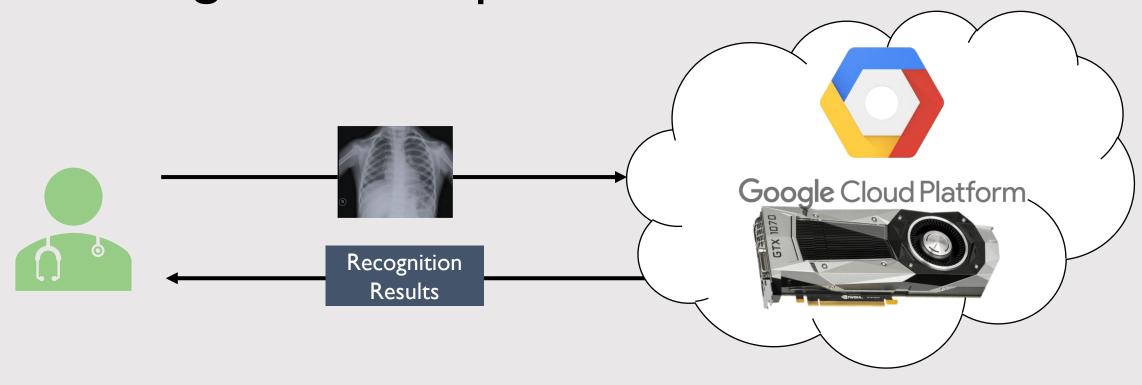
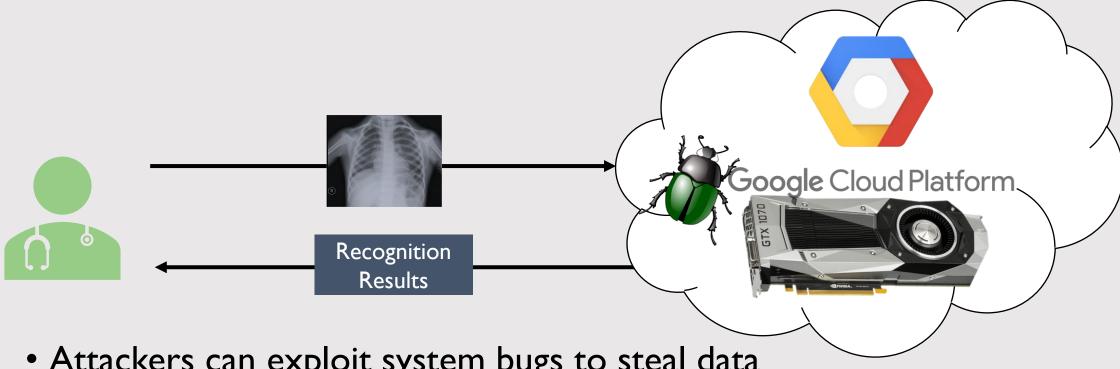


Telekine: Secure Computing with Cloud GPUs

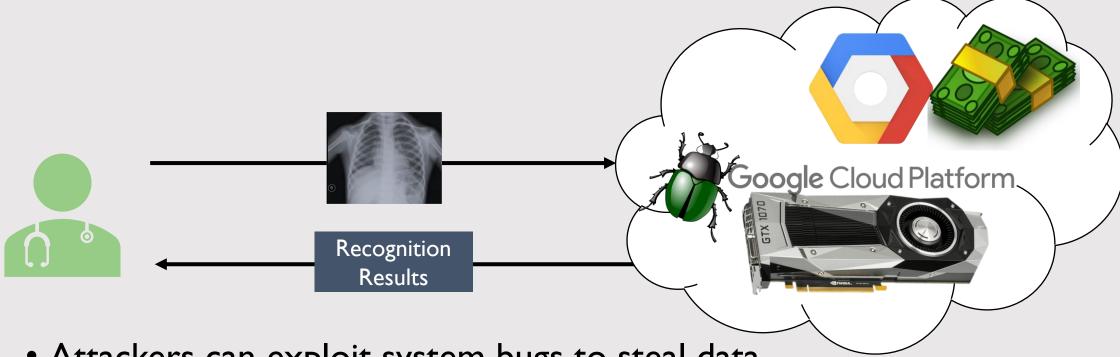
NSDI 2020

Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely, Yige Hu, Christopher J. Rossbach, Emmett Witchel

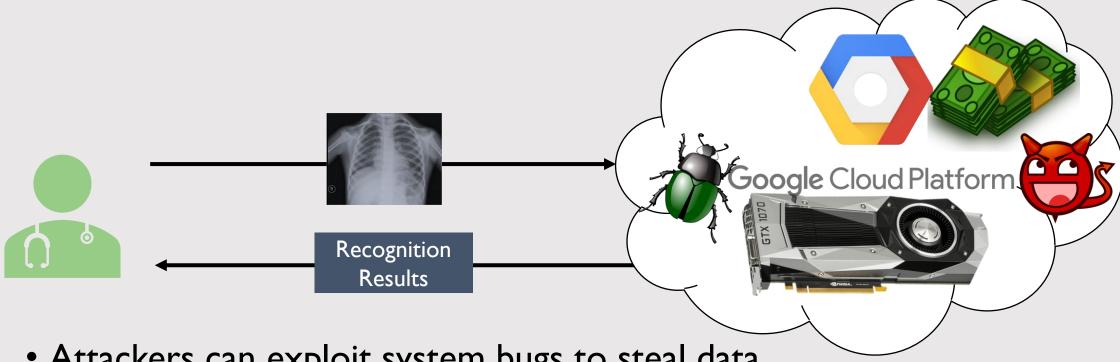




• Attackers can exploit system bugs to steal data

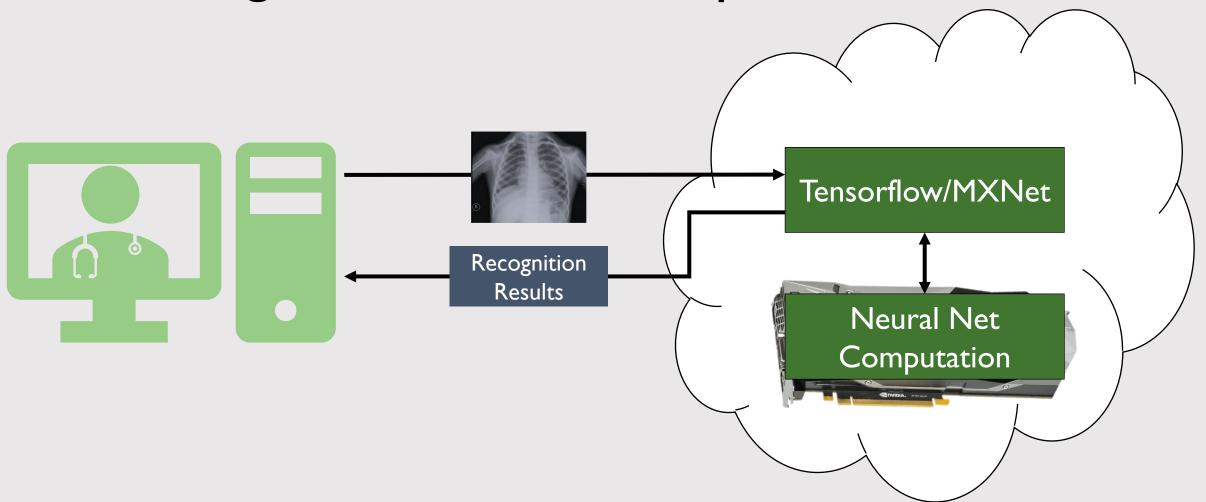


- Attackers can exploit system bugs to steal data
- The cloud provider has their own interests (e.g., monetizing user data)

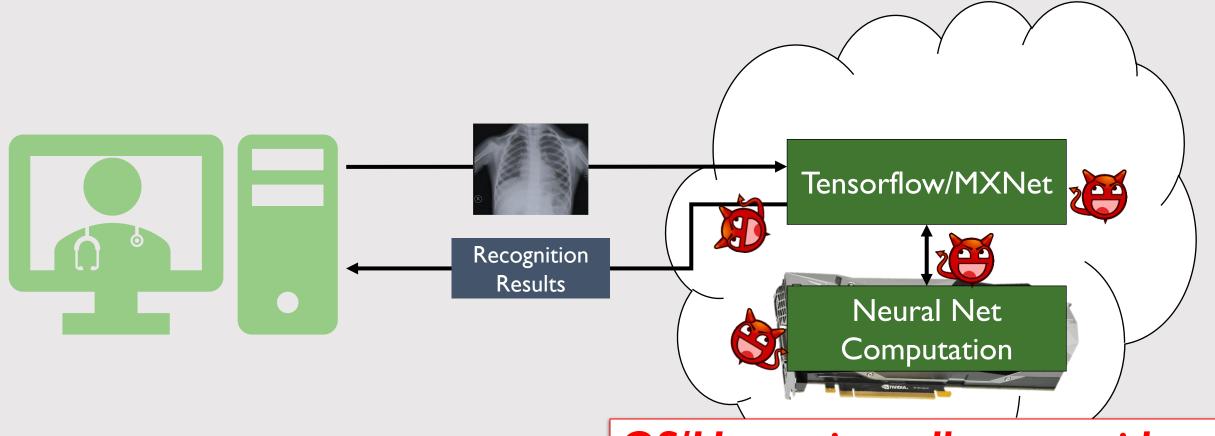


- Attackers can exploit system bugs to steal data
- The cloud provider has their own interests (e.g., monetizing user data)
- Many administrators; some may be malicious

Avoiding trust in the cloud provider is difficult



Avoiding trust in the cloud provider is difficult

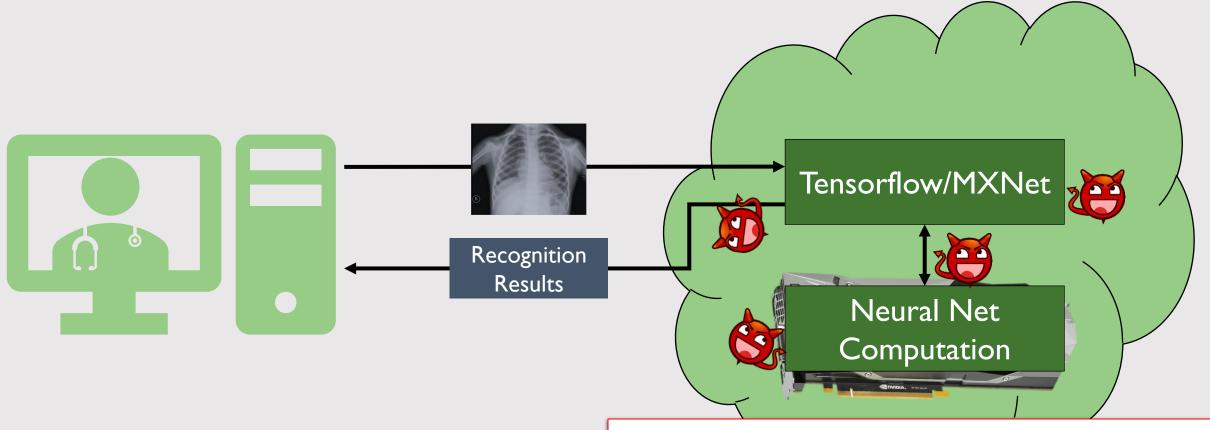


OS/Hypervisor allows provider to see user's secret data

Trusted

Legend:

Avoiding trust in the cloud provider is difficult

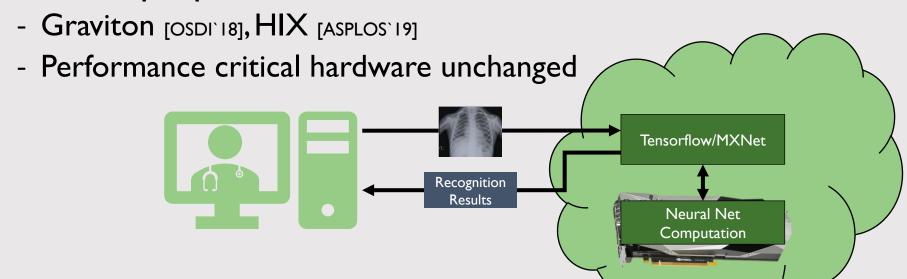


OS/Hypervisor allows provider to see user's secret data

Introduce TEEs to isolate computation

(TEE is Trusted Execution Environment)

- TEEs cannot be bypassed by software
 - Hardware root of trust (e.g., SGX on Intel, TrustZone on ARM)
- Protect communication from the provider with cryptography
- Research proposals exist for GPU TEEs

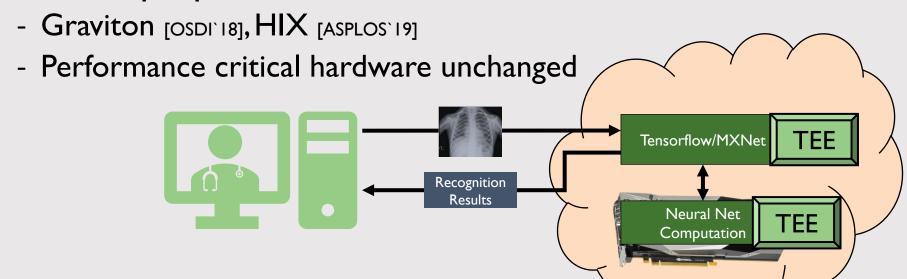


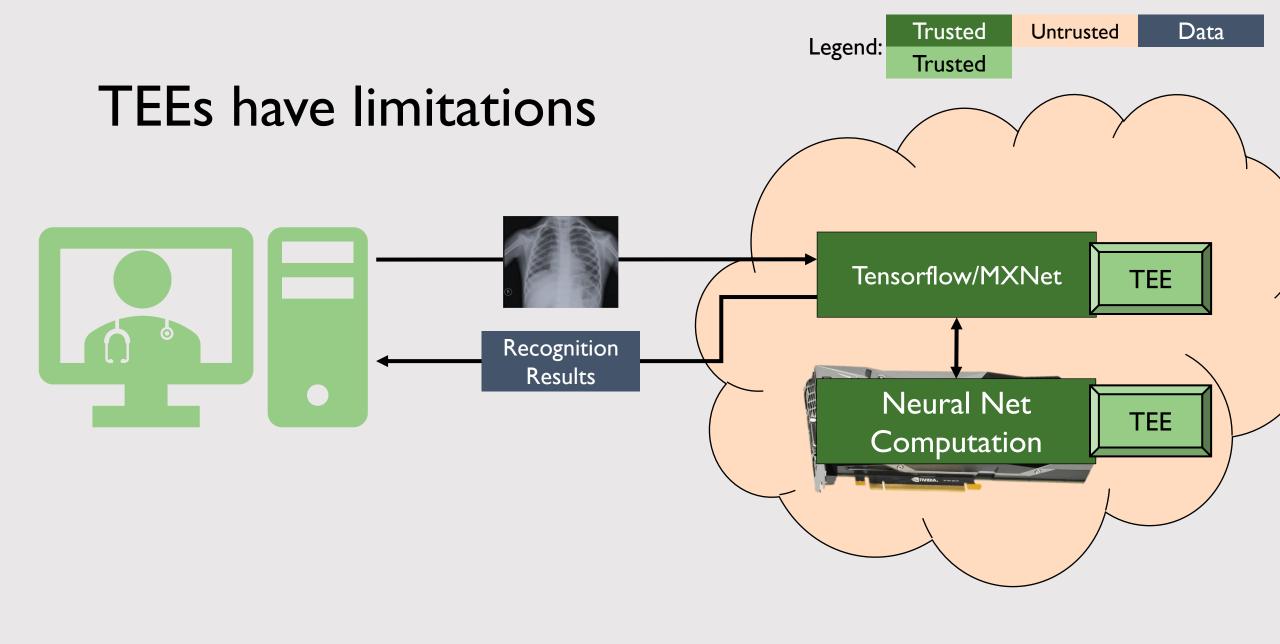
Untrusted

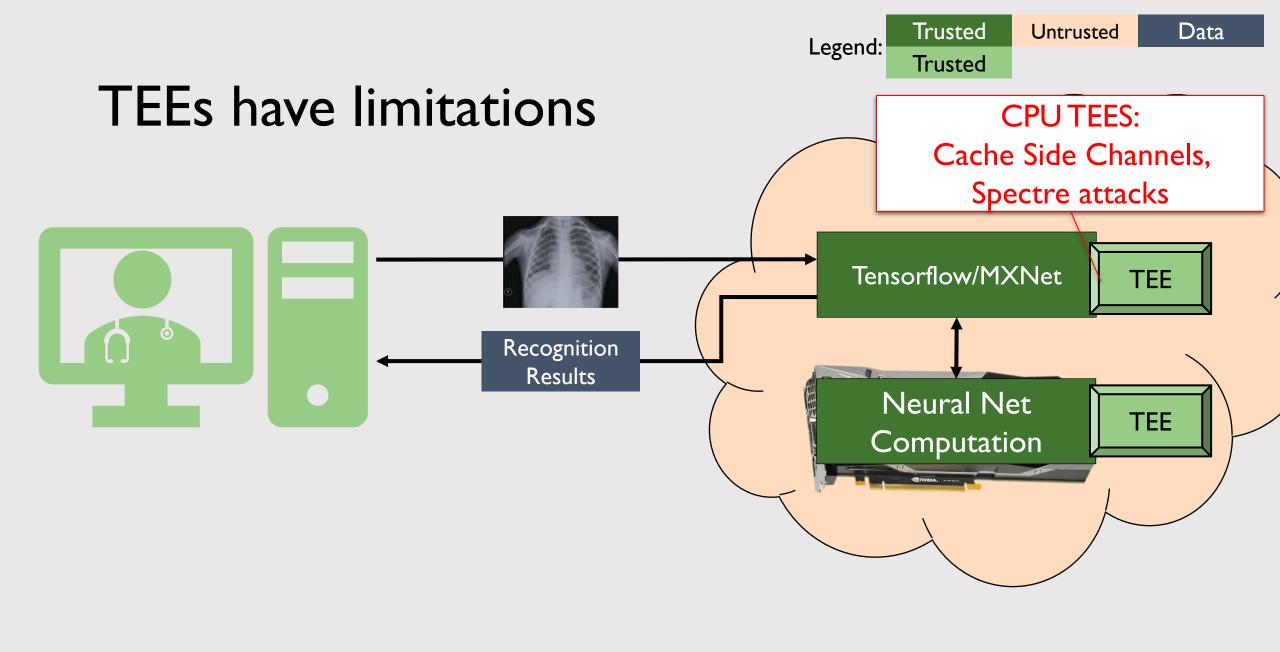
Introduce TEEs to isolate computation

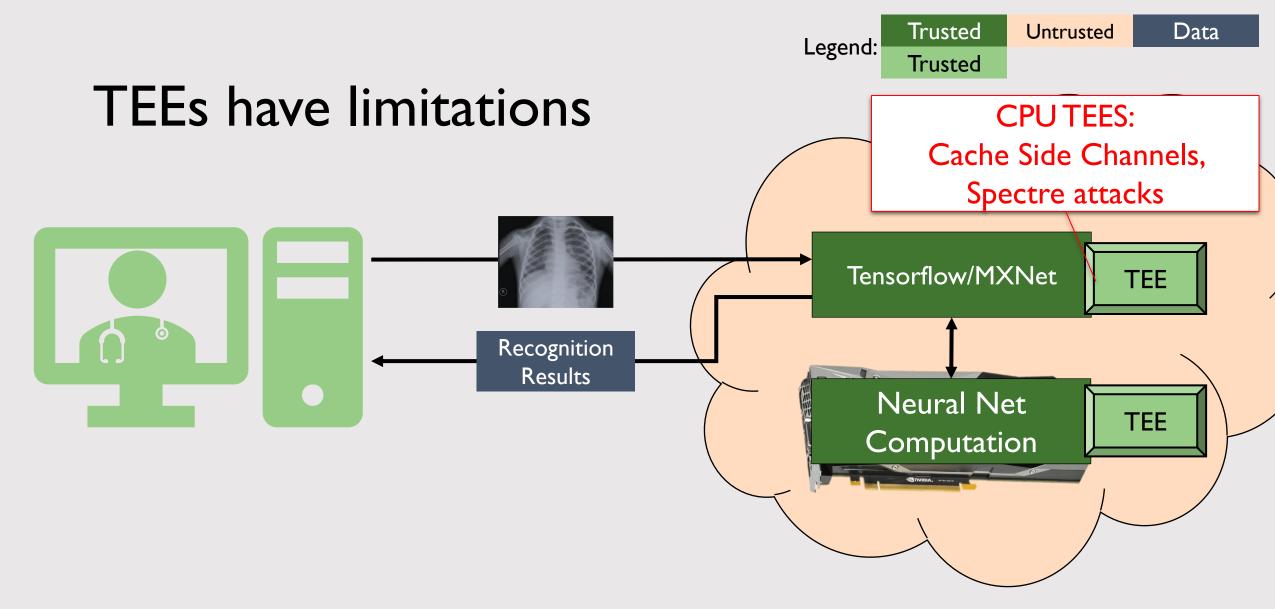
(TEE is Trusted Execution Environment)

- TEEs cannot be bypassed by software
 - Hardware root of trust (e.g., SGX on Intel, TrustZone on ARM)
- Protect communication from the provider with cryptography
- Research proposals exist for GPU TEEs



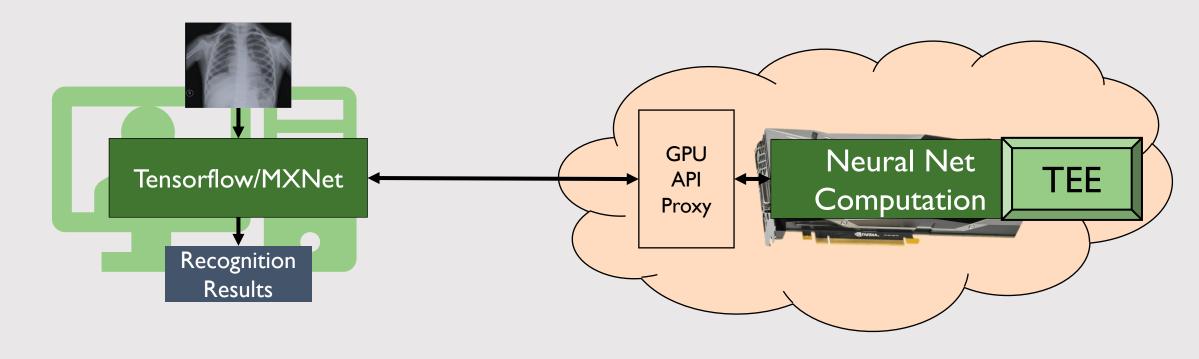






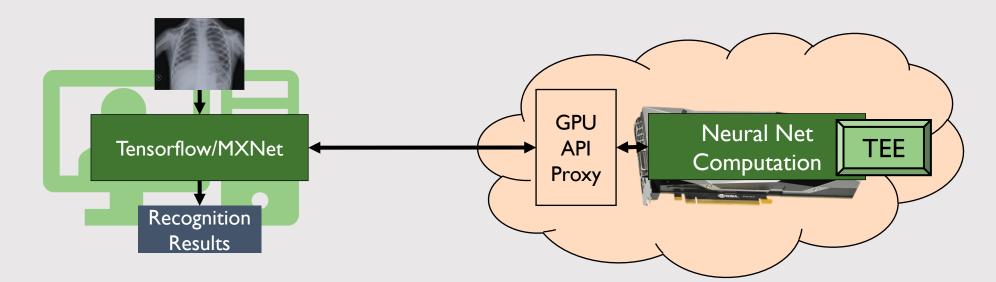
Mitigations require heroic effort, especially for complex software

Telekine addresses TEE limitations

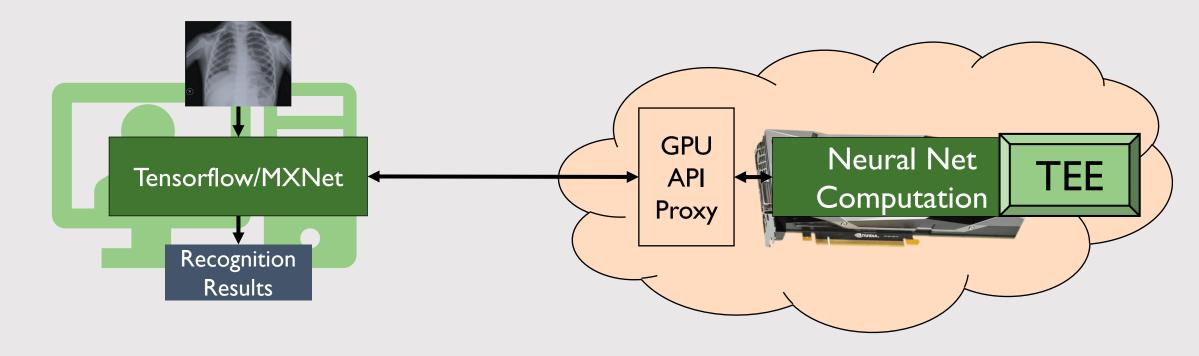


Telekine uses API-remoting instead of CPU TEEs

- Interpose on GPU API calls
- Application does not have to be modified, user does not need GPU
- Turn every API call into an RPC, executed by the remote machine
- Traffic is encrypted/authenticated; the proxy does not need protection



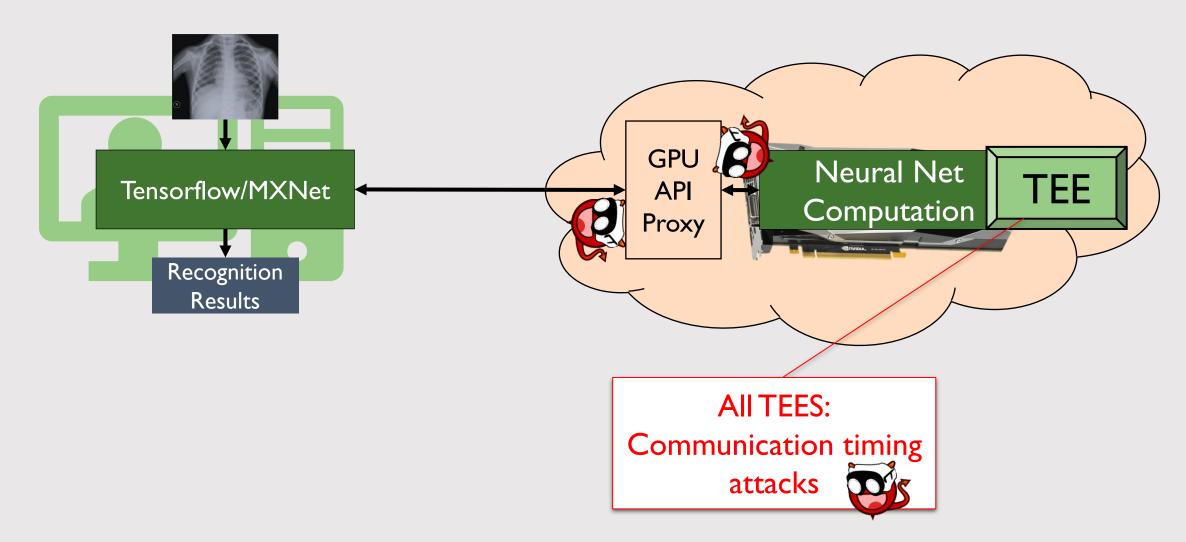
TEEs still have limitations



Trusted

Trusted

TEEs still have limitations



Telekine addresses communication timing channels

• TEEs do not consider communication side channels

- Securing the processor (CPU/GPU) does not secure communication

• GPU programing paradigm features frequent communication

- CPU-to-CPU communication is also vulnerable
- Communication patterns tend to leak timing information
 - E.g., GPU kernel execution time

• Can information be extracted from GPU communication patterns?

How does Telekine remove that information?

What are Telekine's overheads?

- Can information be extracted from GPU communication patterns? Yes, we demonstrate a communication timing attack
- How does Telekine remove that information?

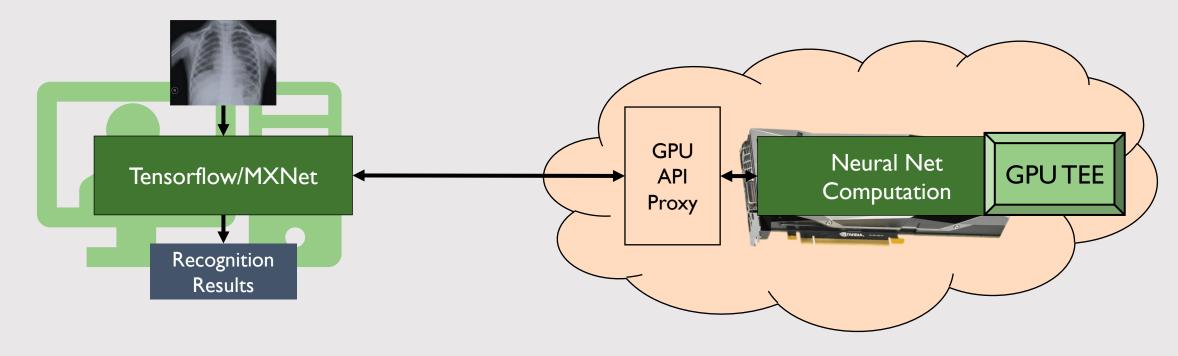
What are Telekine's overheads?

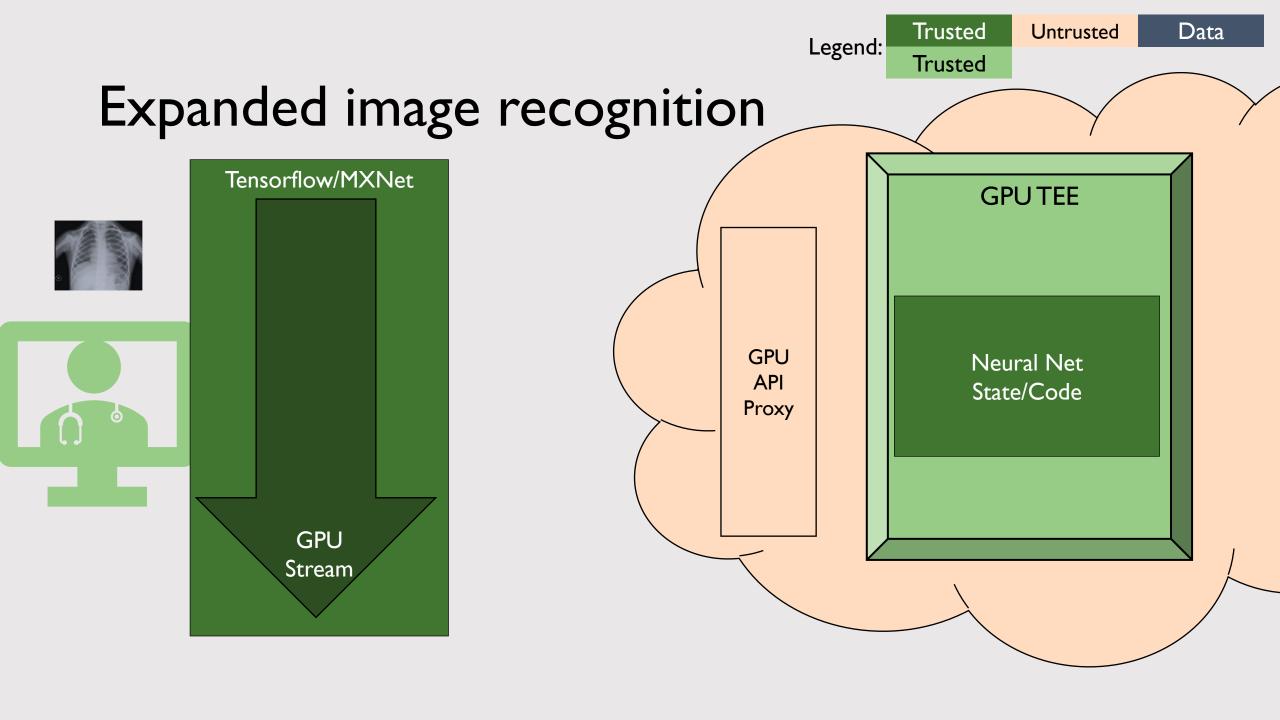
- Can information be extracted from GPU communication patterns? Yes, we demonstrate a communication timing attack
- How does Telekine remove that information?
 Replace GPU streams with new data-oblivious streams
- What are Telekine's overheads?

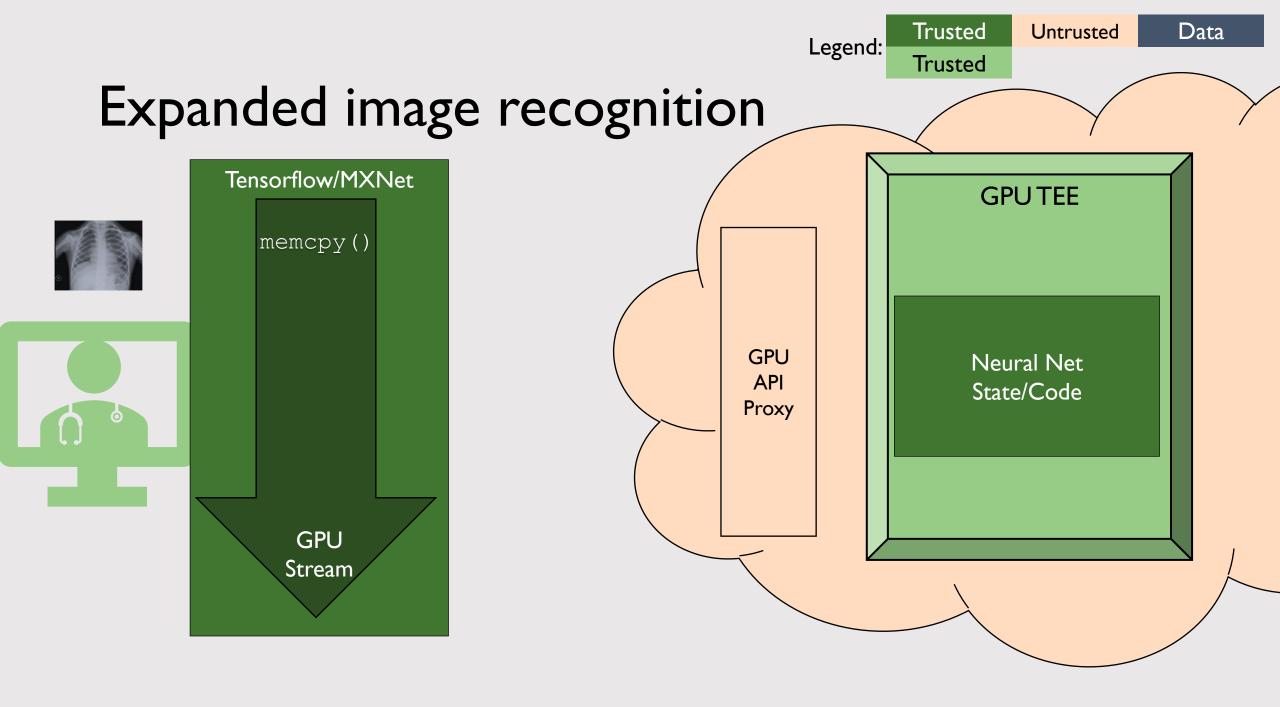
- Can information be extracted from GPU communication patterns? Yes, we demonstrate a communication timing attack
- How does Telekine remove that information?
 Replace GPU streams with new data-oblivious streams
- What are Telekine's overheads?
 - Overheads are reasonable: ~20% for neural network training

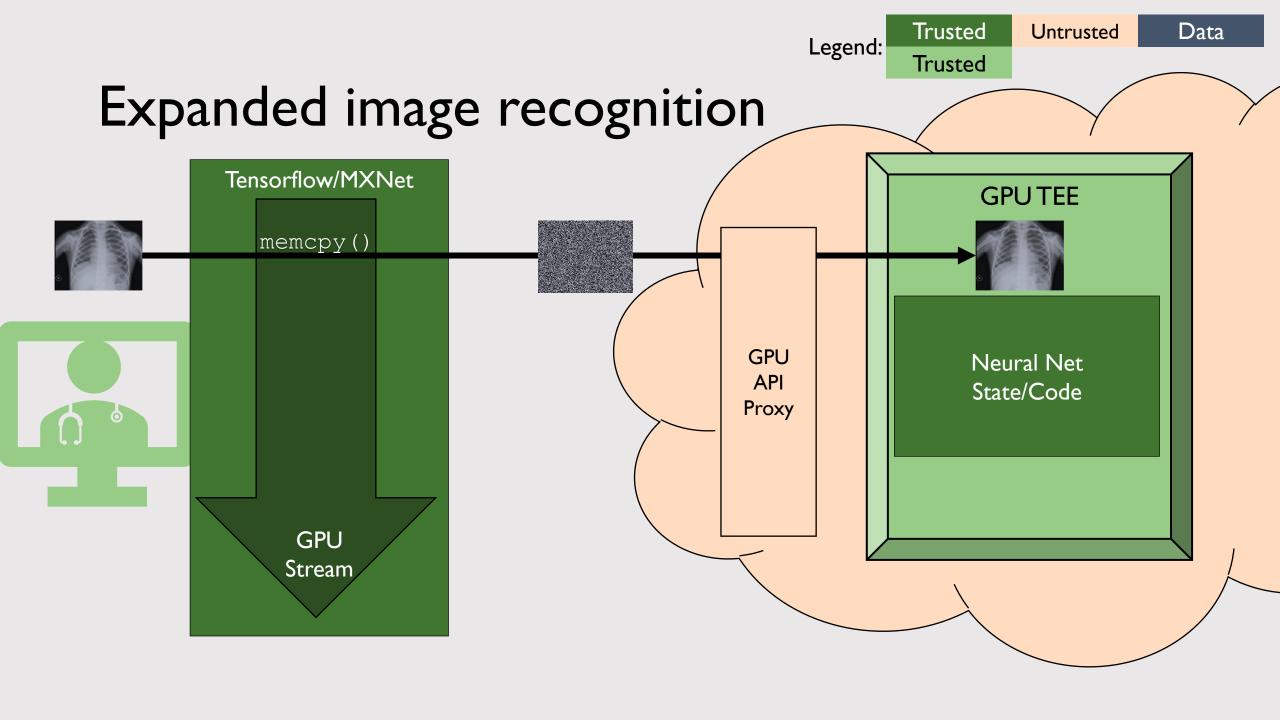
- Can information be extracted from GPU communication patterns? Yes, we demonstrate a communication timing attack
- How does Telekine remove that information?
 Replace GPU streams with new data-oblivious streams
- What are Telekine's overheads?
 - Overheads are reasonable: ~20% for neural network training

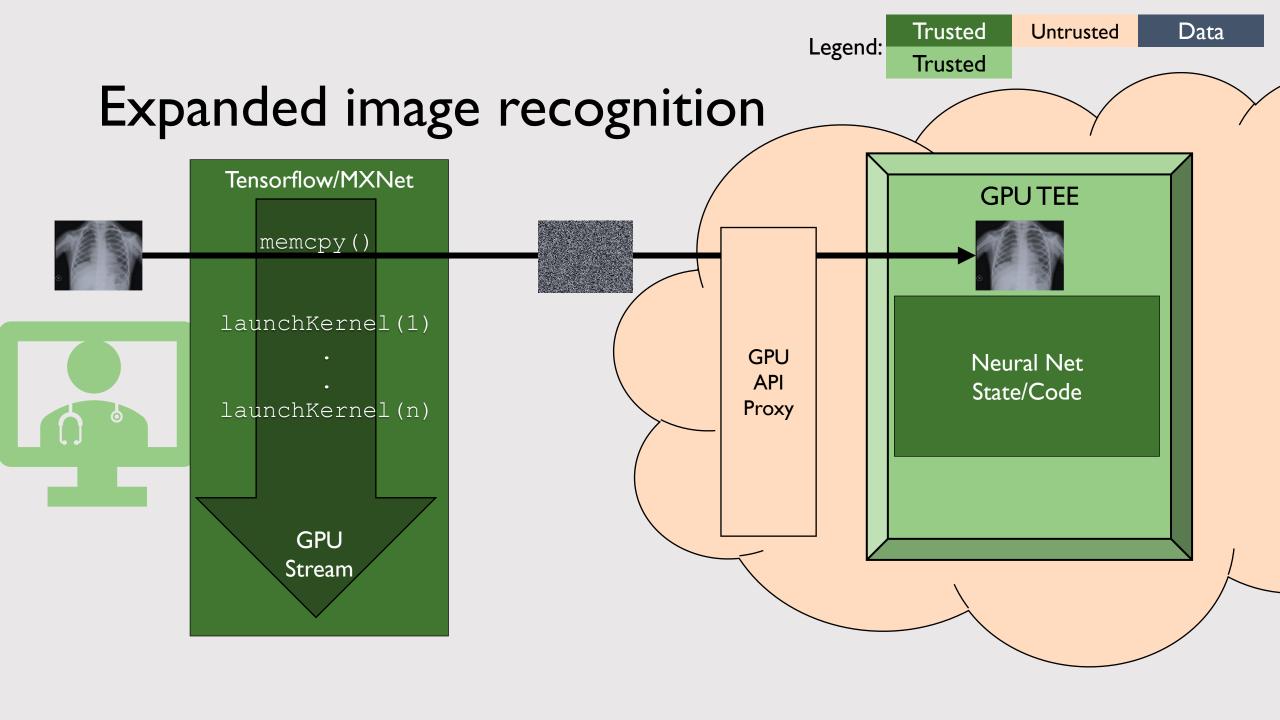
Expanded image recognition

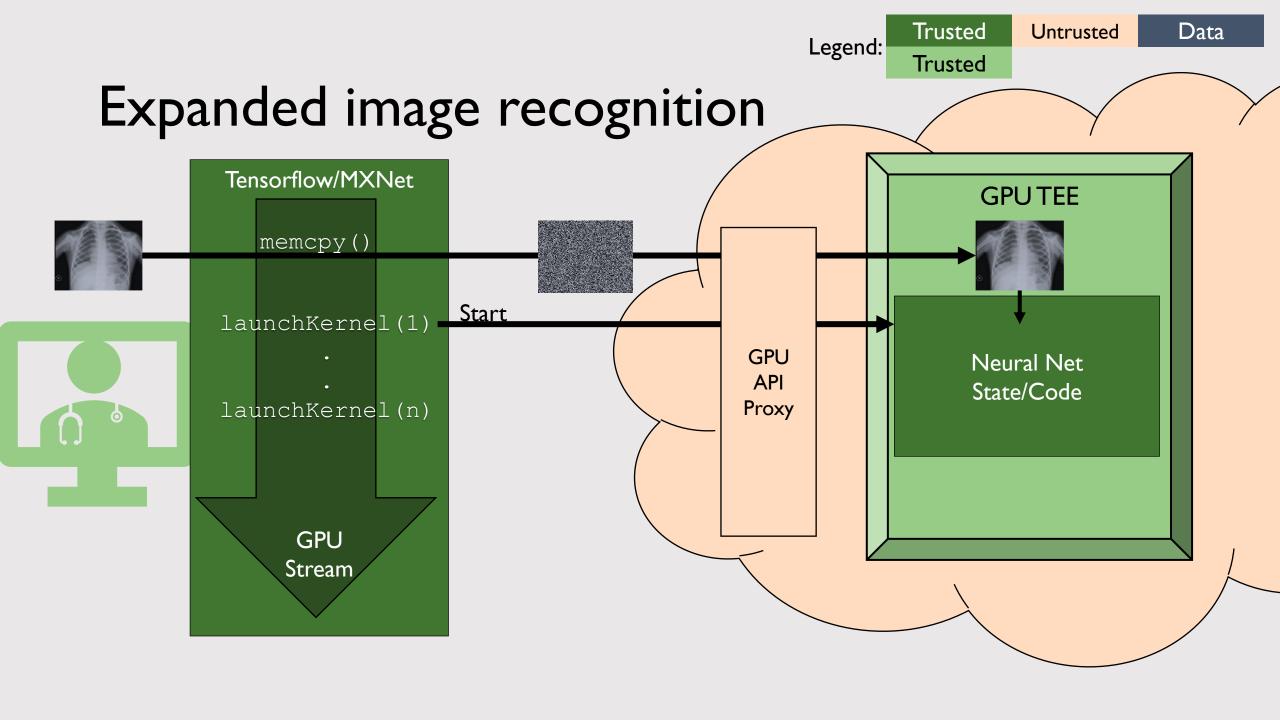


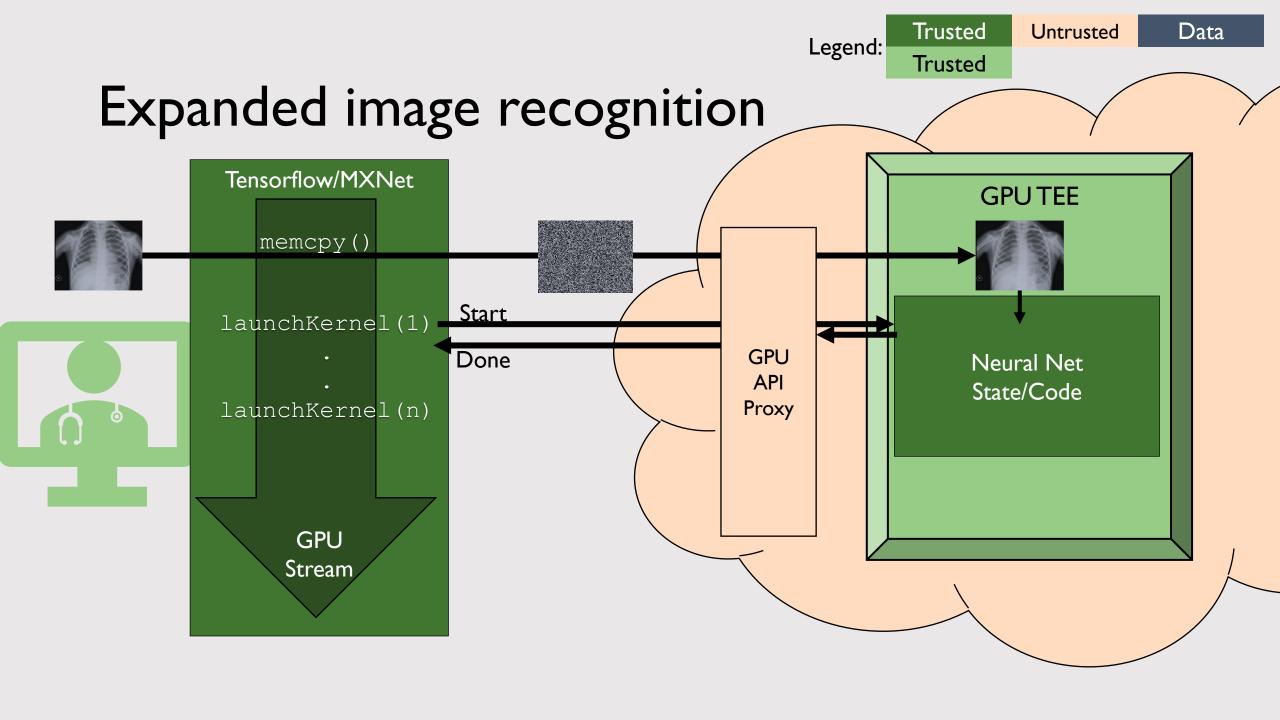


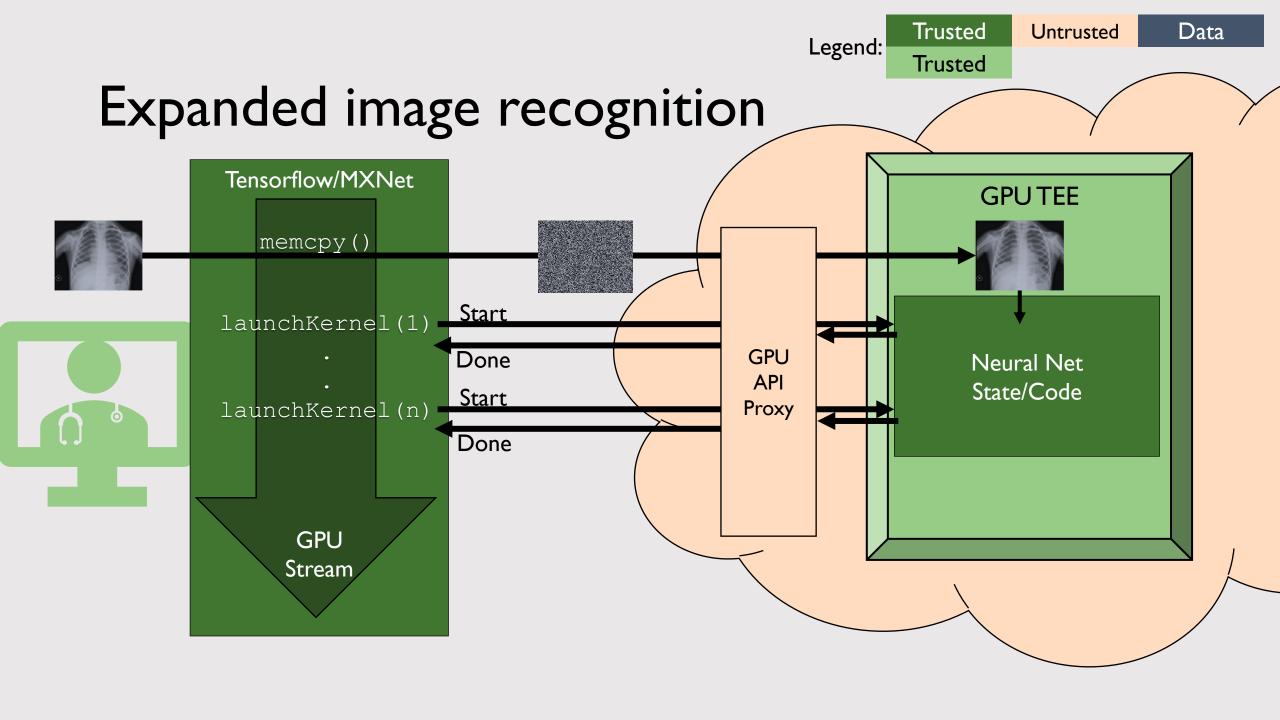


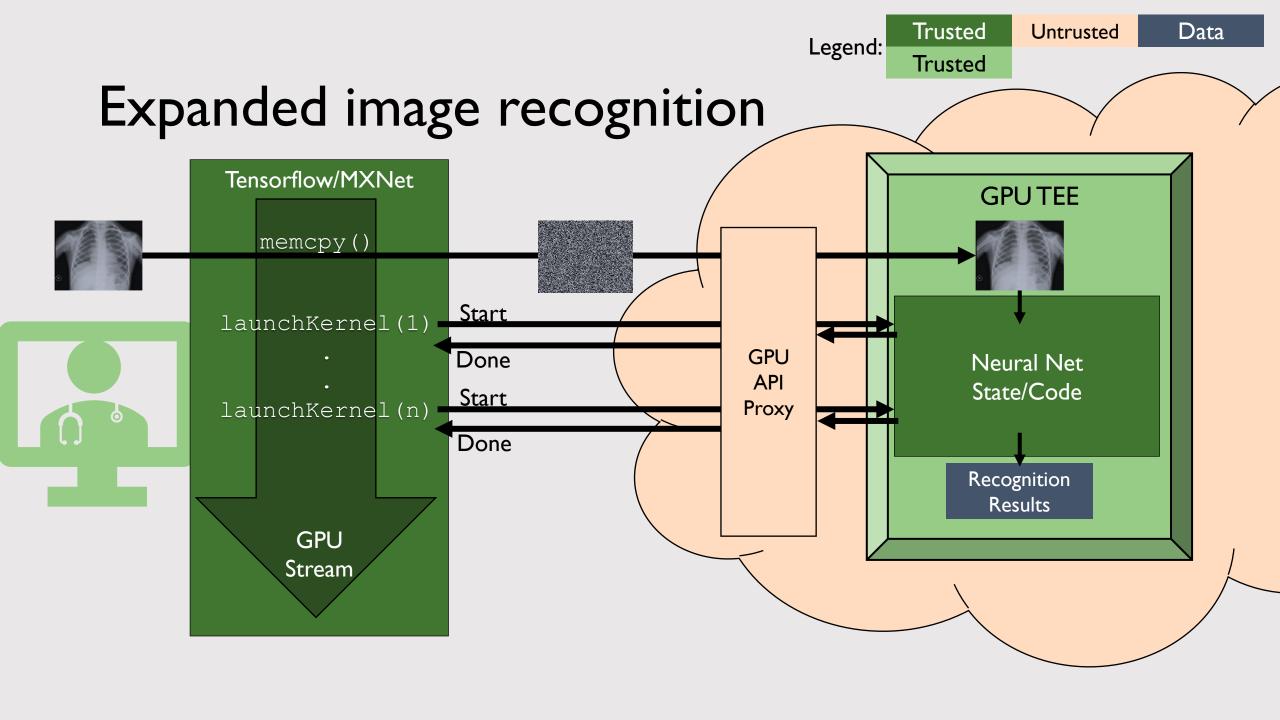


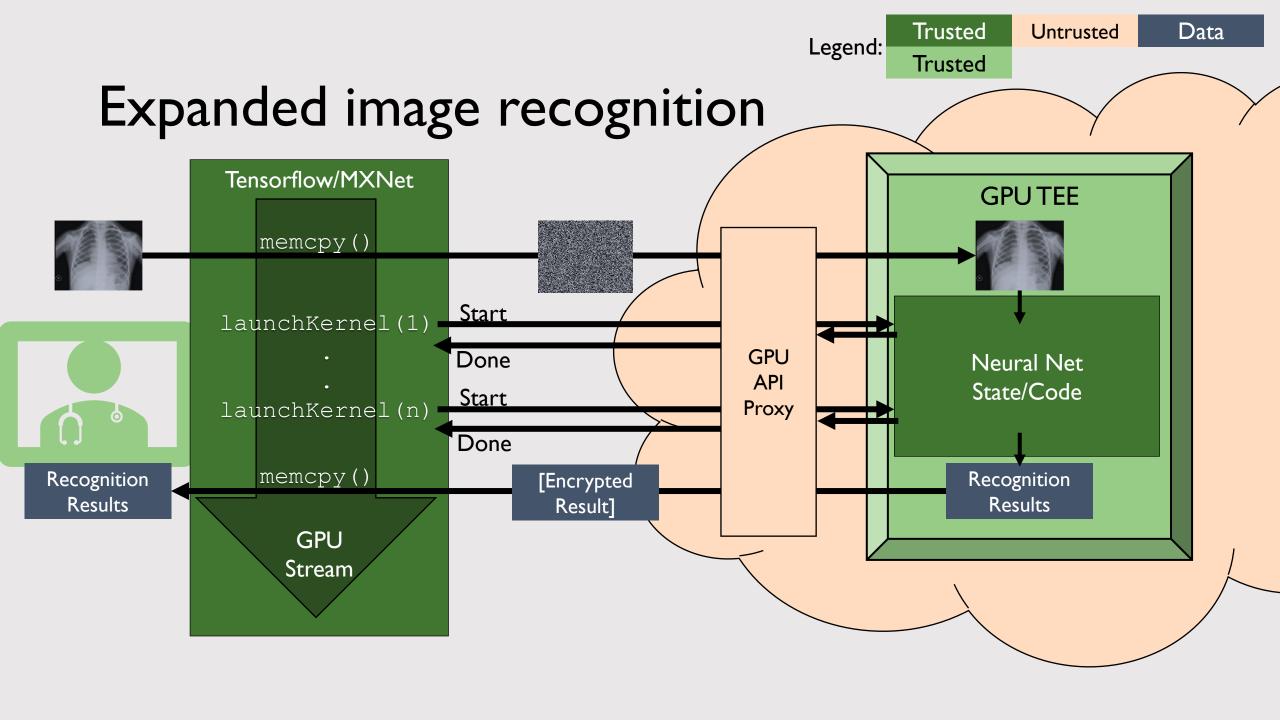


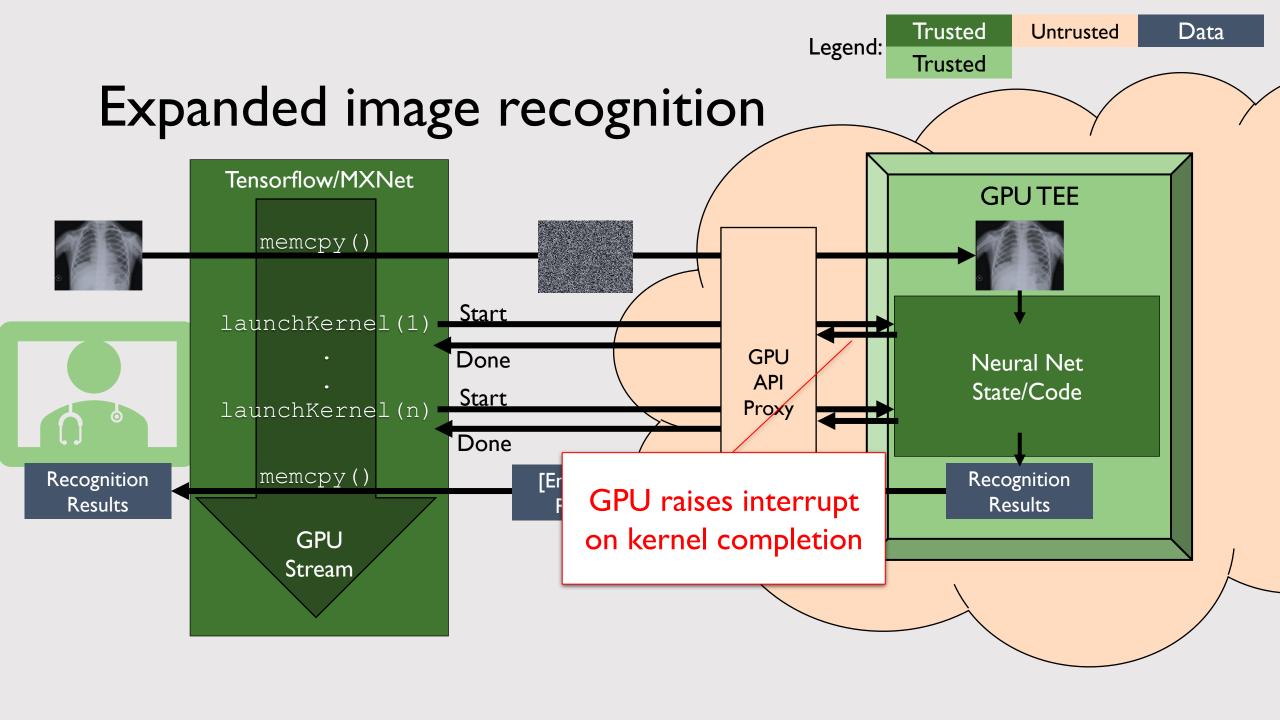


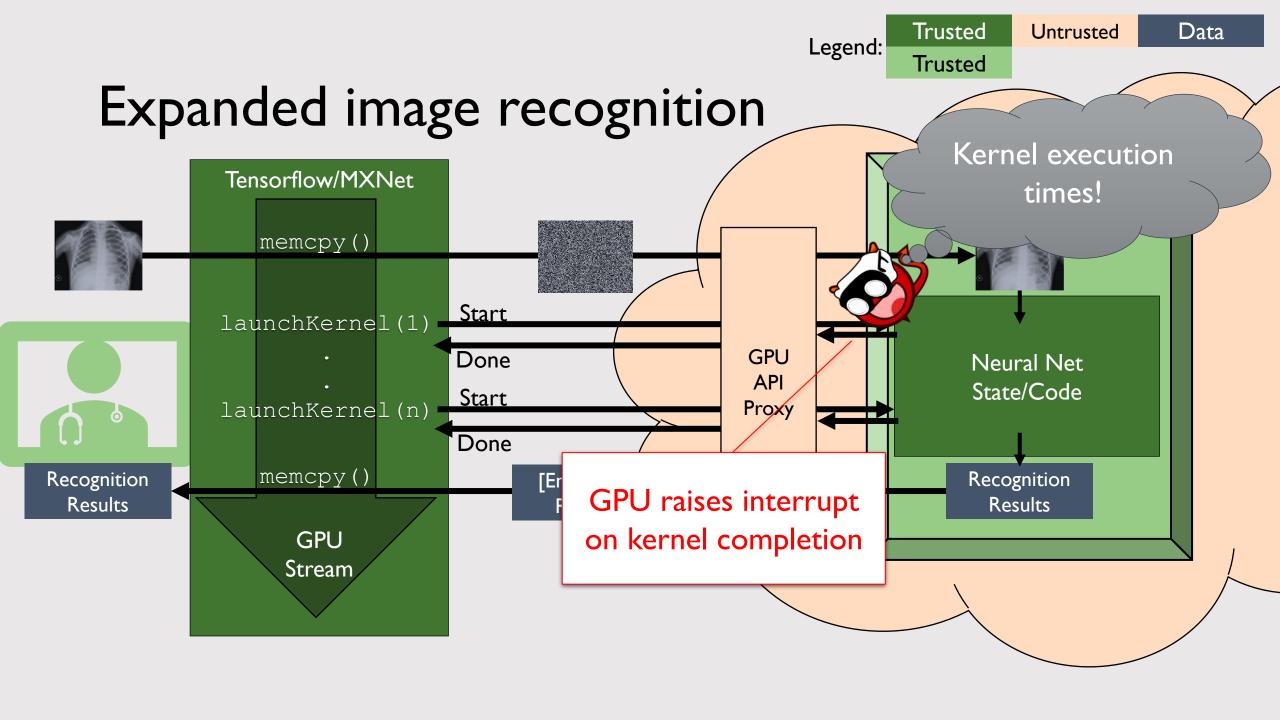




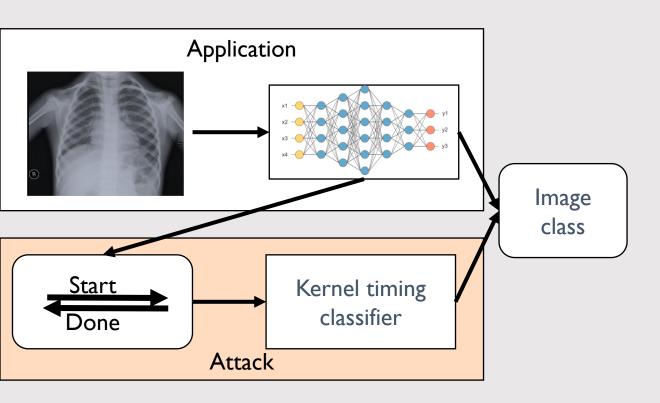


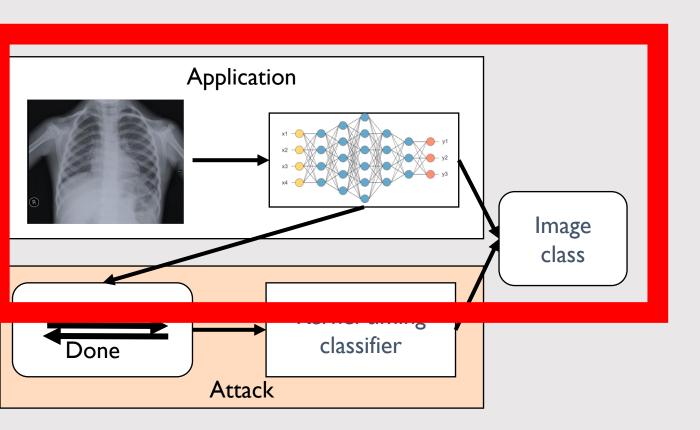


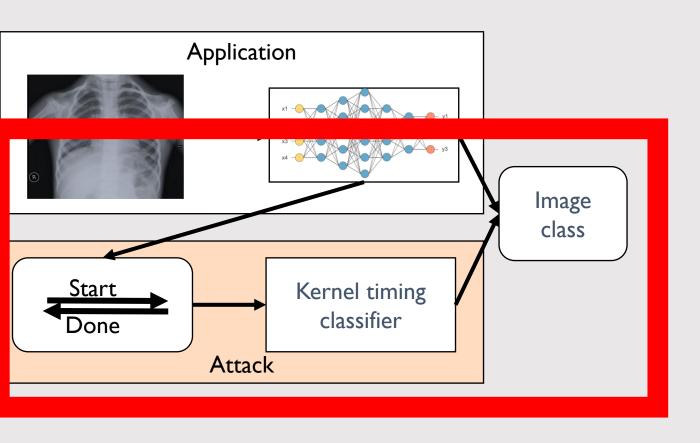


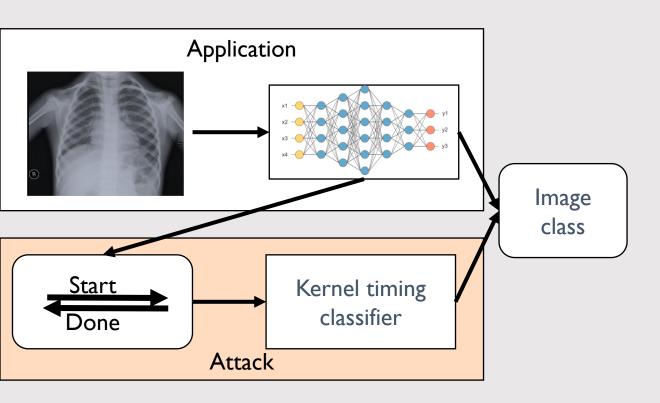


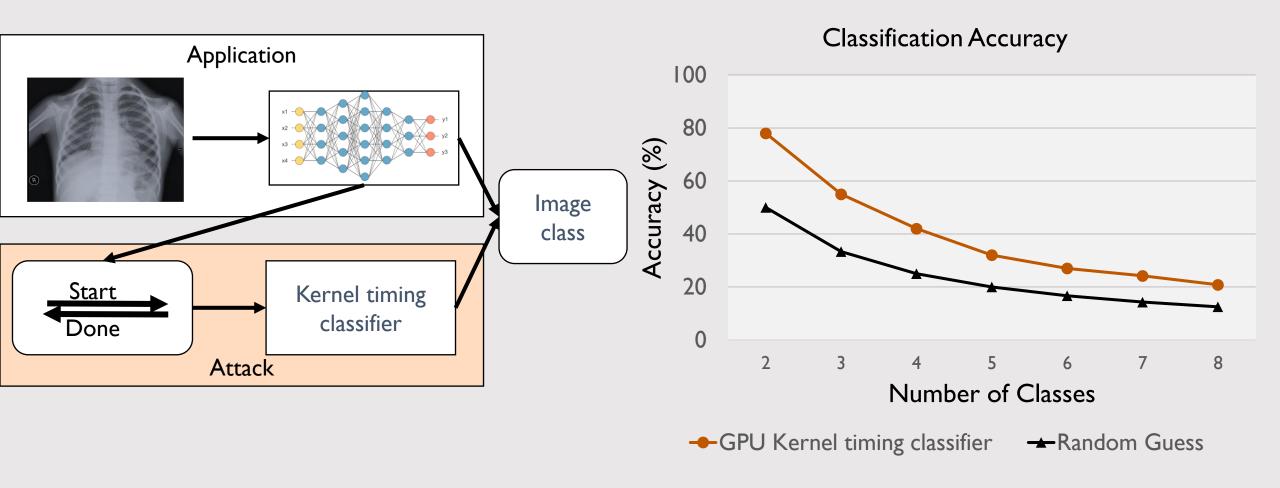
Information gained from kernel execution time

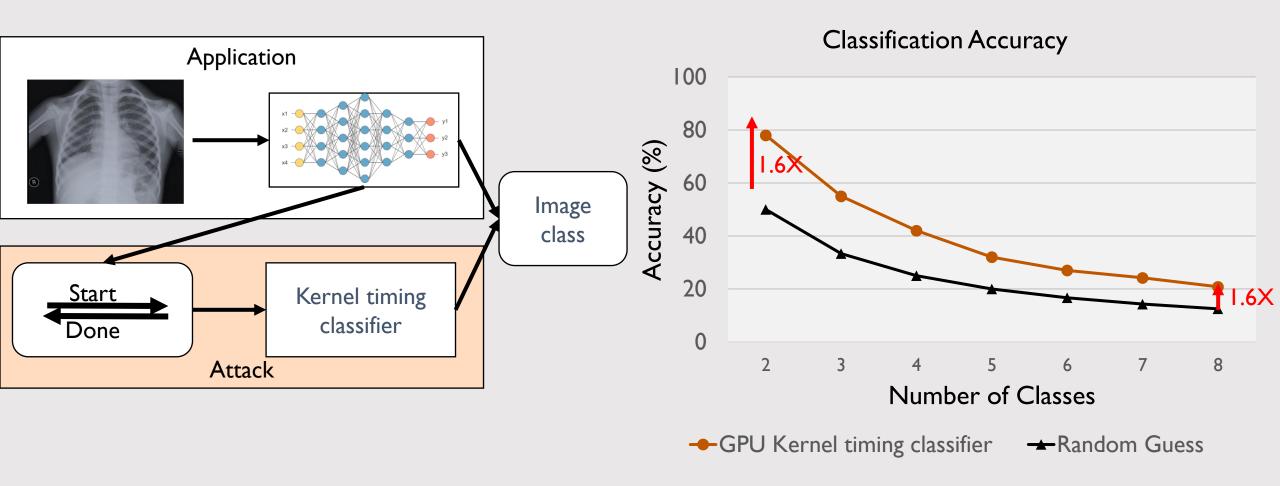












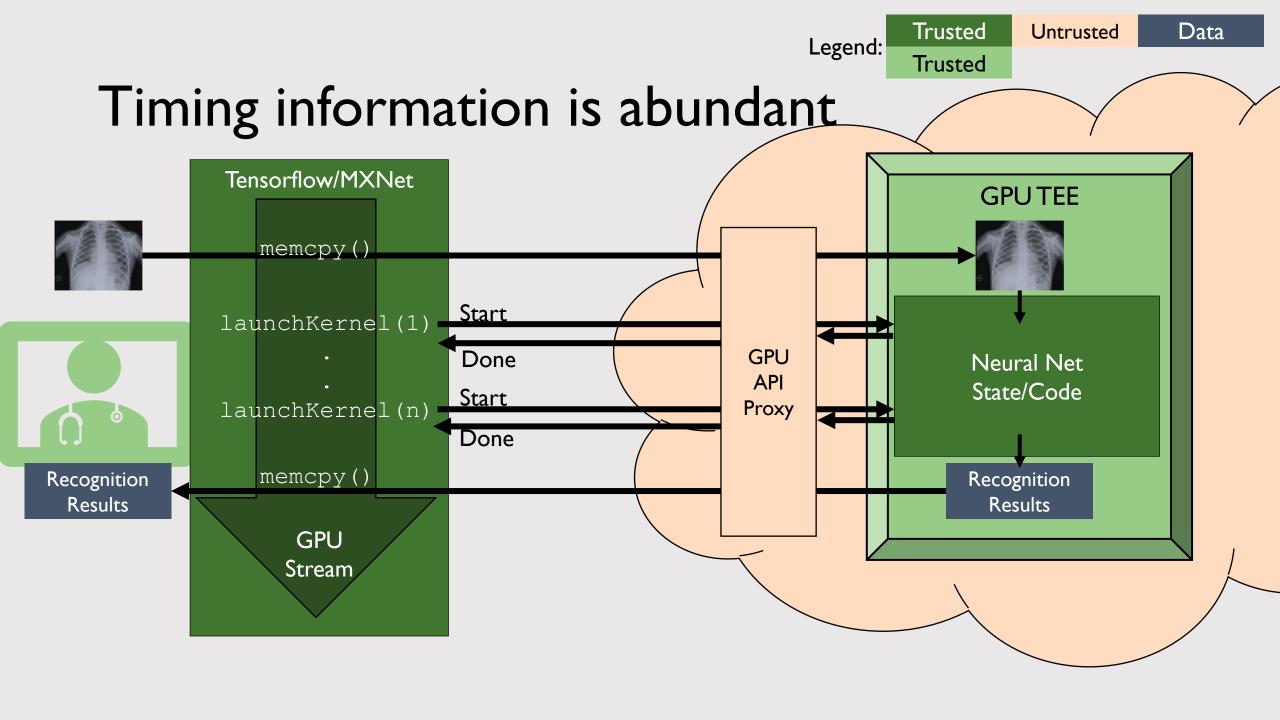
In the rest of the talk we will answer:

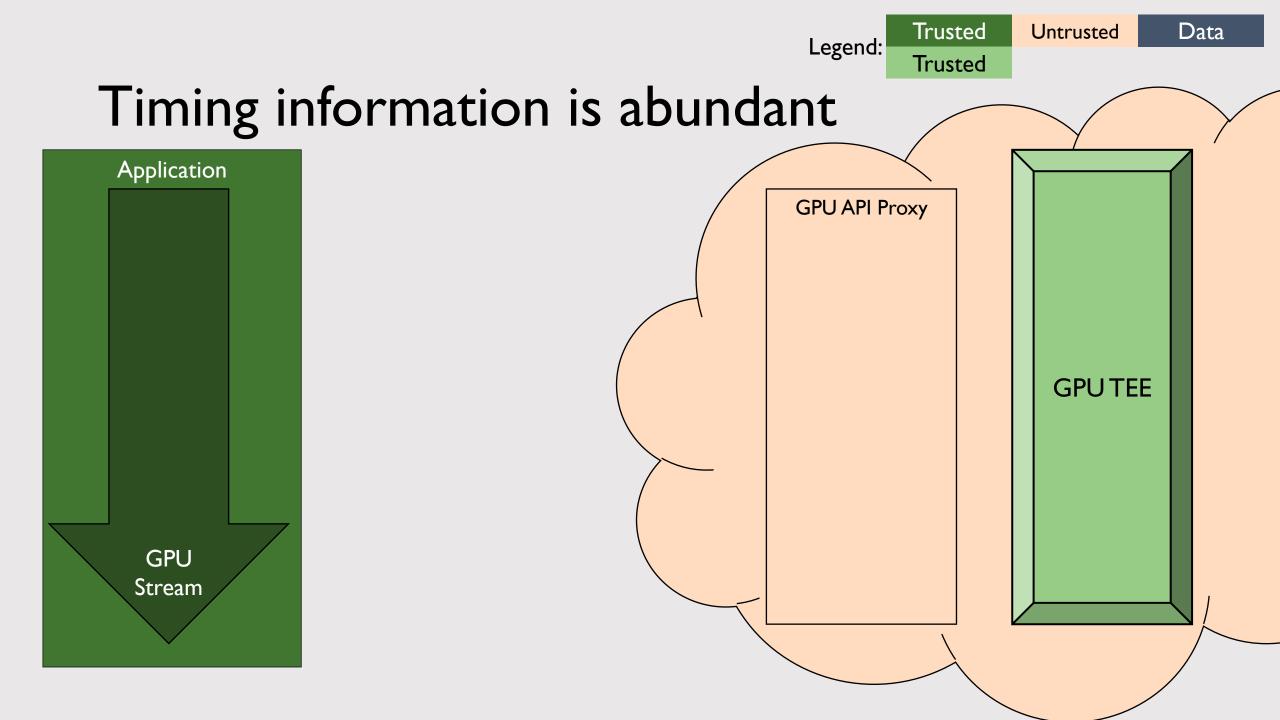
- Can information be extracted from GPU communication patterns? Yes, we demonstrate a communication timing attack
- How does Telekine remove that information?
 Replace GPU streams with new data-oblivious streams
- What are Telekine's overheads?
 - Overheads are reasonable: ~20% for neural network training

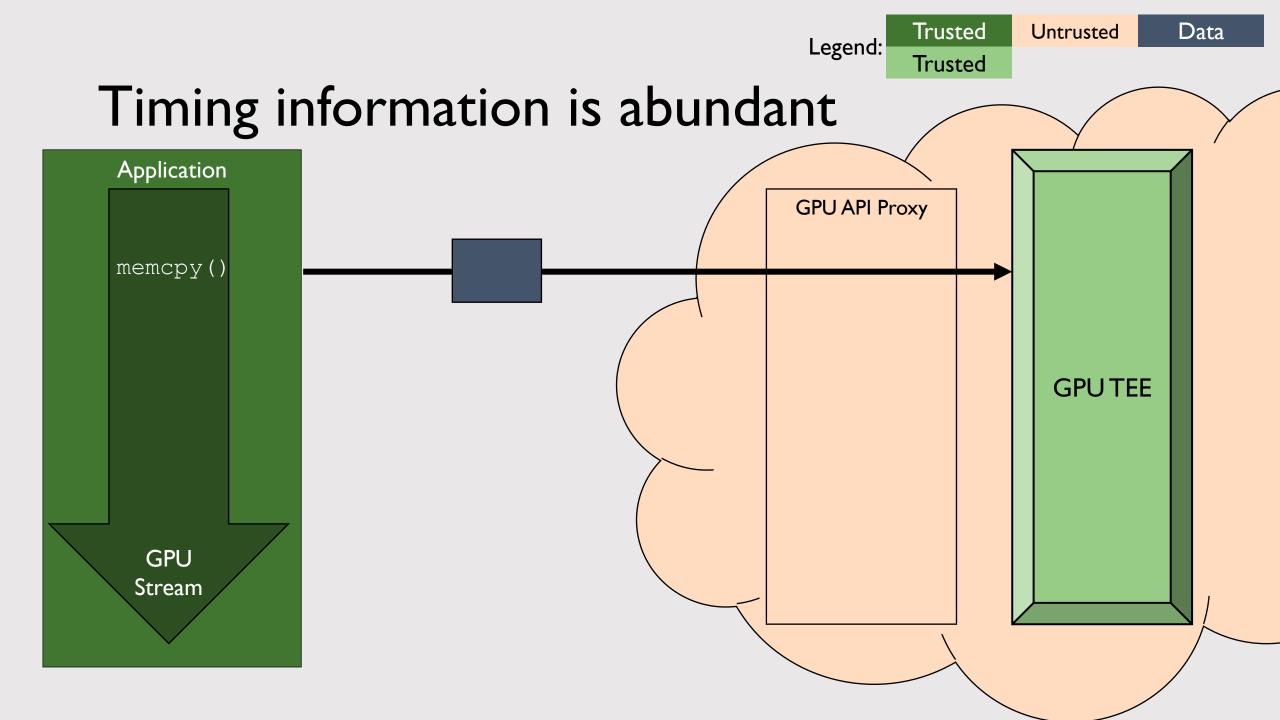
In the rest of the talk we will answer:

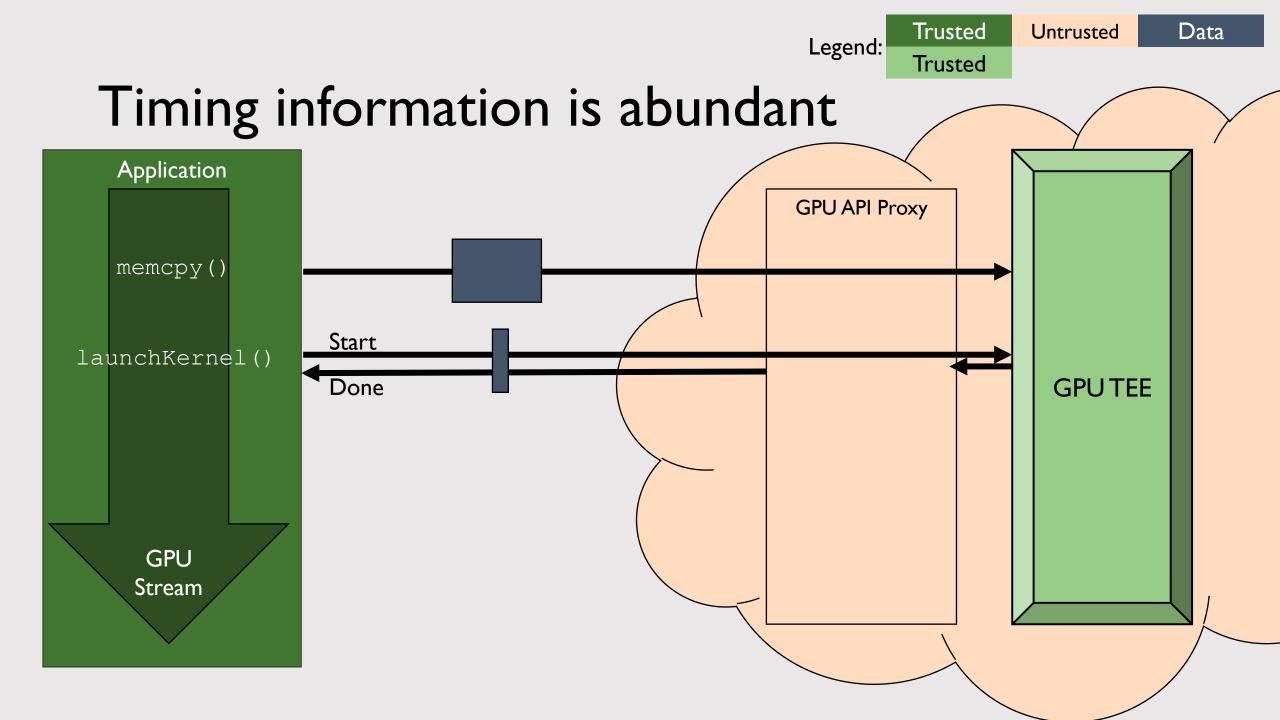
- Can information be extracted from GPU communication patterns? Yes, we demonstrate a communication timing attack
- How does Telekine remove that information?

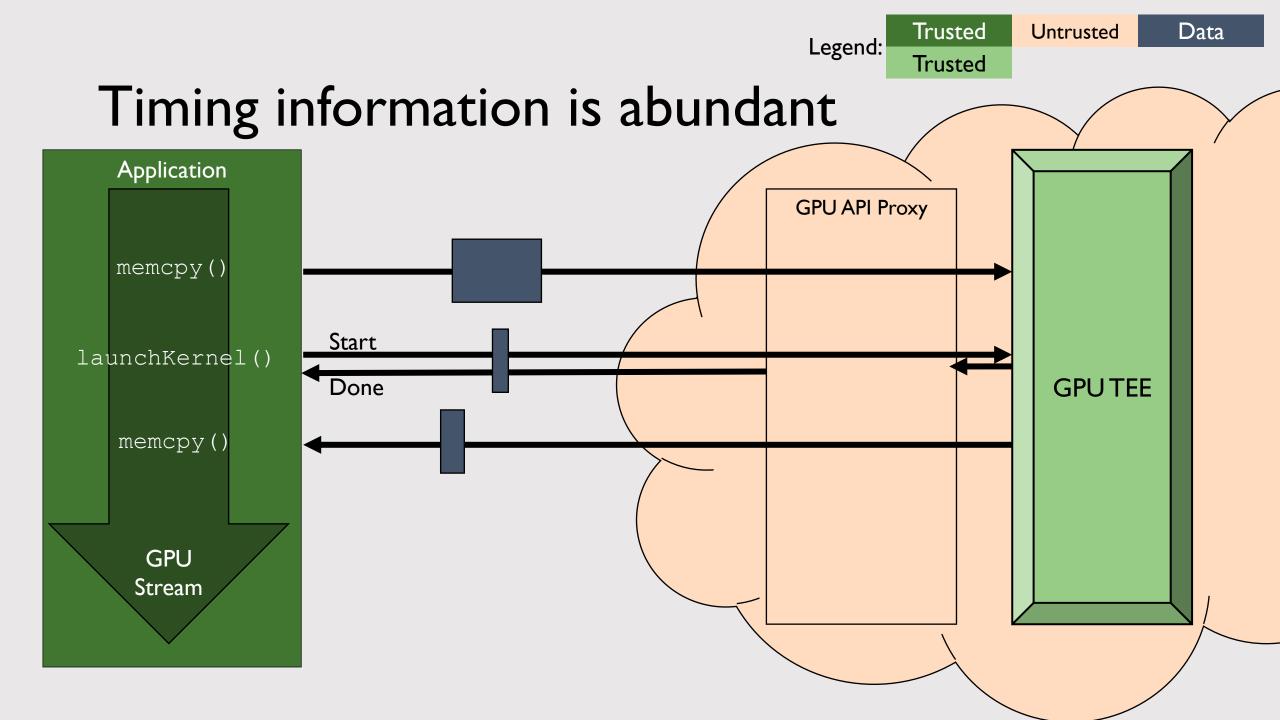
 Replace GPU streams with new data-oblivious streams
- What are Telekine's overheads?
 - Overheads are reasonable: ~20% for neural network training

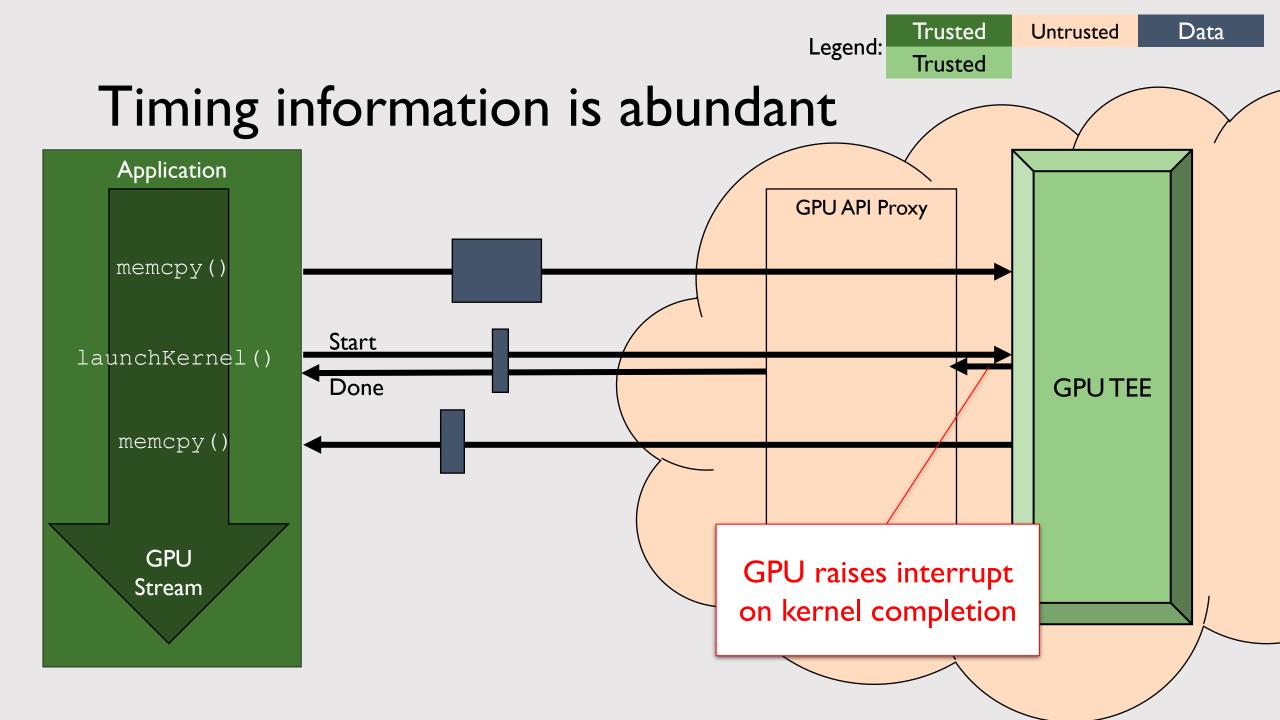


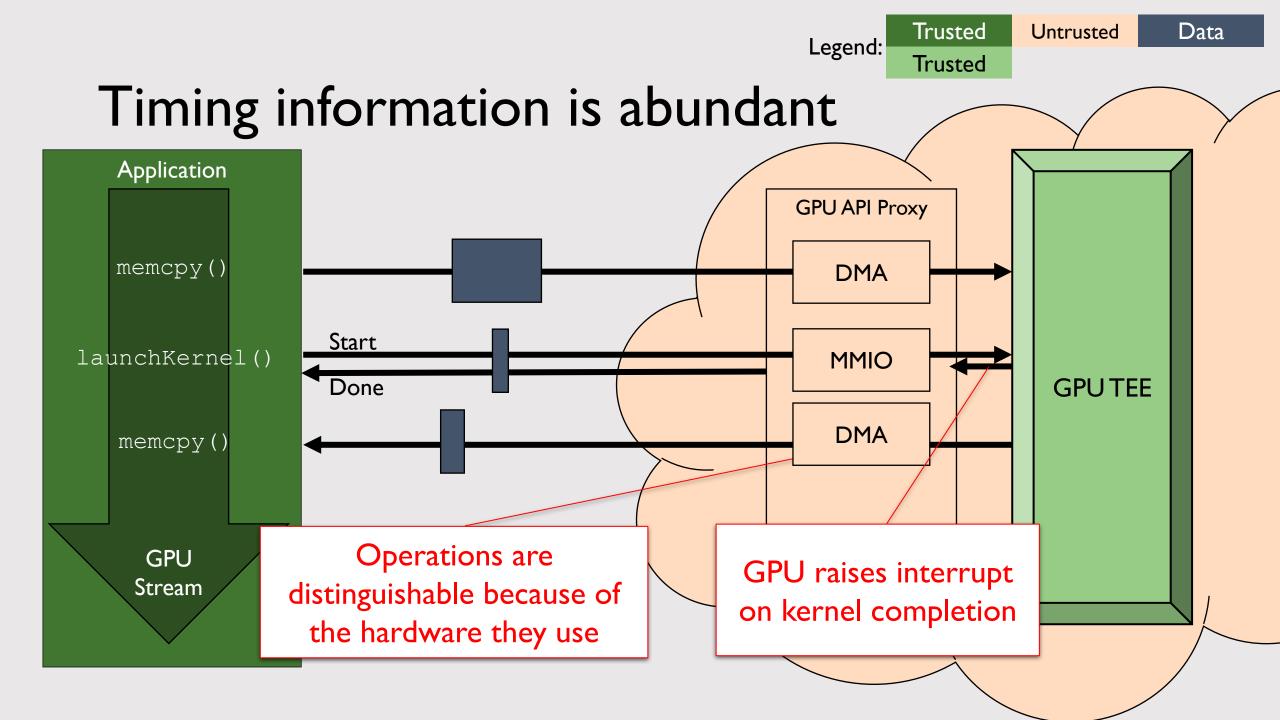


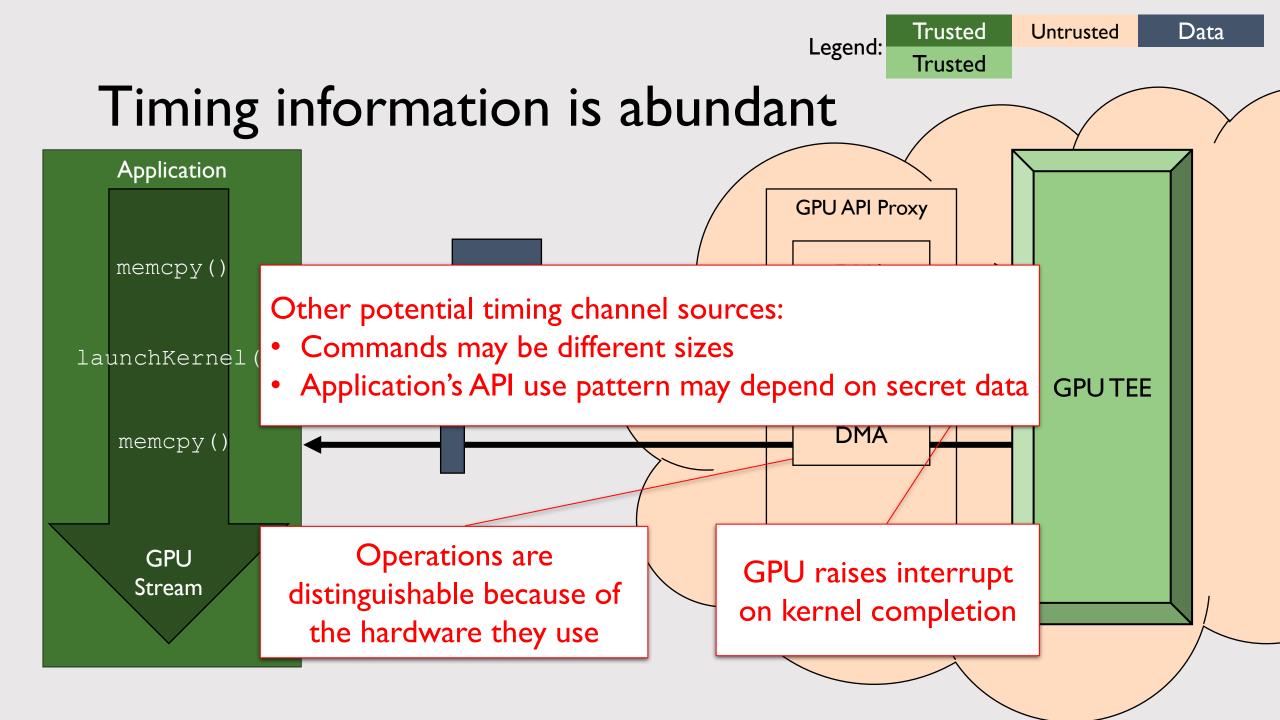


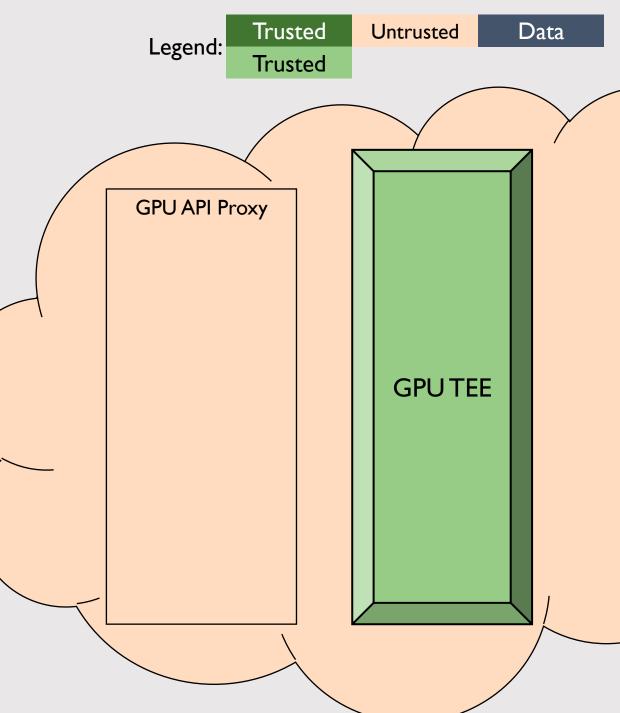


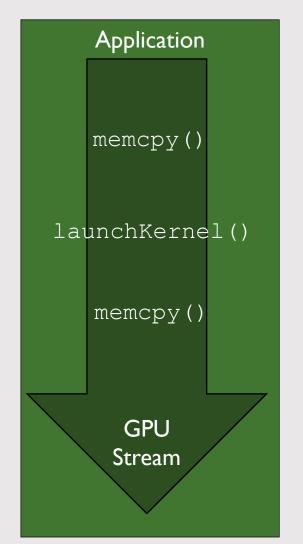


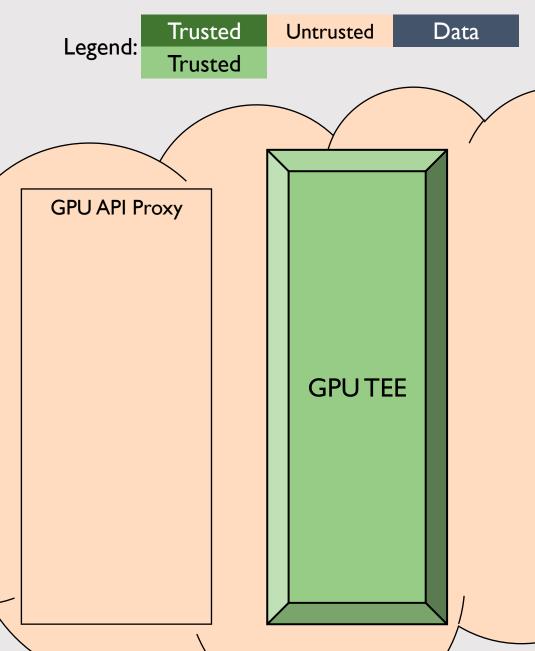


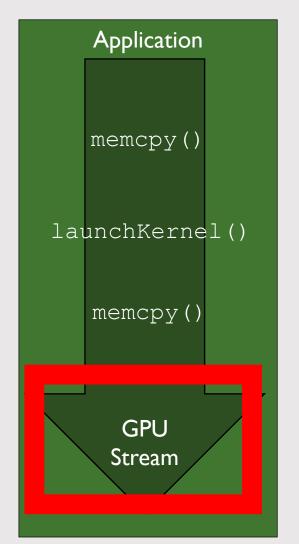




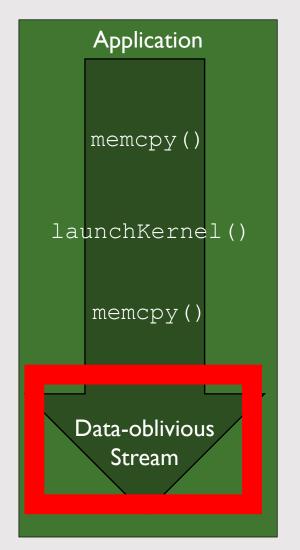


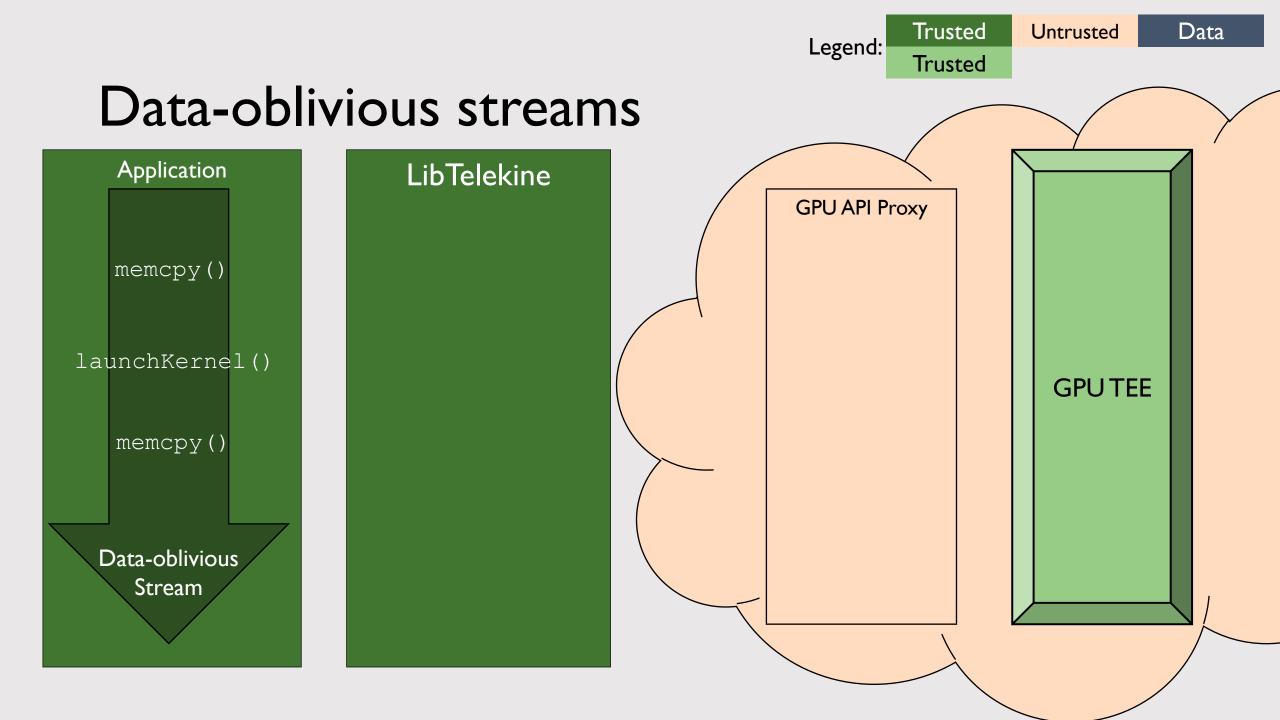


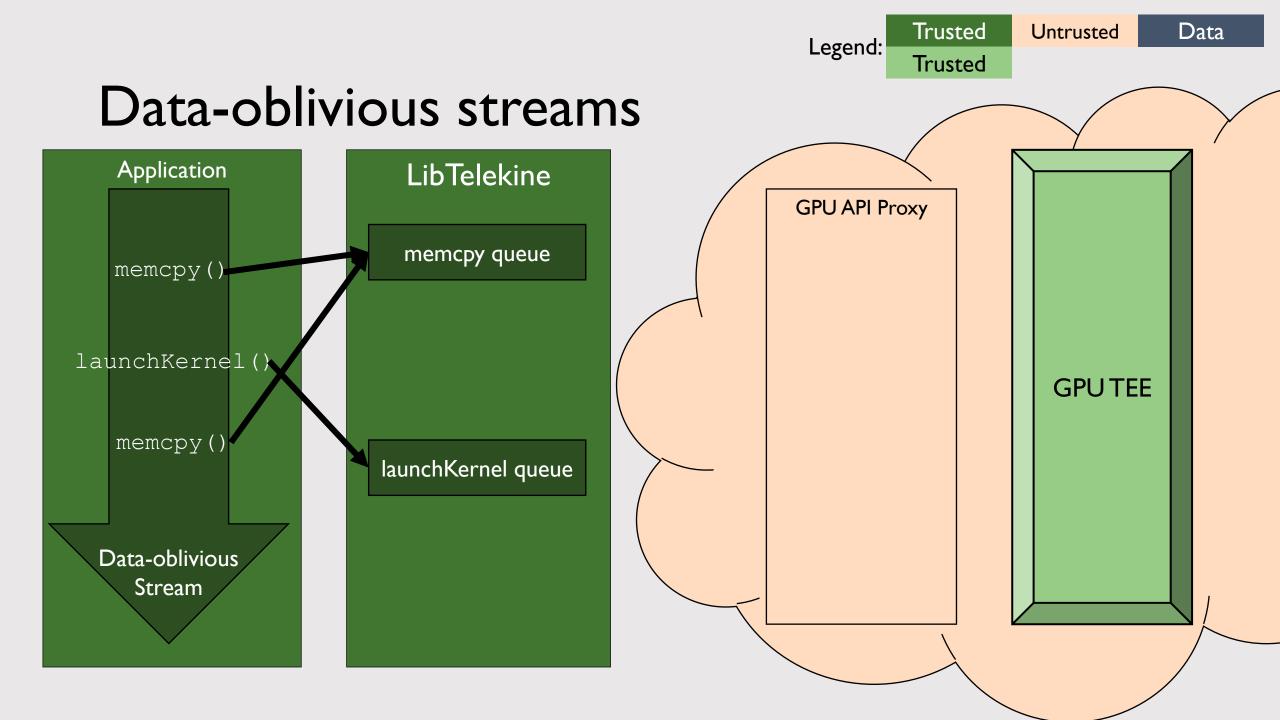


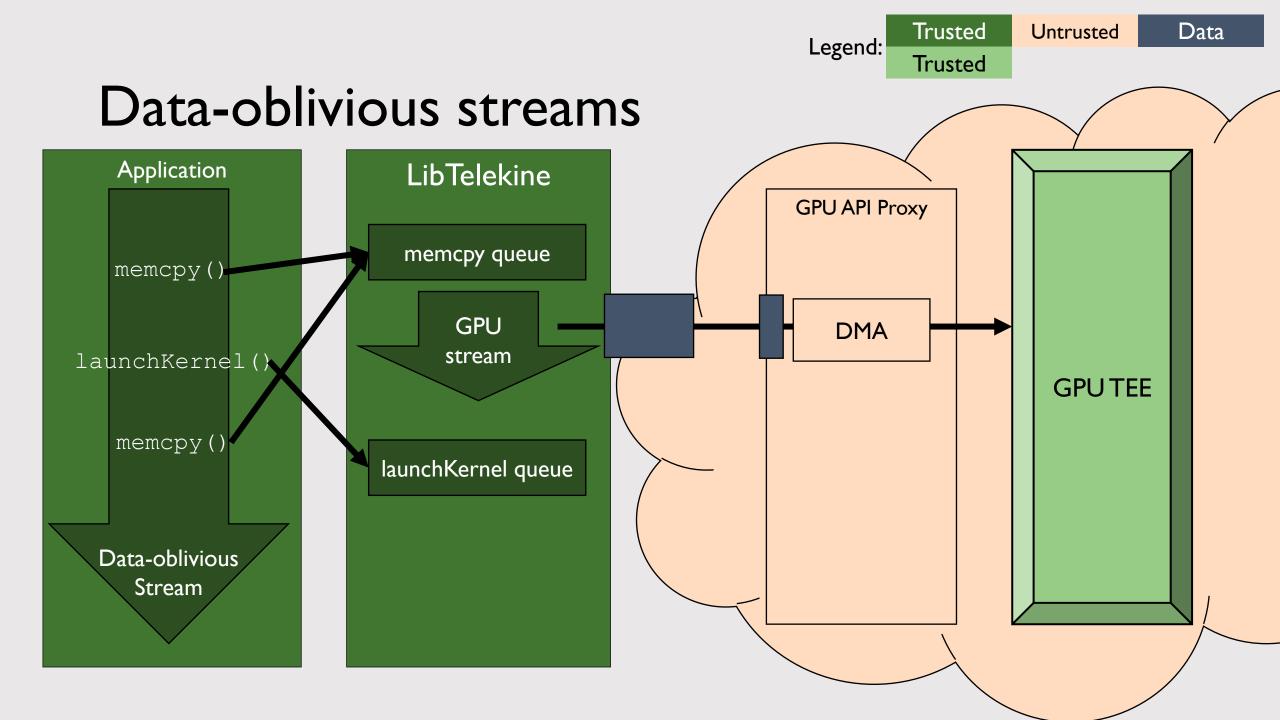


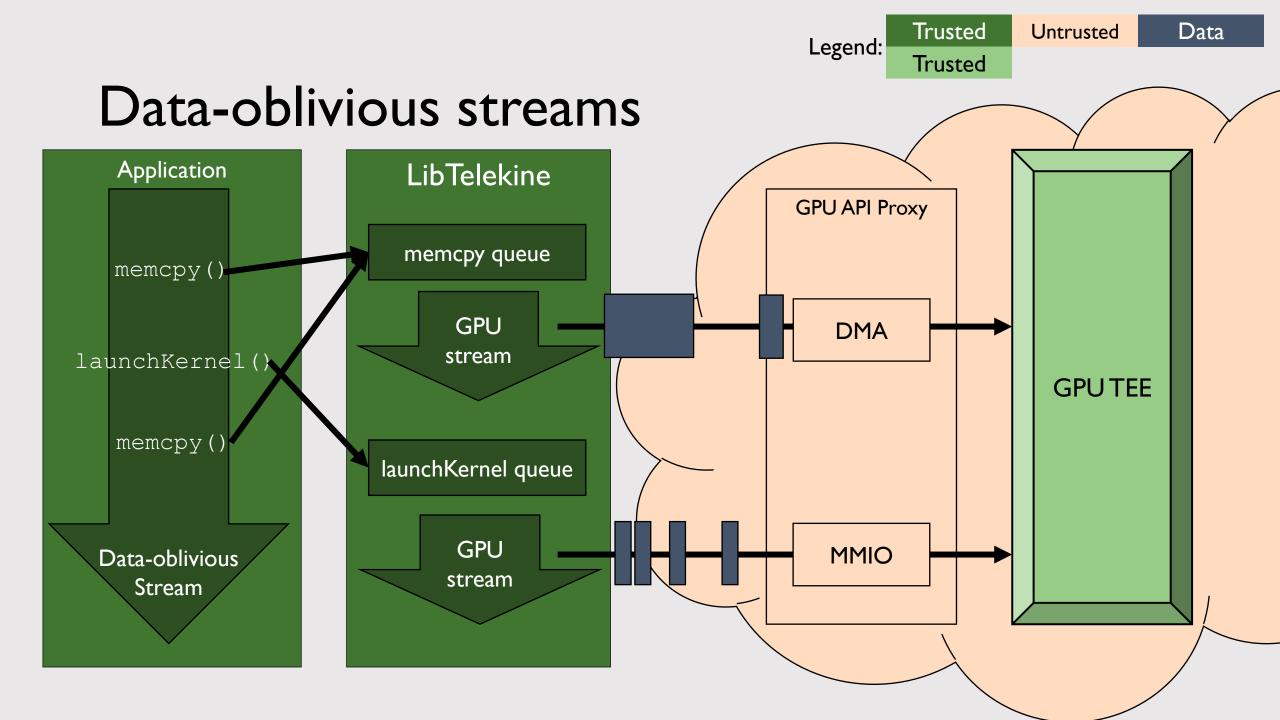






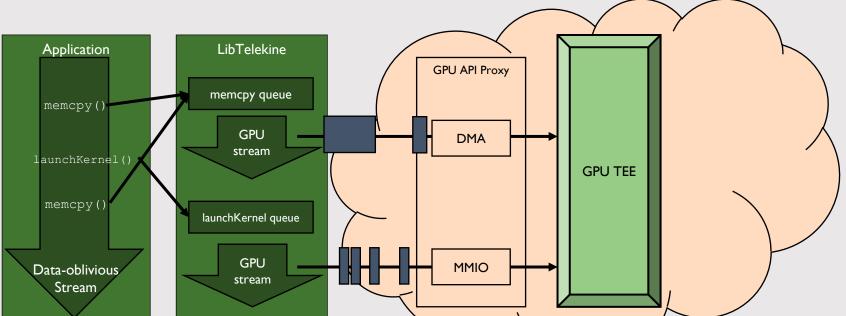






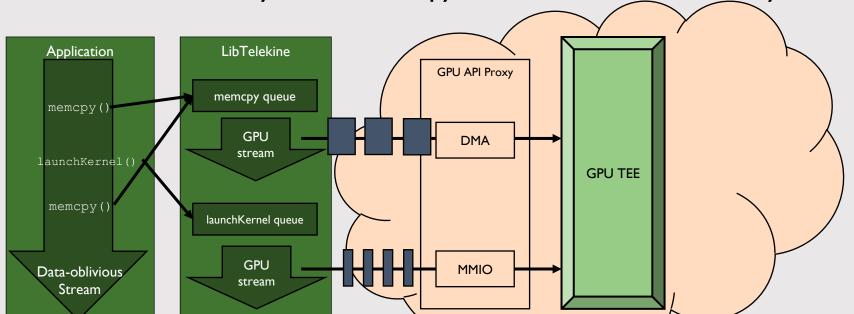
- Divide commands by type so they can be scheduled independently
 - Adversary sees two independent streams of operations
 - Telekine manages data dependencies between types
- Split and pad commands as necessary; enforce a uniform size
- Queue commands and send them (or no-ops) out deterministically

- E.g., launch 32 kernels every 15ms, memcpy 1MB both directions every 30ms



- Divide commands by type so they can be scheduled independently
 - Adversary sees two independent streams of operations
 - Telekine manages data dependencies between types
- Split and pad commands as necessary; enforce a uniform size
- Queue commands and send them (or no-ops) out deterministically

- E.g., launch 32 kernels every 15ms, memcpy 1MB both directions every 30ms



In the rest of the talk we will answer:

- Can information be extracted from GPU communication patterns? Yes, we demonstrate a communication timing attack
- How does Telekine remove that information?

 Replace GPU streams with new data-oblivious streams
- What are Telekine's overheads?
 - Overheads are reasonable: ~20% for neural network training

In the rest of the talk we will answer:

- Can information be extracted from GPU communication patterns? Yes, we demonstrate a communication timing attack
- How does Telekine remove that information?

 Replace GPU streams with new data-oblivious streams
- What are Telekine's overheads?
 - Overheads are reasonable: ~20% for neural network training

Testbeds

(RTT is "Roundtrip Time")

The cloud machine (Austin, Texas):
Intel i9-9900K, 8 cores @3.60GHz
32GB of RAM
Radeon RX VEGA 64 GPU with 8GB of RAM

877Mbps, I2ms RTT

IGbps, various RTTs

Geo-distributed client (Dallas, Texas): Vultr cloud VM, 8 vCPUS 32GB of RAM Client (Austin, Texas): Intel Xeon E3-1270 v6, 4 cores @3.8GHz 32GB of RAM

(RTT is "Roundtrip Time")

Testbeds

The cloud machine (Austin, Texas):
Intel i9-9900K, 8 cores @3.60GHz
32GB of RAM

Radeon RX VEGA 64 GPU with 8GB of RAM

Real WAN testbed

877Mbps, I2ms RTT

Geo-distributed client (Dallas, Texas): Vultr cloud VM, 8 vCPUS 32GB of RAM IGbps, various RTTs

Client (Austin, Texas): Intel Xeon E3-1270 v6, 4 cores @3.8GHz 32GB of RAM

Testbeds

(RTT is "Roundtrip Time")

The cloud machine (Austin, Texas):
Intel i9-9900K, 8 cores @3.60GHz
32GB of RAM
Radeon RX VEGA 64 GPU with 8GB of RAM

Real WAN testbed

Simulated WAN testbed

877Mbps, I2ms RTT

Geo-distributed client (Dallas, Texas):

Vultr cloud VM, 8 vCPUS

32GB of RAM

IGbps, various RTTs

Client (Austin, Texas):

Intel Xeon E3-1270 v6, 4 cores @3.8GHz

32GB of RAM

We compare Telekine to an insecure baseline: running on the GPU server without protections

Workloads:

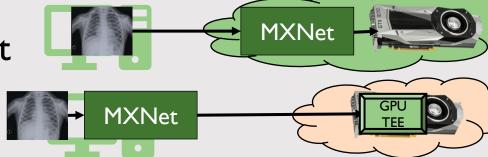
- Data movement vs. GPU work microbenchmark
- Neural net inference on MXNet:
 - ResNet50[He et. al 2016], InceptionV3[Szegedy et. al 2016], DenseNet [Huang et. al 2017]
- Neural net training on MXNet:
 - (Same networks as above)
- Graph analytics on Galois:
 - BFS, PageRank, SSSP (across I and 2 GPUs)

We compare Telekine to an insecure baseline: running on the GPU server without protections

Workloads:

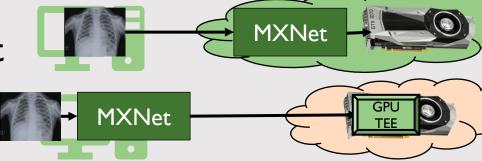
- Data movement vs. GPU work microbenchmark
- Neural net inference on MXNet:
 - ResNet50[He et. al 2016], InceptionV3[Szegedy et. al 2016], DenseNet [Huang et. al 2017]
- Neural net training on MXNet:
 - (Same networks as above)
- Graph analytics on Galois:
 - BFS, PageRank, SSSP (across I and 2 GPUs)

- User sends a batch of images to be classified
- Baseline: user sends batch to remote MXNet
- Telekine: user sends batch to local MXNet
 - Telekine remotes computation to the GPU



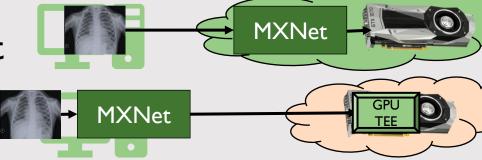
Batch Size	ResNet50	InceptionV3	DenseNet
Ĩ			
8			
64			

- User sends a batch of images to be classified
- Baseline: user sends batch to remote MXNet
- Telekine: user sends batch to local MXNet
 - Telekine remotes computation to the GPU



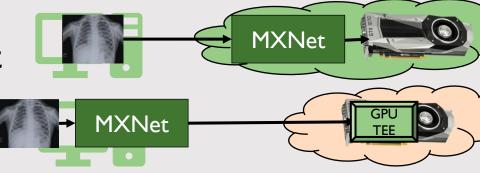
Batch Size	ResNet50	InceptionV3	DenseNet
1	10.0X	6.6X	7.7X
8			
64			

- User sends a batch of images to be classified
- Baseline: user sends batch to remote MXNet
- Telekine: user sends batch to local MXNet
 - Telekine remotes computation to the GPU



Batch Size	ResNet50	InceptionV3	DenseNet
1	10.0X	6.6X	7.7X
8	3.4X	2.2X	2.5X
64			

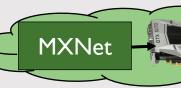
- User sends a batch of images to be classified
- Baseline: user sends batch to remote MXNet
- Telekine: user sends batch to local MXNet
 - Telekine remotes computation to the GPU



Batch Size	ResNet50	InceptionV3	DenseNet
1	10.0X	6.6X	7.7X
8	3.4X	2.2X	2.5X
64	1.0X	I.IX	1.0X

MXNet neural net training (Real WAN)

- Large dataset of images, processed in batches of size 64
- Baseline: data set is on the cloud machine, passed to MXNet

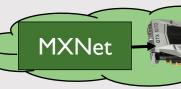


MXNet

- Telekine: data set is on a client, passed to MXNet instance
 - Telekine connects that instance to the remote GPU
 - As a result Telekine uses a consistent 533 Mb/s network bandwidth

MXNet neural net training (Real WAN)

- Large dataset of images, processed in batches of size 64
- Baseline: data set is on the cloud machine, passed to MXNet



MXNet

- Telekine: data set is on a client, passed to MXNet instance
 - Telekine connects that instance to the remote GPU
 - As a result Telekine uses a consistent 533 Mb/s network bandwidth

DenseNet	InceptionV3	ResNet50
1.22X	I.08X	1.23X

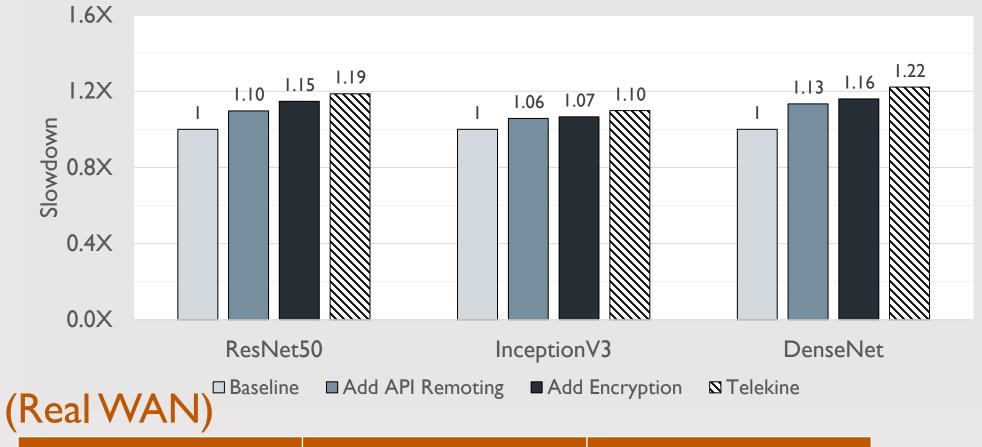
MXNet neural net training (Real WAN)

• Large dataset of images, processed in batches of size 64

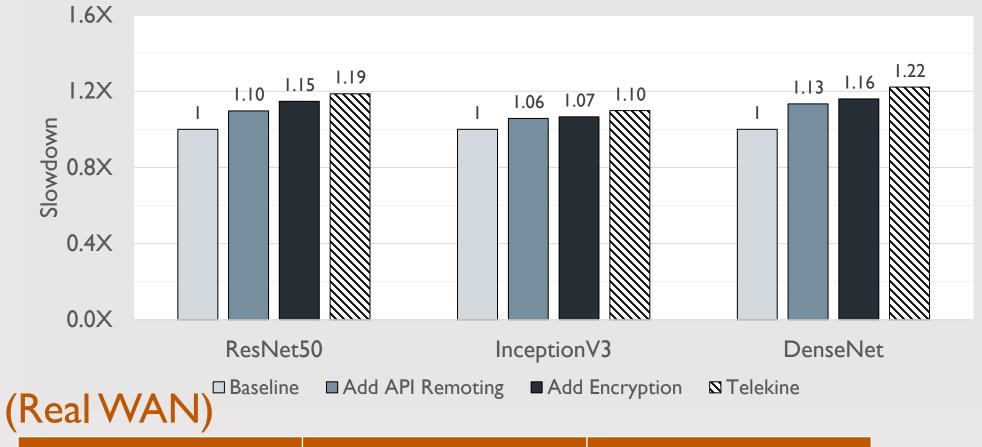
Overheads are low because GPUs overlap the extra work with computation

- E.g., CUs can keep processing while the DMA engine performs transfers
 - Telekine connects that instance to the remote of o
 - As a result Telekine uses a consistent 533 Mb/s network bandwidth

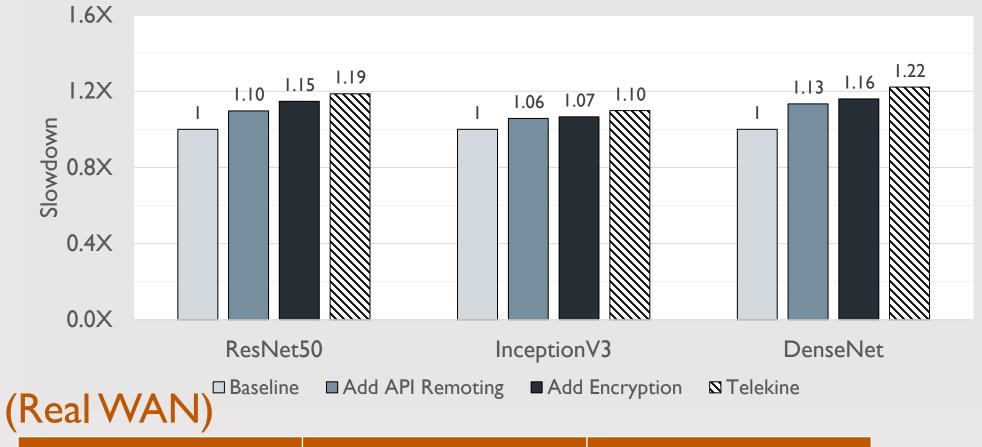
DenseNet	InceptionV3	ResNet50
1.22X	I.08X	1.23X



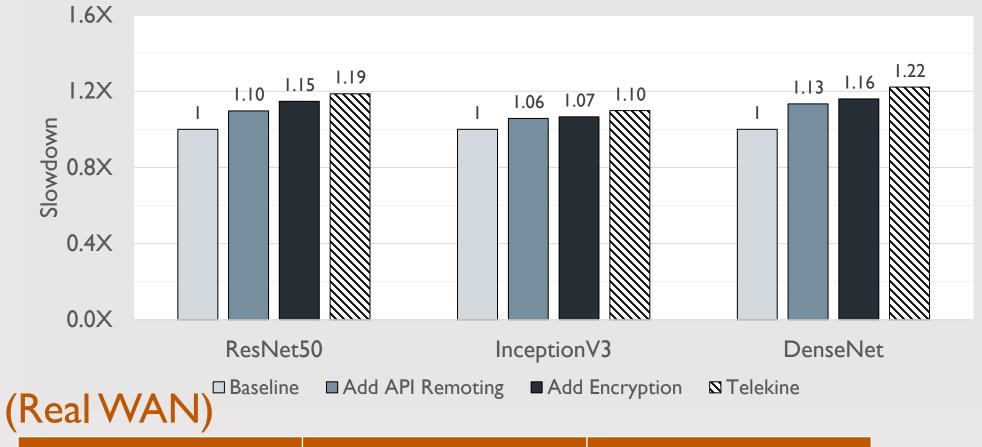
ResNet50	InceptionV3	DenseNet
1.23X	I.08X	1.22X



ResNet50	InceptionV3	DenseNet
1.23X	I.08X	1.22X



ResNet50	InceptionV3	DenseNet
1.23X	I.08X	1.22X



ResNet50	InceptionV3	DenseNet
1.23X	I.08X	1.22X

Telekine: Secure Computing with Cloud GPUs

• Eliminates communication timing channels with data-oblivious streams

Transparent to applications because it maintains GPU API semantics

Has modest performance overheads for level of security provided

Telekine: Secure Computing with Cloud GPUs

• Eliminates communication timing channels with data-oblivious streams

• Transparent to applications because it maintains GPU API semantics

Has modest performance overheads for level of security provided

Thanks!

MXNet training RTT sensitivity (Simulated WAN)

- RTT to cloud provider can vary
- The effect in performance depends on the workload

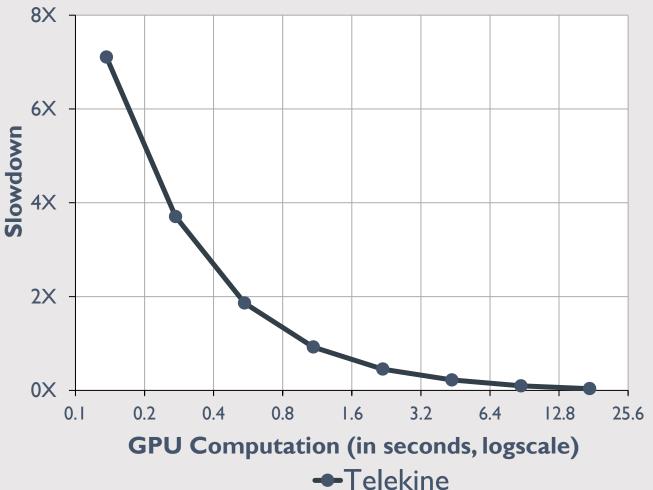
RTT	ResNet50	InceptionV3	Densenet
10ms	1.19X	1.10X	1.22X
20ms	1.29X	1.13X	1.37X
30ms	1.44X	1.16X	1.49X
40ms	1.53X	1.18X	1.66X
50ms	1.62X	1.30X	2.09X

Attack accuracy for batched inference

- GPU kernels operate on an entire batch
 - Cannot measure kernel execution time for individual images
- Task: correctly identify the class with the most images
 - Accuracy varies with how many more images there are (purity)
 - Batches of 32, four classes
 - Images selected from target class up to "Purity"
 - Batch filled out with images from other three classes

Batch size	Purity	Accuracy
1	100%	42%
32	25%	29%
32	80%	50%
32	100%	65%

Communication vs GPU work (Simulated WAN)



- Copy16MB to the GPU
- Compute for x-axis seconds
- Copy16MB from the GPU