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High address translation cost
• Modern applications: large memory footprint, low memory access locality 
• TLB coverage using base pages is insufficient
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Huge pages improve TLB coverage
• Architecture supports larger page size (e.g., 2MB page) 

• Intel: 0 to 1,536 entries in 2 years (2013 ~ 2015) 

• Operating system has the burden of better huge page support
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Operating system support for huge pages
• OS transparently allocates/deallocates huge pages 

• Huge pages in both guest and host
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Huge pages improve performance
• Application speed up over using base pages only
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Are huge pages a free 
lunch?
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Huge page pathologies in Linux

• High page fault latency 

• Memory bloating 

• Unfair huge page allocation 

• Uncoordinated memory management
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Ingens 
Efficient huge page management system
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Linux Ingens
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Greedy allocation Spatial utilization 
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How to allocate huge pages?

Problems

 High page fault  
latency

Memory  
bloating



High page fault latency
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Huge page allocation increases page 
fault latency

• Page allocation path of both base and huge page
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Allocate page(s) Get page(s) 
from free page list

Zero the page(s)Map the page(s) 
to page table

Page fault handler Physical memory manager

Application 
pause

Application 
resume

Page fault latency 
• 4KB page  :     3.6 us 
• 2MB page : 378.0 us (mostly from page zeroing) 
• Increases tail latency



Huge page allocation might require 
extra memory copying

• Page allocation path of huge page
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Huge page allocation might require 
extra memory copying

• Page allocation path of huge page
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External fragmentation
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Huge page allocation might require 
extra memory copying

• Page allocation path of huge page includes memory compaction
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Ingens: asynchronous allocation
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Page fault  
handler

Asynchronous 
promotion

• Page fault handler only 
allocates base pages 

• Huge page allocation in 
background  

• Memory compaction in 
background 

• No extra page fault latency 
• No huge page zeroing 
• No compaction

bit vector 
1 bit per  

base page

Read/update  
on each base page fault

Promotion  
Kernel thread

Fast page fault handling



Page fault latency experiment
• Machine specification 

• Two Intel Xeon E5-2640 2.60GHz CPUs 

• 64GB memory and two 250 MB SSDs 

• Cloudstone workload (latency sensitive) 

• Web service for social event planning 

• nginx/PHP/MySQL running in virtual machines 

• 85% read, 10% login, 5% write workloads 

• 2 of 7 web pages modified to use modern web page sizes 
• The average web page is 2.1 MB   

             https://www.soasta.com/blog/page-bloat-average-web-page-2-mb/

19



Cloudstone result

• Memory is highly fragmented 

• Ingens reduces  
• average latency up to 29.2%  
• tail latency up to 41.4% 

• Linux page fault handler 
performs 461,383 memory 
compactions
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Memory bloating
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Application occupies more memory than it uses



Internal fragmentation

• Greedy allocation in Linux 

• Allocate a huge page on first 
fault to huge page region 

• The huge page region may not 
be fully used 

• Greedy allocation causes severe 
internal fragmentation 

• Memory use often sparse
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Memory bloating experiment

• Redis 

• Delete 70% objects after 
populating 8KB objects 

• MongoDB 

• 15 million get requests for 
1KB object with YCSB 
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Using huge 
page

Using only 
base page

Redis 20.7GB 
(+69%)

12.2GB 

MongoDB 12.4GB 
(+23%)

10.1GB 

Physical memory consumption

Bloating makes memory consumption unpredictable  
Memory-intensive applications can’t provision to avoid swap 



Ingens: Spatial utilization based allocation

• Ingens monitors spatial utilization 
of each huge page region 

• Utilization-based allocation 

• Page fault handler requests 
promotion when the utilization is 
beyond a threshold (e.g., 90%) 

• Bounds the size of internal 
fragmentation
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Redis memory bloating experiment
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Physical memory consumption

GET throughput

12.2 GB

Linux (base only)

20.7 GB

Linux (huge)Ingens

Linux (base only) Linux (huge)
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Ingens
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Huge : 2MB page  
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Ingens overhead
• Overhead for memory intensive application 

• Overhead for non-memory intensive application
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Linux Ingens

Synchronous 
allocation

Asynchronous 
allocation

Greedy allocation Spatial utilization 
based allocation

Ingens 
Make huge pages widely used in practice

Source code is available at  
https://github.com/ut-osa/ingens

Advantages

 No extra  
page fault latency

Bound  
memory bloating

https://github.com/ut-osa/ingens


Backup slides
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Other operating systems
• Window, MacOS 

• Does not support transparent huge page 

• FreeBSD 

• Very conservative approach 

• No memory compaction functionality 

• Performance speedup in Linux and FreeBSD
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SVM Canneal Redis
FreeBSD 1.28 1.13 1.02
Linux 1.30 1.21 1.15
Ingens 1.29 1.19 1.15



• User-controlled huge page management 
• Admin reserves huge page in advance 
• New APIs for memory allocation/deallocation 
• It could fail to reserve huge pages when memory is 

fragmented 

• Transparent huge page management 
• Developers do not know about huge page 
• OS Transparently allocates/deallocates huge pages 
• OS manages memory fragmentation
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Operating system support for huge pages


