuch, and Christof Fetzer. Scone: Secure Linux
containers with Intel SGX. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, OSDI'16, pages 689—
703, Berkeley, CA, USA, 2016. USENIX Association.

Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. Predictive
black-box mitigation of timing channels. In Proceedings of the 17th
ACM Conference on Computer and Communications Security, CCS ’10,
pages 297-307, New York, NY, USA, 2010. ACM.

Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David
Pichardie. System-level non-interference for constant-time cryptogra-
phy. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’14, pages 1267-1279, New York,
NY, USA, 2014. ACM.

Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding ap-
plications from an untrusted cloud with haven. In Proceedings of the
11th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI'14, pages 267-283, Berkeley, CA, USA, 2014. USENIX
Association.

Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating malicious
device drivers in Linux. In Proceedings of the 2010 USENIX Conference
on USENIX Annual Technical Conference, USENIXATC’10, pages 9-9,
Berkeley, CA, USA, 2010. USENIX Association.

Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In USENIX Security
Symposium, 2016.

Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi. Opportunities
and limits of remote timing attacks. ACM Transactions on Information
and System Security, 12(3):17:1-17:29, January 2009.

Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh,
and Dmitry Ponomarev. Non-monopolizable caches: Low-complexity
mitigation of cache side channel attacks. ACM Trans. Archit. Code
Optim., 8(4):35:1-35:21, January 2012.

Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Un-
derstanding and mitigating covert channels through branch predictors.
ACM Trans. Archit. Code Optim., 13(1):10:1-10:23, March 2016.
Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. Komodo: Using verification to disentangle secure-enclave
hardware from software. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP *17, pages 287-305, New York, NY,
USA, 2017. ACM.

Andrew Ferraiuolo, Mark Zhao, Andrew C. Myers, and G. Edward Suh.
HyperFlow: A processor architecture for nonmalleable, timing-safe
information flow security. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’18, pages
1583-1600, New York, NY, USA, 2018. ACM.

O. Goldreich. Towards a theory of software protection and simulation
by oblivious RAMs. In Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing, STOC ’87, pages 182-194, New

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

HotOS 19, May 13-15, 2019, Bertinoro, Italy

York, NY, USA, 1987. ACM.

Munawar Hafiz, Ralph Johnson, and Raja Afandi. The security ar-
chitecture of qmail. In Proceedings of the 11th Conference on Patterns
Language of Programming (PLoP’04). Citeseer, 2004.

Ari B. Hayes, Lingda Li, Mohammad Hedayati, Jiahuan He, Eddy Z.
Zhang, and Kai Shen. GPU taint tracking. In Proceedings of the 2017
USENIX Conference on Usenix Annual Technical Conference, USENIX
ATC 17, pages 209-220, Berkeley, CA, USA, 2017. USENIX Association.
Casen Hunger, Mikhail Kazdagli, Ankit Singh Rawat, Alexandros G.
Dimakis, Sriram Vishwanath, and Mohit Tiwari. Understanding
contention-based channels and using them for defense. In HPCA,
pages 639-650. IEEE Computer Society, 2015.

Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett
Witchel. Ryoan: A distributed sandbox for untrusted computation on
secret data. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, OSDI’16, pages 533-549, Berkeley,
CA, USA, 2016. USENIX Association.

Zahra Jafargholi, Kasper Green Larsen, and Mark Simkin. Optimal
oblivious priority queues and offline oblivious RAM. Cryptology ePrint
Archive, Report 2017/452, 2019. https://eprint.iacr.org/2019/237.pdf.
Aamer Jaleel, Eric Borch, Malini Bhandaru, Simon C. Steely Jr., and
Joel Emer. Achieving non-inclusive cache performance with inclusive
caches: Temporal locality aware (TLA) cache management policies. In
Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO ’43, pages 151-162, Washington, DC,
USA, 2010. IEEE Computer Society.

Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer.
High performance cache replacement using re-reference interval pre-
diction (rrip). In Proceedings of the 37th Annual International Sympo-
sium on Computer Architecture, ISCA ’10, pages 60-71, New York, NY,
USA, 2010. ACM.

Insu Jang, Adrian Tang, Taehoo Kim, Simha Sethumadhavan, and
Jaehyuk Huh. Heterogeneous Isolated Execution for Commodity
GPUs. In ASPLOS, 2019.

Zhen Hang Jiang, Yunsi Fei, and David Kaeli. A complete key recovery
timing attack on a GPU. In IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2016.

Zhen Hang Jiang, Yunsi Fei, and David Kaeli. A novel side-channel
timing attack on GPUs. In Proceedings of the on Great Lakes Symposium
on VLSI 2017, GLSVLSI ’17, pages 167-172, New York, NY, USA, 2017.
ACM.

Gurunath Kadam, Danfeng Zhang, and Adwait Jog. Rcoal: Mitigating
GPU timing attack via subwarp-based randomized coalescing tech-
niques. In IEEE International Symposium on High Performance Com-
puter Architecture, HPCA 2018, Vienna, Austria, February 24-28, 2018,
pages 156-167, 2018.

Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer
Jaleel. A high-resolution side-channel attack on last-level cache. In
Proceedings of the 53rd Annual Design Automation Conference, DAC
’16, pages 72:1-72:6, New York, NY, USA, 2016. ACM.

Kernel page-table isolation. https://en.wikipedia.org/wiki/Kernel_
page-table_isolation. (Accessed: January 2019).

Yonggon Kim, Ohmin Kwon, Jinsoo Jang, Seongwook Jin, Hyeong-
boo Baek, Brent Byunghoon Kang, and Hyunsoo Yoon. On-demand
bootstrapping mechanism for isolated cryptographic operations on
commodity accelerators. 62, 07 2016.

Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre attacks: Exploiting speculative execution.
CoRR, January 2018.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Proceedings of the 19th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’99, pages 388-397,
Berlin, Heidelberg, 1999. Springer-Verlag.

https://developer.arm.com/technologies/trustzone
https://developer.arm.com/technologies/trustzone
https://eprint.iacr.org/2019/237.pdf
https://en.wikipedia.org/wiki/Kernel_page-table_isolation
https://en.wikipedia.org/wiki/Kernel_page-table_isolation

HotOS ’19, May 13-15, 2019, Bertinoro, Italy

(32]

(33]

(34]

(35]

(36

—

(37]

(38]

(39]

[40]

[41]

(42]

[43]

(45

[

[46]

David Kohlbrenner and Hovav Shacham. Trusted browsers for uncer-
tain times. In Proceedings of the 25th USENIX Conference on Security
Symposium, SEC’16, pages 463-480, Berkeley, CA, USA, 2016. USENIX
Association.

Jingfei Kong, Onur Aciigmez, Jean-Pierre Seifert, and Huiyang Zhou.
Hardware-software integrated approaches to defend against software
cache-based side channel attacks. In HPCA, pages 393-404. IEEE
Computer Society, 2009.

Dayeol Lee, David Kohlbrenner, Kevin Cheang, Cameron Rasmussen,
Kevin Laeufer, Ian Fang, Akash Khosla an Chia-Che Tsai, Sanjit Se-
shia, Dawn Song, and Krste Asanovic. Keystone enclave: An open-
source secure enclave for RISC-V. https://keystone-enclave.org/files/
keystone-risc-v-summit.pdf, 2018. (Accessed: April 2019).

Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim. Stealing
webpages rendered on your browser by exploiting GPU vulnerabilities.
In Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP
’14, pages 19-33, Washington, DC, USA, 2014. IEEE Computer Society.
Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Dkaniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown. CoRR, January 2018.

Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari,
and Elaine Shi. Ghostrider: A hardware-software system for memory
trace oblivious computation. In Proceedings of the Twentieth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 15, pages 87-101, New York, NY, USA,
2015. ACM.

Fangfei Liu and Ruby B. Lee. Random fill cache architecture. In
Proceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-47, pages 203-215, Washington, DC, USA,
2014. IEEE Computer Society.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In Proceedings of the
2015 IEEE Symposium on Security and Privacy, SP ’15, pages 605-622,
Washington, DC, USA, 2015. IEEE Computer Society.

Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste
Asanovic, John Kubiatowicz, and Dawn Song. PHANTOM: Practical
oblivious computation in a secure processor. In Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security,
CCS ’13, pages 311-324, New York, NY, USA, 2013. ACM.

Robert Martin, John Demme, and Simha Sethumadhavan. Timewarp:
Rethinking timekeeping and performance monitoring mechanisms to
mitigate side-channel attacks. In ISCA, pages 118-129. IEEE Computer
Society, 2012.

Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Christian
Miiller, Lothar Thiele, and Srdjan Capkun. Thermal covert channels
on multi-core platforms. In USENIX Security Symposium, 2015.
Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Romer.
Hello from the other side: SSH over robust cache covert channels in
the cloud. In NDSS. The Internet Society, 2017.

Mehmet_lyigun. Mitigating spectre with
retpoline on windows. https://techcommunity.
microsoft.com/t5/Windows-Kernel-Internals/
Mitigating-Spectre-variant-2-with-Retpoline-on-Windows/ba-p/
295618, 2018. (Accessed: April 2019).

Hoda Naghibijouybari, Khaled N. Khasawneh, and Nael Abu-Ghazaleh.
Constructing and characterizing covert channels on GPGPUs. In
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2017.

Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-
Ghazaleh. Rendered insecure: GPU side channel attacks are practical.
In ACM Conference on Computer and Communications Security (CCS),
2018.

variant 2

[47]

[48]

[49]

[50]
[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

T. Hunt et al.

Olga Ohrimenko, Felix Schuster, Cédric Fournet, Sebastian Nowozin
Aastha Mehta, Kapil Vaswani, and Manuel Costa. Oblivious multi-
party machine learning on trusted processors. In USENIX Security
Symposium, 2016.

Lena E. Olson, Jason Power, Mark D. Hill, and David A. Wood. Border
control: Sandboxing accelerators. In Proceedings of the 48th Interna-
tional Symposium on Microarchitecture, MICRO-48, pages 470-481,
New York, NY, USA, 2015. ACM.

Roberto Di Pietro, Flavio Lombardi, and Antonio Villani. CUDA leaks:
A detailed hack for CUDA and a (partial) fix. ACM Trans. Embed.
Comput. Syst., 15(1):15:1-15:25, January 2016.

Thomas Pornin. Constant-time toolkit. https://github.com/pornin/
CTTK. (Accessed: January 17, 2019).

Thomas Pornin. Why constant-time crypto? https://www.bearssl.org/
constanttime.html. (Accessed: January 17, 2019).

Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privi-
lege escalation. In USENIX Security Symposium, 2003.

Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache parti-
tioning: A low-overhead, high-performance, runtime mechanism to
partition shared caches. In MICRO, pages 423-432. IEEE Computer
Society, 2006.

Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital
side-channels through obfuscated execution. In Proceedings of the 24th
USENIX Conference on Security Symposium, SEC’15, pages 431-446,
Berkeley, CA, USA, 2015. USENIX Association.

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Sav-
age. Hey, you, get off of my cloud: exploring information leakage
in third-party compute clouds. In ACM Conference on Computer and
Communications Security (CCS), 2009.

Jerome H. Saltzer and Michael D. Schroeder. The protection of infor-
mation in computer systems. In Proceedings of the IEEE, volume 63,
1975.

Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis,
Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3:
Trustworthy data analytics in the cloud using SGX. In Proceedings of
the IEEE Symposium on Security and Privacy, 2015.

Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Beauty and the
burst: Remote identification of encrypted video streams. In USENIX
Security Symposium, 2017.

Ali Shafiee, Akhila Gundu, Manjunath Shevgoor, Rajeev Balasubramo-
nian, and Mohit Tiwari. Avoiding information leakage in the memory
controller with fixed service policies. In MICRO, pages 89-101. ACM,
2015.

Surma. Meltdown/spectre. https://developers.google.com/web/
updates/2018/02/meltdown-spectre. (Accessed: April 2019).

Titan in depth: Security in plaintext. https://cloud.google.com/blog/
products/gcp/titan-in-depth-security-in-plaintext. (Accessed: April
2019).

Chia-Che Tsai, Donald E. Porter, and Mona Vij. Graphene-sgx: A
practical library os for unmodified applications on sgx. In Proceedings
of the 2017 USENIX Conference on Usenix Annual Technical Conference,
USENIX ATC °17, pages 645-658, Berkeley, CA, USA, 2017. USENIX
Association.

Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. https://support.google.com/faqs/answer/7625886.
(Accessed: April 2019).

Giorgos Vasiliadis, Elias Athanasopoulos, Michalis Polychronakis, and
Sotiris Ioannidis. PixelVault: Using GPUs for Securing Cryptographic
Operations. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, pages 1131-1142,
New York, NY, USA, 2014. ACM.

Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted
execution environments on GPUs. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2018.

https://keystone-enclave.org/files/keystone-risc-v-summit.pdf
https://keystone-enclave.org/files/keystone-risc-v-summit.pdf
https://techcommunity.microsoft.com/t5/Windows-Kernel-Internals/Mitigating-Spectre-variant-2-with-Retpoline-on-Windows/ba-p/295618
https://techcommunity.microsoft.com/t5/Windows-Kernel-Internals/Mitigating-Spectre-variant-2-with-Retpoline-on-Windows/ba-p/295618
https://techcommunity.microsoft.com/t5/Windows-Kernel-Internals/Mitigating-Spectre-variant-2-with-Retpoline-on-Windows/ba-p/295618
https://techcommunity.microsoft.com/t5/Windows-Kernel-Internals/Mitigating-Spectre-variant-2-with-Retpoline-on-Windows/ba-p/295618
https://github.com/pornin/CTTK
https://github.com/pornin/CTTK
https://www.bearssl.org/constanttime.html
https://www.bearssl.org/constanttime.html
https://developers.google.com/web/updates/2018/02/meltdown-spectre
https://developers.google.com/web/updates/2018/02/meltdown-spectre
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext
https://support.google.com/faqs/answer/7625886

Isolation and Beyond: Challenges for System Security

[66] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T-H. Hubert Chan, Elaine
Shi, Emil Stefanov, and Yan Huang. Oblivious data structures. In ACM
Conference on Computer and Communications Security (CCS), 2014.

[67] Yao Wang, Andrew Ferraiuolo, and G. Edward Suh. Timing channel
protection for a shared memory controller. In HPCA, pages 225-236.
IEEE Computer Society, 2014.

[68] Zhenghong Wang and Ruby B. Lee. Covert and side channels due to

processor architecture. In 22nd Annual Computer Security Applications

Conference (ACSAC 2006), 11-15 December 2006, Miami Beach, Florida,

USA, pages 473-482, 2006.

Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting

software cache-based side channel attacks. In Proceedings of the 34th

Annual International Symposium on Computer Architecture, ISCA *07,

pages 494-505, New York, NY, USA, 2007. ACM.

Zhenghong Wang and Ruby B. Lee. A novel cache architecture with

enhanced performance and security. In Proceedings of the 41st Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 41,

pages 83-93, Washington, DC, USA, 2008. IEEE Computer Society.

Samuel Weiser and Mario Werner. SGXIO: Generic Trusted I/O Path

for Intel SGX. In Proceedings of the Seventh ACM on Conference on Data

and Application Security and Privacy, CODASPY ’17, pages 261-268,

New York, NY, USA, 2017. ACM.

[72] Min Xu, Antonis Papadimitriou, Ariel Feldman, and Andreas Hae-

berlen. Using differential privacy to efficiently mitigate side channels

in distributed analytics. In ACM European Conference in Computer

Systems (EuroSys), 2018.

Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel

attacks: Deterministic side channels for untrusted operating systems.

In Proceedings of the IEEE Symposium on Security and Privacy, 2015.

Fan Yao, Milos Doroslovacki, and Guru Venkataramani. Are coherence

protocol states vulnerable to information leakage? In HPCA, pages

168-179. IEEE Computer Society, 2018.

Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa,

Joseph E. Gonzalez, and Ion Stoica. Opaque: An oblivious and en-

crypted distributed analytics platform. In USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 2017.

Yanqi Zhou, Sameer Wagh, Prateek Mittal, and David Wentzlaff. Cam-

ouflage: Memory traffic shaping to mitigate timing attacks. In HPCA,

pages 337-348. IEEE Computer Society, 2017.

Z.Zhou, V. D. Gligor,]. Newsome, and J. M. McCune. Building verifiable

trusted path on commodity x86 computers. In 2012 IEEE Symposium

on Security and Privacy, pages 616-630, May 2012.

[78] Zhe Zhou, Wenrui Diao, Xiangyu Liu, Zhou Li, Kehuan Zhang, and

Rui Liu. Vulnerable GPU memory management: Towards recovering

raw data from GPU. PoPETs, 2017(2):57-73, 2017.

Zhiting Zhu, Sangman Kim, Yuri Rozhanski, Yige Hu, Emmett Witchel,

and Mark Silberstein. Understanding the security of discrete GPUs.

In Proceedings of the General Purpose GPUs, GPGPU-10, pages 1-11,

New York, NY, USA, 2017. ACM.

(69

—

(70

[t

(71

—

(73

[t

[74

flan)

(75

—

[76

—

(77

—

(79

—

HotOS 19, May 13-15, 2019, Bertinoro, Italy

	Abstract
	1 Introduction
	2 Background and related work
	3 Isolation on the CPU
	4 Isolation on the GPU
	5 Securing communication
	6 Securing future systems
	7 Conclusion
	References

