
Coordinated and Efficient
Huge Page Management with Ingens

Youngjin Kwon, Hangchen Yu, Simon Peter,
Christopher J. Rossbach, and Emmett Witchel

1

High address translation cost
• Modern applications: large memory footprint, low memory access locality
• TLB coverage using base pages is insufficient

2

C
pu

 c
yc

le
s

0%

10%

20%

30%

40%

50%

60%

70%

429.mcf Graph analytics SVM MongoDB

% of cpu cycles spent by page walk
Virtual address

Physical
address

 Page table

High address translation cost

3

C
pu

 c
yc

le
s

0%

10%

20%

30%

40%

50%

60%

70%

429.mcf Graph analytics SVM MongoDB

Guest page table walk
Host page table walk

% of cpu cycles spent by page walk
Virtual address

Guest physical
address

Host physical
address

Guest page table

Host page table

• Virtualization requires additional address translation

Huge pages improve TLB coverage
• Architecture supports larger page size (e.g., 2MB page)

• Intel: 0 to 1,536 entries in 2 years (2013 ~ 2015)

• Operating system has the burden of better huge page support

4

0%

1%

2%

3%

4%

5%

Sandy Bridge Ivy Bridge Haswell Skylake

4KB page 2MB page

TLB coverage proportional to 64 GB DRAM

0.11%0.05%

4.6%

0.01%0.01% 0.1%

3.2%

0.1%

2013 201520142011

Operating system support for huge pages
• OS transparently allocates/deallocates huge pages

• Huge pages in both guest and host

5

Linux

FreeBSD

LWN.net, 2011

Huge pages improve performance
• Application speed up over using base pages only

6

S
pe

ed
 u

p

0%

10%

20%

30%

40%

50%

60%

42
9.m

cf 

(S
pe

c C
PU)

Can
ne

al 

(PARSEC)
SVM 

(Li
bli

ne
ar)

Grap
h a

na
lyt

ics
 

(P
ow

erG
rap

h)

Mac
hin

e l
ea

rni
ng

  

(S
pa

rk
MLli

b)

Web
 se

rve
r 

(C
lou

ds
ton

e) Red
is

Mon
go

DB

Be
tte

r

Av
era
ge

Are huge pages a free
lunch?

7

Are huge pages a free
lunch?

8

Are huge pages a free
lunch?

8

Are huge pages a free
lunch?

8

Are huge pages a free
lunch?

8

Huge page pathologies in Linux

• High page fault latency

• Memory bloating

• Unfair huge page allocation

• Uncoordinated memory management

9

Huge page pathologies in Linux

• High page fault latency

• Memory bloating

• Unfair huge page allocation

• Uncoordinated memory management

10

Ingens
Efficient huge page management system

11

Linux Ingens

Synchronous
allocation

Asynchronous
allocation

Greedy allocation Spatial utilization
based allocation

How to allocate huge pages?

Problems

 High page fault
latency

Memory
bloating

High page fault latency

12

Huge page allocation increases page
fault latency

• Page allocation path of both base and huge page

13

Allocate page(s) Get page(s)
from free page list

Zero the page(s)Map the page(s)
to page table

Page fault handler Physical memory manager

Application
pause

Application
resume

Page fault latency
• 4KB page : 3.6 us
• 2MB page : 378.0 us (mostly from page zeroing)
• Increases tail latency

Huge page allocation might require
extra memory copying

• Page allocation path of huge page

14

Get page(s)
from free page list

Zero the page(s)Map the page(s)
to page table

Page fault handler Physical memory manager

Application
pause

Application
resume

Allocate page(s)

Huge page allocation might require
extra memory copying

• Page allocation path of huge page

14

Get page(s)
from free page list

Zero the page(s)Map the page(s)
to page table

Page fault handler Physical memory manager

Not enough
contiguous memory

Application
pause

Application
resume

Allocate page(s)

External fragmentation

15

Not enough
contiguous memory

External fragmentation

15

Virtual
address

Physical
address

Huge page
boundary B

B

B

B

B

B Allocated Base page

Not enough
contiguous memory

B
• As system ages, physical memory is

fragmented

• 2 minutes to fragment 24 GB

• All memory sizes eventually fragment

• Linux compacts physical memory to
create contiguous pages

External fragmentation

15

Virtual
address

Physical
address

Huge page
boundary

B

B

B

B Allocated Base page

Not enough
contiguous memory

B

B
• As system ages, physical memory is

fragmented

• 2 minutes to fragment 24 GB

• All memory sizes eventually fragment

• Linux compacts physical memory to
create contiguous pages

External fragmentation

• As system ages, physical memory is
fragmented

• 2 minutes to fragment 24 GB

• All memory sizes eventually fragment

• Linux compacts physical memory to
create contiguous pages

Virtual
address

Physical
address

Huge page
boundary

B

B

B

B

B

B Allocated Base page

Not enough
contiguous memory

H

External fragmentation
Not enough

contiguous memory

Huge page allocation might require
extra memory copying

• Page allocation path of huge page includes memory compaction

17

Get page(s)
from free page list

Zero the page(s)Map the page(s)
to page table

Page fault handler Physical memory manager

Not enough
contiguous memory

Application
pause

Application
resume

Allocate page(s)

Huge page allocation might require
extra memory copying

• Page allocation path of huge page includes memory compaction

17

Get page(s)
from free page list

Zero the page(s)Map the page(s)
to page table

Page fault handler Physical memory manager

Not enough
contiguous memory

Compact physical memory

Application
pause

Application
resume

Allocate page(s)

Huge page allocation might require
extra memory copying

• Page allocation path of huge page includes memory compaction

17

Get page(s)
from free page list

Zero the page(s)Map the page(s)
to page table

Page fault handler Physical memory manager

Not enough
contiguous memory

Compact physical memory

Compaction may
or may not succeed

Application
pause

Application
resume

Allocate page(s)

Ingens: asynchronous allocation

18

Page fault
handler

Asynchronous
promotion

• Page fault handler only
allocates base pages

• Huge page allocation in
background

• Memory compaction in
background

• No extra page fault latency
• No huge page zeroing
• No compaction

bit vector
1 bit per

base page

Read/update
on each base page fault

Promotion
Kernel thread

Fast page fault handling

Page fault latency experiment
• Machine specification

• Two Intel Xeon E5-2640 2.60GHz CPUs

• 64GB memory and two 250 MB SSDs

• Cloudstone workload (latency sensitive)

• Web service for social event planning

• nginx/PHP/MySQL running in virtual machines

• 85% read, 10% login, 5% write workloads

• 2 of 7 web pages modified to use modern web page sizes
• The average web page is 2.1 MB

 https://www.soasta.com/blog/page-bloat-average-web-page-2-mb/

19

Cloudstone result

• Memory is highly fragmented

• Ingens reduces
• average latency up to 29.2%
• tail latency up to 41.4%

• Linux page fault handler
performs 461,383 memory
compactions

20

Linux Ingens

922.3 1091.9 (+18%)

Throughput (requests/s)

Latency (millisecond)

0

100

200

300

400

500

600

Avg. 90th Avg. 90th

Linux
Ingens

View event Visit home page

Be
tte

r

Cloudstone result

• Memory is highly fragmented

• Ingens reduces
• average latency up to 29.2%
• tail latency up to 41.4%

• Linux page fault handler
performs 461,383 memory
compactions

20

Linux Ingens

922.3 1091.9 (+18%)

Throughput (requests/s)

Latency (millisecond)

0

100

200

300

400

500

600

Avg. 90th Avg. 90th

Linux
Ingens

View event Visit home page

Be
tte

r

Memory bloating

21

Application occupies more memory than it uses

Internal fragmentation

• Greedy allocation in Linux

• Allocate a huge page on first
fault to huge page region

• The huge page region may not
be fully used

• Greedy allocation causes severe
internal fragmentation

• Memory use often sparse

22

Virtual
address

Physical
address

Huge page
boundary

H

H

Used virtual address

Unused virtual address

Huge page
region

H

Memory bloating experiment

• Redis

• Delete 70% objects after
populating 8KB objects

• MongoDB

• 15 million get requests for
1KB object with YCSB

23

Using huge
page

Using only
base page

Redis 20.7GB
(+69%)

12.2GB

MongoDB 12.4GB
(+23%)

10.1GB

Physical memory consumption

Bloating makes memory consumption unpredictable
Memory-intensive applications can’t provision to avoid swap

Ingens: Spatial utilization based allocation

• Ingens monitors spatial utilization
of each huge page region

• Utilization-based allocation

• Page fault handler requests
promotion when the utilization is
beyond a threshold (e.g., 90%)

• Bounds the size of internal
fragmentation

24

Virtual
address

Physical
address

H

B

B

B

B

100%
utilization

75%
utilization

25%
utilization

Redis memory bloating experiment

25

Physical memory consumption

GET throughput

12.2 GB

Linux (base only)

20.7 GB

Linux (huge)Ingens

Linux (base only) Linux (huge)

21.7K19.0K

Ingens

12.3 GB

20.9K

- 4%+ 10%

Better

Better

Huge : 2MB page
Base : 4KB page

Ingens overhead
• Overhead for memory intensive application

• Overhead for non-memory intensive application

26

429.mcf Graph Spark Canneal SVM Redis MongoDB

0.9% 0.9% 0.6% 1.9% 1.3% 0.2% 0.6%

Kernel build Grep Parsec 3.0 Benchmark

0.2% 0.4% 0.8%

Ingens overhead is negligible

27

Linux Ingens

Synchronous
allocation

Asynchronous
allocation

Greedy allocation Spatial utilization
based allocation

Ingens
Make huge pages widely used in practice

Source code is available at
https://github.com/ut-osa/ingens

Advantages

 No extra
page fault latency

Bound
memory bloating

https://github.com/ut-osa/ingens

Backup slides

28

Other operating systems
• Window, MacOS

• Does not support transparent huge page

• FreeBSD

• Very conservative approach

• No memory compaction functionality

• Performance speedup in Linux and FreeBSD

29

SVM Canneal Redis
FreeBSD 1.28 1.13 1.02
Linux 1.30 1.21 1.15
Ingens 1.29 1.19 1.15

• User-controlled huge page management
• Admin reserves huge page in advance
• New APIs for memory allocation/deallocation
• It could fail to reserve huge pages when memory is

fragmented

• Transparent huge page management
• Developers do not know about huge page
• OS Transparently allocates/deallocates huge pages
• OS manages memory fragmentation

30

Operating system support for huge pages

