
Ingens: Huge Page Support for the OS and Hypervisor

Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach1, Emmett Witchel
The University of Texas at Austin

1The University of Texas at Austin and VMware Research Group

Abstract
Memory capacity and demand have grown hand in hand
in recent years. However, overheads for memory virtu-
alization, in particular for address translation, grow with
memory capacity as well, motivating hardware manu-
facturers to provide TLBs with thousands of entries for
larger pages, or huge pages. Current OSes and hypervi-
sors support huge pages with a hodge-podge of best-effort
algorithms and spot fixes that make less and less sense as
architectural support for huge pages matures. The time
has come for a more fundamental redesign.

Ingens is a framework for providing transparent huge
page support in a coordinated way. Ingens manages con-
tiguity as a first-class resource, and tracks utilization
and access frequency of memory pages, enabling it to
eliminate pathologies that plague current systems. Ex-
periments with a Linux/KVM-based prototype show im-
proved fairness and performance, and reduced tail latency
and memory bloat for important applications such as Web
services and Redis. We report early experiences with our
in-progress port of Ingens to the ESX Hypervisor.

1 Introduction
Modern computing platforms can support terabytes of
RAM and workloads able to use large memories are com-
monplace [47]. However, increased capacity is a sig-
nificant performance challenge for memory virtualiza-
tion. All modern processors use page tables for address
translation and TLBs to cache virtual-to-physical map-
pings. TLB capacities cannot scale at the same rate as
DRAM, so TLB misses and address translation can incur
crippling performance penalties for large memory work-
loads [41, 49] using traditional 4KB pages. Hardware-
supported address virtualization (e.g., AMD’s nested page
tables) increase average-case translation overheads be-
cause multi-dimensional page tables amplify translation
costs as much as 6× [54]. Hardware manufacturers have
addressed increasing DRAM capacity with better support
for larger page sizes, or huge pages, which reduce address

translation overheads by reducing the frequency of TLB
misses. However, the success of these mechanisms is crit-
ically dependent on good huge page management from
operating systems and hypervisors.

While huge pages have been commonly supported in
hardware since the 90s [70, 71], until recently, processors
have had a very small number of TLB entries reserved
for huge pages, limiting their usability. Newer architec-
tures support thousands of huge page entries in dual-level
TLBs (e.g., 1,536 in Intel’s Skylake [1]), which is a major
change: the onus of better huge page support has shifted
from the hardware to the system software. There is now
both an urgent need and an opportunity to modernize
memory management.

OS memory management has generally supported huge
page-capable hardware with best-effort algorithms and
spot fixes, keeping core memory management algorithms
focused on the 4KB page (or base page). For exam-
ple, Linux and KVM (Linux’s in-kernel hypervisor) ad-
equately support many large-memory workloads (i.e.,
ones with simple, static memory allocation behavior),
but a variety of common workloads are exposed to un-
acceptable performance overheads, wasted memory ca-
pacity, and unfair performance variability when using
huge pages. These problems are common and severe
enough that administrators generally disable huge pages
(e.g., MongoDB, Couchbase, Redis, SAP, Splunk, etc.)
despite their obvious average-case performance advan-
tages [22, 9, 10, 28, 24, 29, 31, 34]. Other OSes suffer
similar or even more severe problems supporting huge
pages.

Ingens is a memory manager for the OS and hypervisor
that replaces best-effort mechanisms of the past with a
coordinated, unified approach to huge pages; one that is
better targeted to the increased TLB capacity in modern
processors. Ingens does not interfere with workloads that
perform well with current huge page support: the proto-
type adds 0.7% overhead on average (Table 4). Ingens
addresses the following problems endemic to current huge

page support:
• Latency. Huge pages expose applications to high

latency variation and increased tail latency (§3.1). Ingens
improves the Cloudstone benchmark [72] by 18% and
reduces 90th percentile tail-latency by 41%.
• Bloat. Huge pages can make a process or virtual

machine (VM) occupy a large amount of physical memory
while much of that memory remains unusable due to
internal fragmentation (§3.2). For Redis, Linux bloats
memory use by 69%, while Ingens bloats by just 0.8%.
• Unfairness. Simple, greedy allocation of huge

pages is unfair, causing large and persistent performance
variation across identical processes or VMs (§3.4). Ingens
makes huge page allocation fair (e.g., Figure 5).

Ingens is a memory management redesign that brings
performance, memory savings and fairness to memory-
intensive applications with dynamic memory behavior.
It is based on two principles: (1) memory contiguity is
an explicit resource to be allocated across processes and
(2) good information about spatial and temporal access
patterns is essential to managing contiguity; it allows the
OS to tell/predict when contiguity is/will be profitably
used. Measurements of our Ingens prototype on realistic
workloads validates the approach.

2 Background
Virtual memory decouples the address space used by pro-
grams from that exported by physical memory. A page
table maps virtual to physical page number, with recently
used page table entries cached in the hardware translation
lookaside buffer (TLB). Increasing the page size increases
TLB reach (the amount of data covered by translations
cached in the TLB), but large virtual pages must be backed
by large regions of contiguous physical memory. Large
pages can suffer from internal fragmentation (unused por-
tions within the unit of allocation) and can also increase
external fragmentation (reducing the remaining supply of
contiguous physical memory).

Good huge page support is a major challenge, but the
potential performance benefits are compelling. Current
trends in memory management hardware make it increas-
ingly critical for system software to support huge pages
efficiently and flexibly. Our work on Ingens is motivated
by three important hardware trends: DRAM growth, hard-
ware virtualization with multi-dimensional page tables,
and increased TLB reach.

2.1 Hardware trends

Larger DRAM sizes have led to deeper page tables, in-
creasing the number of memory references needed to look
up a virtual page number. x86 uses a 4-level page table
(slated to increase to 5 in the near future)– in the worst
case, the number of memory references required for a
single address translation is equal to the number of levels.

Multi-dimensional page tables (e.g. Intel EPT [54], AMD
NPT [37]) require additional indirection for each level.
During translation, guest physical addresses are treated
as host virtual addresses, and each layer of lookup in
the guest can require a multi-level translation in the host,
amplifying the worst-case cost [54, 37], and increasing
average latencies [62]. Recently, Intel has improved huge
page support in hardware, increasing the number of L2
TLB entries for huge pages from zero for Sandy Bridge
and Ivy Bridge to 1,024 for Haswell [2] (2013) and 1,536
for Skylake [1] (2015).

Better hardware support for multiple page sizes is an op-
portunity for the OS and the hypervisor, but it puts stress
on current memory management designs. In addition to
managing the complexity of different page granularities,
system software must generate and maintain significant
memory contiguity to use larger page sizes.

2.2 System software support for huge pages

Early OS support for huge pages provided a separate in-
terface for explicit huge page allocation from a dedicated
huge page pool configured by the system administrator.
Windows and OS X continue to have this level of support.
In Windows, applications use an explicit memory alloca-
tion API for huge pages [19] and Windows recommends
that applications allocate huge pages all at once when
they begin. OS X applications also must set an explicit
flag in the memory allocation API to use huge pages [14].
Initial huge page support in Linux used a similar separate
interface (hugetlbfs). Alternative APIs increase com-
plexity for the developer, and render legacy applications
unable to enjoy the benefits of huge pages [6, 33].

Transparent support. Transparent huge page sup-
port [75, 63] is the only practical way to bring the benefits
of huge pages to all applications, which can remain un-
changed while the system provides them with the often
significant performance advantages of huge pages. With
transparent huge page support, the kernel allocates mem-
ory to applications using base pages. We say the kernel
promotes a sequence of 512 properly aligned pages to
a huge page (and demotes a huge page into 512 base
pages). While transparent huge page support is far more
developer-friendly than explicit allocation, it creates mem-
ory management challenges in the operating system that
Ingens addresses.

The techniques used by Ingens are not specific to
a particular OS or hypervisor but we base our origi-
nal prototype on Linux/KVM [57] as it is very widely
used [25, 15, 3]. Implementation of Ingens in the ESX hy-
pervisor is currently under way. Ingens focuses on 4 KB
base and 2 MB huge pages because these are most useful
to applications with dynamic memory behavior–1 GB are
usually too large for user data structures.

Name Suite/Application Description
429.mcf SPEC CPU 2006 [30] Single-threaded scientific computation
Canneal PARSEC 3.0 [26] Parallel scientific computation
SVM [59] Liblinear [20] Machine learning, Support vector machine
Tunkrank [8] PowerGraph [50] Large scale in-memory graph analytics
Nutch [17] Hadoop [4] Web search indexing using MapReduce
MovieRecmd [23] Spark/MLlib [5] Machine learning, Movie recommendation
Olio Cloudstone [8] Social-event Web service (ngnix/php/mysql)
Redis Redis [27] In-memory Key-value store
MongoDB MongoDB [21] In-memory NoSQL database

Table 1: Summary of memory intensive workloads.

Issue OS Hyp
Page fault latency (§3.1) O
Bloat (§3.2) O
Fragmentation (§3.3) O O
Unfair allocation (§3.4) O O
Memory sharing O

Table 2: Summary of issues in Linux
as the guest OS and KVM as the host
hypervisor.

Linux is greedy and aggressive. Linux’s huge page
management algorithms are greedy: it promotes huge
pages in the page fault handler based on local information.
Linux is also aggressive: it will always try to allocate
a huge page. Huge pages require 2 MB of contiguous
free physical memory but sometimes contiguous physical
memory is in short supply (e.g., when memory is frag-
mented). Linux’s approach to huge page allocation works
well for simple applications that allocate a large memory
region and use it uniformly, but we demonstrate many
applications that have more complex behavior and are
penalized by Linux’s greedy and aggressive promotion of
huge pages (§3). Ingens recognizes memory contiguity as
a valuable resource and explicitly manages it.

Hypervisor support for huge pages. In the hypervisor,
Ingens supports host huge pages mapped from guest phys-
ical memory. When promoting guest physical memory,
Ingens modifies the extended page table to use huge pages
because it is acting as a hypervisor, not as an operating
system. We describe a number of problems with huge
pages in §3. Some apply only to the OS, some only to the
hypervisor (summarized in Table 2).

2.3 Performance improvement from huge pages

Table 1 describes a variety of memory-intensive real-
world applications including web infrastructure such as
key/value stores and databases, as well as scientific ap-
plications, data analytics and recommendation systems.
Measurements with hardware performance counters show
they all spend a significant portion of their execution time
doing page walks. For example, when using base pages
for both guest and host, we measure 429.mcf spending
47.5% of its execution time doing page walks (24.2% for
the extended page table and 23.3% for the guest page
table). On the other hand, 429.mcf spends only 4.2%
of its execution time walking page tables when using
huge pages for both the guest and host. We execute all
workloads in a KVM virtual machine running Linux with
default transparent huge page support [75] for both the
application (in the guest) and the virtual machine (in the
host). The hardware configuration is detailed in §5.

Workloads h B g H h H g B h H g H
429.mcf 1.18 1.13 1.43
Canneal 1.11 1.10 1.32
SVM 1.14 1.17 1.53
Tunkrank 1.11 1.11 1.30
Nutch 1.01 1.07 1.12
MovieRecmd 1.03 1.02 1.11
Olio 1.43 1.08 1.46
Redis 1.12 1.04 1.20
MongoDB 1.08 1.22 1.37

Table 3: Application speed up with huge pages (2 MB) relative to host
(h) and guest (g) using base (4 KB) pages. For example, h B means the
host uses base pages and h H means the host uses base and huge pages.

Table 3 shows the performance improvements gained
with transparent huge page support for both the guest and
the host OS. The table shows speedup normalized to the
case where both host and guest use only base pages. In
every case, huge page support helps performance, often
significantly (up to 53%). The largest speedup is always
attained when both host and guest use huge pages.

3 Huge page problems
This section quantifies limitations in performance and
fairness for the state-of-the-art in transparent huge page
management, whose variety and severity motivate the
design of Ingens. The problems discussed here do not rep-
resent an exhaustive list. We refer the interested reader to
our original work with Ingens [58]. All results described
here use the experimental setup described in §2.3.

3.1 Page fault latency and synchronous promotion

When a process faults on an anonymous memory region,
the page fault handler allocates physical memory to back
the page. Base and huge pages share this code path. If an
application faults on a base page, Linux will immediately
try to upgrade the request and allocate a huge page.

This approach increases page fault latency for two
reasons. First, Linux must zero pages before returning
them to the user. Huge pages are 512× larger than base

SVM Synchronous Asynchronous
Exec. time (sec) 178 (1.30×) 228 (1.02×)
Huge page 4.8 GB 468 MB
Promotion speed immediate 1.6 MB/s

Table 4: Comparison of synchronous promotion and asynchronous
promotion when both host and guest use huge pages. The parenthesis
is speedup compared to not using huge pages. We use the default
asynchronous promotion speed of Ubuntu 14.04.

pages, and thus slower to clear. Second, huge page al-
location requires 2 MB of physically contiguous mem-
ory. If memory is fragmented, the OS must compact
memory to create that contiguity, and Linux will syn-
chronously compact memory in the page fault handler.
Because memory quickly fragments in multi-tenant cloud
environments [38], this approach increases average and
tail latency for applications.

To measure these effects, we compare page fault la-
tency when huge pages are enabled and disabled, in frag-
mented and non-fragmented settings. We quantify frag-
mentation using the free memory fragmentation index
(FMFI) [53], a value between 0 (unfragmented) and 1
(highly fragmented). A microbenchmark maps 10 GB of
anonymous virtual memory and reads it sequentially.

When memory is unfragmented (FMFI < 0.1), page
clearing overheads increase average page fault latency
from 3.6 µs for base pages only to 378 µs for huge pages
(105× slower). When memory is heavily fragmented,
(FMFI = 0.9), the 3.6 µs average latency for base pages
grows to 8.1 µs (2.1× slower) for base and huge pages.
Average latency is lower in the fragmented case because
98% of the allocations fall back to base pages (e.g. be-
cause memory is too fragmented to allocate a huge page).
Compacting and zeroing memory in the page fault handler
penalizes applications that are sensitive to average latency
and to tail latency, such as Web services.

To avoid this additional page fault latency, Linux can
promote huge pages asynchronously, based on a config-
urable asynchronous promotion speed (in MB/s). Table 4
shows performance measurements for asynchronous-only
huge page promotion when executing SVM in a virtual
machine. Asynchronous-only promotion turns a 30%
speedup into a 2% speedup: it does not promote fast
enough. Simply increasing the promotion speed does not
solve the problem: aggressive asynchronous promotion in-
curs unacceptably high CPU utilization, reducing or eras-
ing the performance benefits of huge pages [16, 13, 12, 7].

3.2 Increased memory footprint (bloat)

Huge pages improve performance, but applications do
not always fully utilize the huge pages allocated to them.
Linux greedily allocates huge pages even though under-
utilized huge pages create internal fragmentation. A huge

Workload Using huge pages Not using huge pages
Redis 20.7 GB (1.69×) 12.2 GB
MongoDB 12.4 GB (1.23×) 10.1 GB

Table 5: Physical memory size of Redis and MongoDB.

0 20 40 60 80 100
time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ag

m
en

ta
tio

n
in

de
x

Redis using huge page
Redis not using huge page

Figure 1: Fragmentation index in Linux when running a Redis server,
with Linux using (and not using) huge pages. The System has 24 GB
memory. Redis uses 13 GB, other processes use 5 GB, and system has
6 GB free memory.

page might eliminate TLB misses, but the cost is that a
process using less than a full huge page has to reserve the
entire region.

Table 5 shows memory bloat from huge pages when
running Redis and MongoDB, each within their own vir-
tual machine. For Redis, we populate 2 million keys with
8 KB objects and then delete 70% of the keys randomly.
Redis frees the memory backing the deleted objects which
leaves physical memory sparsely allocated. Linux pro-
motes the sparsely allocated memory to huge pages, creat-
ing internal fragmentation and causing Redis to use 69%
more memory compared to not using huge pages. We
demonstrate the same problem in MongoDB, making 10
million get requests for 15 million 1 KB objects which
are initially in persistent storage. MongoDB allocates the
objects sparsely in a large virtual address space. Linux
promotes huge pages including unused memory, and as
a result, MongoDB uses 23% more memory relative to
running without huge page support.

Greedy and aggressive allocation of huge pages makes
it impossible to predict an application’s total memory
usage in production because memory usage depends on
huge page use, which in turn depends on memory frag-
mentation and the allocation pattern of applications. Mem-
ory bloating can happen in any working set, memory, and
TLB size: application-level memory usage can conspire
with aggressive promotion to create internal fragmenta-
tion that the OS cannot address. In such situations, such
applications will eventually put the system under memory
pressure regardless of physical memory size.

0 100 200 300 400 500 600 700 800
time (sec)

0

500

1000

1500

2000

2500

3000

H
ug

e
pa

ge
co

ns
um

pt
io

n
(M

B
) VM3

VM1

VM2

SVM VM1 VM2 VM3
Exec. time (sec) 533 (1.12×) 589 (1.24×) 475

Figure 2: Unfair allocation of huge pages in KVM. Three virtual ma-
chines run concurrently, each executing SVM. The line graph is huge
page size (MB) over time and the table shows execution time of SVM
for 2 iterations.

3.3 Huge pages increase fragmentation

One common theme in analyzing page fault latency (§3.1)
and memory bloat (§3.2) is Linux’s greedy allocation and
promotion of huge pages. We now measure how aggres-
sive promotion of huge pages quickly consumes available
physical memory contiguity, which then increases mem-
ory fragmentation for the remaining physical memory.
Increasing fragmentation is the precondition for problems
with page fault latency and memory bloat, so greedy pro-
motion creates a vicious cycle. We again rely on the free
memory fragmentation index, or FMFI to quantify the
relationship between huge page allocation and fragmenta-
tion.

Figure 1 shows the fragmentation index over time when
running the popular key-value store application Redis in a
virtual machine. Initially, the system is lightly fragmented
(FMFI = 0.3) by other processes. Through the measure-
ment period, Redis clients populate the server with 13 GB
of key/value pairs. Redis rapidly consumes contiguous
memory as Linux allocates huge pages to it, increasing
the fragmentation index. When the FMFI is equal to 1,
the remaining physical memory is so fragmented, Linux
starts memory compaction to allocate huge pages.

3.4 Unfair performance

All measurements presented in this paper are on VMs
where Linux is the guest operating system, and KVM
(Linux’s in-kernel hypervisor) is the host hypervisor. In-
gens modifies the memory management code of both
Linux and KVM. The previous sections focused on prob-
lems with operating system memory management, the
remaining sections describe problems with KVM mem-
ory management.

Unfair huge page allocation can lead to unfair per-
formance differences when huge pages become scarce.
Linux does not fairly redistribute contiguity, which can

Promote-kth

Scan-kth

Page fault
handler

Util radix tree (per process)

Util bit vector (512 bit)

…

Physical page metadata

Access bit vector
(8 bit)

Update / Lookup

Update

Promotion
request

Code Data structures

Lookup

Identical
page sharing

service

Lookup

Huge

Base

Huge

Figure 3: Important Ingens code and data structures.

lead to unfair performance imbalance. To demonstrate
this problem, we run 4 virtual machines in a setting where
memory is initially fragmented (FMFI = 0.85). Each VM
uses 8 GB of memory. VM0 starts first and obtains all
huge pages that are available (3 GB). Later, VM1 starts
and begins allocating memory, during which VM2 and
VM3 start. VM0 then terminates, releasing its 3 GB of
huge pages. We measure how Linux redistributes that
contiguity to the remaining identical VMs.

The graph in Figure 2 shows the amount of huge page
memory allocated to VM1, VM2, and VM3 (all running
SVM) over time, starting 10 seconds before the termina-
tion of VM0. When VM1 allocates memory, Linux com-
pacts memory for huge page allocation, but compaction
begins to fail at 810 MB. VM2 and VM3 start without
huge pages. When VM0 terminates 10 seconds into the ex-
periment, Linux allocates all 3 GB of recently freed huge
pages to VM3 through asynchronous promotion. This
creates significant and persistent performance inequality
among the VMs. The table in Figure 2 shows the variation
in performance (NB: to avoid IO measurement noise, data
loading time is excluded from the measurement). In a
cloud provider scenario, with purchased VM instances of
the same type, users have good reason to expect similar
performance from identical virtual machine instances, but
VM2 is 24% slower than VM3.

4 Design and Implementation
Ingens’s goal is to enable transparent huge page support
that reduces latency, latency variability, and bloat, while
providing meaningful fairness guarantees and reasonable
tradeoffs between high performance and memory savings.
Ingens builds on a handful of basic primitives to achieve
these goals: utilization tracking, access frequency track-
ing, and contiguity monitoring. Figure 3 shows important
data structures and code paths of Ingens. Ingens is im-
plemented in Linux 4.3.0 with extensions to track page

utilization and access frequency tracking.

4.1 Monitoring space and time

Ingens introduces mechanisms to measure the utilization
of huge-page sized regions (space) and how frequently
huge-page sized regions are accessed (time). Ingens col-
lects this information efficiently and leverages it through-
out the kernel to inform policy decisions. The information
is stored as two bitvectors, called util and access.

Util bitvector. The util bitvector records which base
pages are used within each huge-page sized memory re-
gion (an aligned 2 MB region containing 512 base pages).
Each bit set in the util bitvector indicates that the corre-
sponding base page is in use. The bitvector is stored in a
radix tree and Ingens uses a huge-page number as the key
to lookup a bitvector. The page fault handler updates the
util bitvector.

Access bitvector. The access bitvector records the re-
cent access history of a process to its pages (base or huge).
Scan-kth periodically scans a process’ hardware access
bits in its page table to maintain per-page (base or huge)
access frequency information, stored as an 8-bit vector
within Linux’ page metadata. Ingens computes an expo-
nential moving average [11] from the bitvector with an
empirically chosen weight parameter.

Ingens uses Linux’s access bit tracking framework [65].
The framework adds an idle flag for each physical page
and uses hardware access bits to track when a page re-
mains unused. If the hardware sets an access bit, the
kernel clears the idle bit. The framework provides APIs
to query the idle flags and clear the access bit. Scan-kth
uses this framework to find idle memory during a periodic
(default is every 2s) scan of application memory. Scan-
kth clears the access bits at the beginning of the profiling
period and queries the idle flag at the end.

4.2 Fast page faults

To keep the page fault handling path fast, Ingens decou-
ples promotion decisions (policy) from huge page alloca-
tion (mechanism). The page fault handler decides when
to promote a huge page and signals a background thread
(called Promote-kth) to do the promotion (and alloca-
tion if necessary) asynchronously (Figure 3). Promote-kth
compacts memory if necessary and promotes the pages
identified by the page fault handler. The Ingens page
fault handler never does a high-latency huge page alloca-
tion. When Promote-kth starts executing, it has a list of
viable candidates for promotion; after promoting them,
it resumes its scan of virtual memory to find additional
candidates.

4.3 Utilization-based promotion.

Ingens explicitly and conservatively manages memory
contiguity as a resource, allocating contiguous memory

only when it decides a process (or VM) will use most
of the allocated region based on utilization. Ingens al-
locates only base pages in the page fault handler and
tracks base page allocations in the util bitvector. If a huge
page region accumulates enough allocated base pages
(90% in our prototype), the page fault handler wakes up
Promote-kth to promote the base pages to a huge page.
Utilization tracking lets Ingens mitigate memory bloating.
Because Ingens allocates contiguous resources only for
highly utilized virtual address regions, it can control in-
ternal fragmentation. The utilization threshold provides
an upper bound on memory bloat.

Utilization-based demotion. A process can free a base
page, usually by calling free. If that freed base page is
contained within a huge page, Linux demotes the huge
page instantly. For example, Redis frees objects when
deleting keys which results in a system call to free the
memory. Redis uses jemalloc [18], whose free im-
plementation makes an madvise system call with the
MADV_DONTNEED flag to release the memory1. Linux
demotes the huge page that contains the freed base page.

Demoting in-use huge pages hurts performance. Con-
sequently, Ingens defers the demotion of high utilization
huge pages. When a base page is freed within a huge
page, Ingens clears the bit for the page in the util bitvec-
tor. When utilization drops below a threshold, Ingens
demotes the huge page and frees the base pages whose
bits are clear in the util bitvector.

4.4 Proactive batched compaction

Maintaining available free contiguous memory is impor-
tant to satisfy large size allocation requests required when
Ingens decides to promote a region to a huge page, or to
satisfy other system-level contiguity in service of, for ex-
ample, device drivers or user-level DMA. To this end, In-
gens monitors the fragmentation state of physical memory
and proactively compacts memory to reduce the latency
of large contiguous allocations.

Ingens controls memory fragmentation by keeping
FMFI below a threshold (that defaults to 0.8). Proactive
compaction happens in Promote-kth after performing pe-
riodic scanning. Aggressive proactive compaction causes
high CPU utilization, interfering with user applications.
Ingens limits the maximum amount of compacted mem-
ory to 100 MB per compaction. Compaction moves pages,
which necessitates TLB shootdowns. Ingens avoids mov-
ing frequently accessed pages.

4.5 Proportional promotion manages contiguity

Ingens monitors and distributes memory contiguity fairly
among processes and VMs, employing techniques for
proportional fair sharing of memory with an idleness

1TCMalloc [32] also functions this way.

penalty [76]. Each process has a share priority for mem-
ory that begins at an arbitrary but standard value (e.g,
10,000). Ingens allocates huge pages in proportion to the
share value. Ingens counts infrequently accessed pages as
idle memory and imposes a penalty for the idle memory.
An application that has received many huge pages but is
not using them actively does not get more.

We adapt ESX’s adjusted shares-per-page ratio [76] to
express our per-process memory promotion metric mathe-
matically as follows.

M =
S

H · (f + τ(1− f))
(1)

where S is a process’ (or virtual machine’s or con-
tainer’s) huge page share priority and H is the number
of bytes backed by huge pages allocated to the process.
(f +τ(1− f)) is a penalty factor for idle huge pages. f is
the fraction of idle huge pages relative to the total number
of huge pages used by this process (0≤ f ≤ 1) and τ , with
0 < τ ≤ 1, is a parameter to control the idleness penalty.
Larger values of M receive higher priority for huge page
promotion. A kernel thread (called Scan-kth) peri-
odically profiles the idle fraction of huge pages in each
process and updates the value of M for fair promotion.

4.6 Fair promotion

Promote-kth performs fair allocation of contiguity using
the promotion metric. When contiguity is contended,
fairness is achieved when all processes have a priority-
proportional share of the available contiguity. Mathe-
matically this is achieved by minimizing O , defined as
follows:

O = ∑
i
(Mi−M̄)2 (2)

The Mi indicates the promotion metric of process/VM i
and M̄ is the mean of all process’ promotion metrics.
Intuitively, the formula characterizes how much process’
contiguity allocation (Mi) deviates from a fair state (M̄):
in a perfectly fair state, all the Mi equal M̄ , yielding a
0-valued O . We optimize O , by iteratively selecting the
process with the biggest Mi, scanning its address space
to promote huge pages, and updating Mi and O .

Promote-kth runs as a background kernel thread and
schedules huge page promotions (replacing Linux’s
khugepaged). Promote-kth maintains two priority lists:
high and normal. The high priority list is a global list
containing promotion requests from the page fault handler
and the normal priority list is a per-application list filled
in as Promote-kth periodically scans the address space.
The page fault handler or a periodic timer wakes Promote-
kth, which then examines the two lists and promotes in
priority order.

42
9.

m
cf

Tu
nk

ra
nk

M
ov

ie
R

ec
m

d
S

V
M

R
ed

is
O

lio
M

on
go

D
B

N
ut

ch
B

la
ck

sc
ho

le
s

B
od

yt
ra

ck
C

an
ne

al
D

ed
up

Fa
ce

si
m

Fe
rr

et
Fl

ui
da

ni
m

at
e

Fr
eq

m
in

e
R

ay
tra

ce
S

tre
am

cl
us

te
r

S
w

ap
tio

ns
V

ip
s

X
26

4
Av

g.

0.0%

1.0%

2.0%

3.0%

S
lo

w
do

w
n

Ingens overhead

Figure 4: Performance slowdown of utilization-based promotion relative
to Linux when memory is not fragmented.

5 Evaluation
We evaluate Ingens using the applications in Table 1,
comparing against the performance of Linux THP. Ex-
periments are performed on two Intel Xeon E5-2640 v3
2.60GHz CPUs (Haswell) with 64 GB memory and two
256 MB SSDs. We use Linux 4.3 and Ubuntu 14.04 for
both the guest and host system. Our experiments use only
4 KB and 2 MB huge pages. We set the number of vCPUs
equal to the number of application threads.

We characterize the overheads of Ingens’s basic mech-
anisms such as access tracking and utilization-based
huge page promotion. We evaluate the performance of
utilization-based promotion and demotion and Ingens abil-
ity to provide fairness across applications using huge
pages. We use a single configuration to evaluate Ingens
which is consistent with our examples in Sections 4 and
4: utilization threshold is 90%, Scan-kth period is 10s,
access frequency tracking interval is 2 sec, and sampling
ratio is 20%. Proactive batched compaction happens when
FMFI is below 0.8, with an interval of 5 seconds; the max-
imum amount of compacted memory is 100MB; and a
page is frequently accessed if Ft ≥ 6.

5.1 Ingens overhead

Figure 4 shows the overheads introduced by Ingens for
memory intensive workloads. To evaluate the perfor-
mance of utilization-based huge page promotion in the
unfragmented case, we run a number of benchmarks and
compare their run time with Linux. Ingens’s utilization-
based huge page promotion slows applications down 3.0%
in the worst case and 0.7% on average. The slowdowns
stem primarily from Ingens not promoting huge pages
as aggressively as Linux, so the workload executes with
slower base pages for a short time until Ingens promotes
huge pages. A secondary overhead stems from the com-
putation of huge page utilization.

To verify that Ingens does not interfere with the perfor-
mance of “normal” workloads, we measure an average
performance penalty of 0.8% across the entire PARSEC
3.0 benchmark suite. Additional overheads for proactive
compaction depend on the frequency of compaction and
the amount of data compacted: compacting 100MB every
2 seconds induces an additional 1.3% CPU utilization.

Linux Ingens
922.3 1091.9 (1.18×)

(a) Throughput of full operation mix (requests/sec and speedup
normalized to Linux).

Event view Homepage visit Tag search
Linux Ingens Linux Ingens Linux Ingens

Average 478 338 236 207 289 240
90th 605 354 372 226 417 299
MAX 694 649 379 385 518 507

(b) Latency (millisecond) of read-dominant operations.

Table 6: Performance result of Cloudstone WEB 2.0 Benchmark (Olio)
when memory is fragmented.

Access tracking for MongoDB using 10.7 GB induces
11.4%.

5.2 Utilization-based promotion

To evaluate Ingens’s utilization-based huge page promo-
tion, we compare a mix of operations from the Cloudstone
WEB 2.0 benchmark, which simulates a social event web-
site. Cloudstone models a LAMP stack, consisting of a
web server (nginx), PHP, and MySQL. We run Cloudstone
in a KVM virtual machine and use the Rain workload gen-
erator [42] for load.

We compare throughput and latency for Cloudstone on
Linux and Ingens when memory is fragmented from prior
activity (FMFI = 0.9). To cause fragmentation, we run a
program that allocates a large region of memory and then
partially frees it.

We use Cloudstone’s default operation mix: 85% read
(viewing events, visiting homepage, and searching event
by tag), 10% login, and 5% write (adding new events and
inviting people). Our test database has 7,000 events, 2,000
people, and 900 tags. Table 6 (a) shows the throughput
attained by the benchmark running on Linux and Ingens.
achieves a speedup of 1.18× over Linux. Table 6 (b)
shows average and tail latency of the read operations in
the benchmark. Ingens reduces an average latency up to
29.2% over Linux. In the tail, the reduction improves
further, up to 41.4% at the 90th percentile.

Performance for Ingens improves because it reduces
the average page-fault latency by not compacting memory
synchronously in the page fault handler. We measure
461,383 page compactions throughout the run time of the
benchmark in Linux when memory is fragmented.

When memory is not fragmented, Ingens reduces
throughput by 13.4% and increases latency up to 18.1%
compared with Linux. The benchmark contains many
short-lived requests and Linux’s greedy huge page allo-
cation pays off by drastically reducing the total number
of page faults. Ingens is less aggressive about huge page
allocation to avoid memory bloat, so it incurs many more

Linux-nohuge Linux Ingens-90% Ingens-70% Ingens-50%
12.2 GB 20.7 GB 12.3 GB 12.9 GB 17.8 GB

(a) Redis memory consumption in different configurations. The
percentage in the label is a utilization threshold.

Throughput 90th lat. 99th lat. 99.9th lat.
Linux-nohuge 19.0K 4 5 109
Linux 21.7K 3 4 8
Ingens-90% 20.9K 3 4 64
Ingens-70% 21.1K 3 4 55
Ingens-50% 21.6K 3 4 23

(b) Redis GET Performance: Throughput (operations/sec) and
latency (millisecond).

Table 7: Redis memory use and performance.

page faults.

Ingens copes with this performance problem with an
adaptive policy. When memory fragmentation is below
0.5 Ingens mimics Linux’s aggressive huge page alloca-
tion. This policy restores Ingens’s performance to Linux’s
levels. However, while bloat (§3.2) is not a problem for
this workload, the adaptive policy increases risk of bloat
in the general case. Like any management problem, it
might not be possible to find a single policy that has every
desirable property for a given workload. We verified that
this policy performs similarly to the default policy used
in Table 4, but it is most appropriate for workloads with
many short-lived processes.

5.3 Memory bloating evaluation

To evaluate Ingens’s ability to minimize memory bloating
without impacting performance, we evaluate the memory
use and throughput of a benchmark using the Redis key-
value store. Redis is known to be susceptible to memory
bloat, as its memory allocations are often sparse. To create
a sparse address space in our benchmark, we first populate
Redis with 2 million keys, each with 8 KB objects and
then delete 70% of the key space using a random pattern.
We then measure the GET performance using the bench-
mark tool shipped with Redis. For Ingens, we evaluate
different utilization thresholds for huge page promotion.

Table 7 shows that memory use for the 90% and 70%
utilization-based configurations is very close to the case
where only base pages are used. Only at 50% utiliza-
tion does Ingens approach the memory use of Linux’s
aggressive huge page promotion.

The throughput and latency of the utilization-based
approach is very close to using only huge pages. Only
in the 99.9th percentile does Ingens deviate from Linux
using huge pages only, while still delivering much better
tail latency than Linux using base pages only.

0 50 100 150 200 250
100
200
300
400
500
600
700
800
900

1000
H

ug
e

pa
ge

co
ns

um
p.

(M
B

) Ingens huge page promotion

Canneal-1
Canneal-2
Canneal-3

0 50 100 150 200 250

time (sec)

100
200
300
400
500
600
700
800
900

1000

H
ug

e
pa

ge
co

ns
um

p.
(M

B
) Linux huge page promotion

Canneal-1
Canneal-2
Canneal-3

Canneal-1 Canneal-2 Canneal-3
Linux 181 192 195
Ingens 186 186 187

Figure 5: Huge page consumption (MB) and execution time (second).
3 instances of canneal (Parsec 3.0 benchmark) run concurrently and
Promote-kth promotes huge pages. Execution time in the table excludes
data loading time.

5.4 Fair huge page promotion

Ingens guarantees a fair distribution of huge pages. If
applications have the same share priority (§4.5), Ingens
provides the same amount of huge pages. To evaluate fair-
ness, we run a set of three identical applications concur-
rently with the same share priority and idleness parameter,
and measure the amount of huge pages each one holds at
any point in time.

Figure 5 shows that Linux does not allocate huge pages
fairly, it simply allocates huge pages to the first applica-
tion that can use them (Canneal-1). In fact, Linux asyn-
chronously promotes huge pages by scanning linearly
through each application’s address space, only consid-
ering the next application when it is finished with the
current application. Time 160 is when Linux has pro-
moted almost all of Canneal-1’s address space to huge
pages so only then does it begin to allocate huge pages to
Canneal-2.

In contrast, Ingens promotes huge pages based on
the fairness objective described in Section 4.6 and thus
equally distributes the available huge pages to each appli-
cation. Fair distribution of huge pages translates to fair
end-to-end execution time as well. All applications finish
at the same time in Ingens, while Canneal-1 finishes well
before 2 and 3 on Linux.

6 Related work

Virtual memory is an active research area. Our evidence
of performance degradation from address translation over-
heads is well-corroborated [41, 49, 44, 62].

Operating system support. Navarro et al. [63] imple-
ment OS support for multiple page sizes with contiguity-
awareness and fragmentation reduction as primary con-
cerns. Ingens’s utilization-based promotion uses a util
bitvector that is similar to the population map [63]. In
contrast to that work, Ingens does not use reservation-
based allocation, decouples huge page allocation from
promotion decisions, and redistributes contiguity fairly
when it becomes available (e.g., after process termina-
tion). Gorman et al. [51] propose a placement policy
for an OS’s physical page allocator that mitigates frag-
mentation and promotes contiguity by grouping pages
according to relocatability. Subsequent work [52] pro-
poses a software-exposed interface for applications to
explicitly request huge pages like libhugetlbfs [60].

Hardware support. TLB miss overheads can be re-
duced by accelerating page table walks [39, 43] or re-
ducing their frequency [48]; by reducing the number of
TLB misses (e.g. through prefetching [45, 55, 69], pre-
diction [64], or structural change to the TLB [74, 67, 66]
or TLB hierarchy [44, 61, 73, 36, 35, 56, 41, 49]).

A number of related works propose hardware support
to recover and expose contiguity. GLUE [68] groups
contiguous, aligned small page translations under a single
speculative huge page translation in the TLB. Speculative
translations, (similar to SpecTLB [40]) can be verified
by off-critical-path page-table walks, reducing effective
page-table walk latency. GTSM [46] provides hardware
support to leverage contiguity of physical memory extents
even when pages have been retired due to bit errors. Were
such features to become available, hardware mechanisms
for preserving contiguity could reduce overheads induced
by proactive compaction in Ingens.

7 Conclusion
Hardware vendors are betting on huge pages to make
address translation overheads acceptable as memory ca-
pacities continue to grow. Ingens provides principled, co-
ordinated transparent huge page support for the operating
system and hypervisor, enabling challenging workloads
to achieve the expected benefits of huge pages, without
harming workloads that are well served by state-of the art
huge page support. Ingens reduces tail-latency and bloat,
while improving fairness and performance.

References
[1] http://www.7-cpu.com/cpu/Skylake.html. [Ac-

cessed April, 2016].

[2] http://www.7-cpu.com/cpu/Haswell.html. [Ac-
cessed April, 2016].

[3] Apache Cloudstack. https://en.wikipedia.org/
wiki/Apache_CloudStack. [Accessed April, 2016].

[4] Apache Hadoop. http://hadoop.apache.org/. [Ac-
cessed April, 2016].

http://www.7-cpu.com/cpu/Skylake.html
http://www.7-cpu.com/cpu/Haswell.html
https://en.wikipedia.org/wiki/Apache_CloudStack
https://en.wikipedia.org/wiki/Apache_CloudStack
http://hadoop.apache.org/

[5] Apache Spark. http://spark.apache.org/docs/
latest/index.html. [Accessed April, 2016].

[6] Application-friendly kernel interfaces. https://lwn.net/
Articles/227818/. [March, 2007].

[7] Cloudera recommends turning off memory compaction due
to high CPU utilization. http://www.cloudera.com/
documentation/enterprise/latest/topics/cdh_
admin_performance.html. [Accessed April, 2016].

[8] Cloudsuite. http://parsa.epfl.ch/cloudsuite/
graph.html. [Accessed April, 2016].

[9] CouchBase recommends disabling huge pages. http:
//blog.couchbase.com/often-overlooked-
linux-os-tweaks. [March, 2014].

[10] DokuDB recommends disabling huge pages. https:
//www.percona.com/blog/2014/07/23/why-
tokudb-hates-transparent-hugepages/. [July,
2014].

[11] Exponential moving average. https://en.wikipedia.
org/wiki/Moving_average#Exponential_moving_
average. [Accessed April, 2016].

[12] High CPU utilization in Hadoop due to transparent huge
pages. https://www.ghostar.org/2015/02/
transparent-huge-pages-on-hadoop-makes-
me-sad/. [February, 2015].

[13] High CPU utilization in Mysql due to transparent huge
pages. http://developer.okta.com/blog/2015/
05/22/tcmalloc. [May, 2015].

[14] Huge page support in Mac OS X. https://developer.
apple.com/legacy/library/documentation/
Darwin/Reference/ManPages/man2/mmap.2.html.
[Accessed April-2016].

[15] IBM cloud with KVM hypervisor. http://
www.networkworld.com/article/2230172/
opensource-subnet/red-hat-s-kvm-
virtualization-proves-itself-in-ibm-s-
cloud.html. [March, 2010].

[16] IBM recommends turning off huge pages due to high CPU uti-
lization. http://www-01.ibm.com/support/docview.
wss?uid=swg21677458. [July, 2014].

[17] Intel HiBench. https://github.com/intel-hadoop/
HiBench/tree/master/workloads. [Accessed April,
2016].

[18] Jemalloc. http://www.canonware.com/jemalloc/.
[Accessed April-2016].

[19] Large-page support in Windows. https://msdn.
microsoft.com/en-us/library/windows/
desktop/aa366720(v=vs.85).aspx. [Accessed
April-2016].

[20] Liblinear. https://www.csie.ntu.edu.tw/˜cjlin/
liblinear/. [Accessed April, 2016].

[21] MongoDB. https://www.mongodb.com/. [Accessed
April, 2016].

[22] MongoDB recommends disabling huge pages. https://docs.
mongodb.org/manual/tutorial/transparent-
huge-pages/. [Accessed April, 2016].

[23] Movie recommendation with Spark. http://ampcamp.
berkeley.edu/big-data-mini-course/movie-
recommendation-with-mllib.html. [Accessed April,
2016].

[24] NuoDB recommends disabling huge pages. http:
//www.nuodb.com/techblog/linux-transparent-
huge-pages-jemalloc-and-nuodb. [May, 2014].

[25] OpenStack. https://openvirtualizationalliance.
org/what-kvm/openstack. [Accessed April-2016].

[26] PARSEC 3.0 benchmark suite. http://parsec.cs.
princeton.edu/. [Accessed April, 2016].

[27] Redis. http://redis.io/. [Accessed April, 2016].

[28] Redis recommends disabling huge pages. http://redis.io/
topics/latency. [Accessed April, 2016].

[29] SAP IQ recommends disabling huge pages. http://scn.sap.
com/people/markmumy/blog/2014/05/22/sap-iq-
and-linux-hugepagestransparent-hugepages.
[May, 2014].

[30] SPEC CPU 2006. https://www.spec.org/cpu2006/.
[Accessed April, 2016].

[31] Splunk recommends disabling huge pages. http:
//docs.splunk.com/Documentation/Splunk/6.
1.3/ReleaseNotes/SplunkandTHP. [December, 2013].

[32] Thread-caching malloc. http://goog-perftools.
sourceforge.net/doc/tcmalloc.html. [Accessed
April-2016].

[33] Transparent huge pages in 2.6.38. https://lwn.net/
Articles/423584/. [January, 2011].

[34] VoltDB recommends disabling huge pages. https://docs.
voltdb.com/AdminGuide/adminmemmgt.php. [Ac-
cessed April, 2016].

[35] J. Ahn, S. Jin, and J. Huh. Revisiting hardware-assisted page
walks for virtualized systems. In International Symposium on
Computer Architecture (ISCA), 2012.

[36] J. Ahn, S. Jin, and J. Huh. Fast two-level address translation for
virtualized systems. In IEEE Transactions on Computers, 2015.

[37] AMD. AMD-V Nested Paging, 2010. http://developer.
amd.com/wordpress/media/2012/10/NPT-WP-
1%201-final-TM.pdf.

[38] J. Araujo, R. Matos, P. Maciel, R. Matias, and I. Beicker. Ex-
perimental evaluation of software aging effects on the eucalyptus
cloud computing infrastructure. In Middleware Industry Track
Workshop, 2011.

[39] T. W. Barr, A. L. Cox, and S. Rixner. Translation caching: Skip,
don’t walk (the page table). In International Symposium on Com-
puter Architecture (ISCA), 2010.

[40] T. W. Barr, A. L. Cox, and S. Rixner. Spectlb: A mechanism for
speculative address translation. In International Symposium on
Computer Architecture (ISCA), 2011.

[41] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift. Ef-
ficient virtual memory for big memory servers. In International
Symposium on Computer Architecture (ISCA), 2013.

[42] A. Beitch, B. Liu, T. Yung, R. Griffith, A. Fox, and D. Patterson.
Rain: A workload generation toolkit for cloud computing applica-
tions. In U.C. Berkeley Technical Publications (UCB/EECS-2010-
14), 2010.

[43] A. Bhattacharjee. Large-reach memory management unit caches.
In International Symposium on Microarchitecture, 2013.

[44] A. Bhattacharjee, D. Lustig, and M. Martonosi. Shared last-level
TLBs for chip multiprocessors. In IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2011.

[45] A. Bhattacharjee and M. Martonosi. Characterizing the TLB be-
havior of emerging parallel workloads on chip multiprocessors. In
International Conference on Parallel Architectures and Compila-
tion Techniques (PACT), 2009.

http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
https://lwn.net/Articles/227818/
https://lwn.net/Articles/227818/
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_admin_performance.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_admin_performance.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_admin_performance.html
http://parsa.epfl.ch/cloudsuite/graph.html
http://parsa.epfl.ch/cloudsuite/graph.html
http://blog.couchbase.com/often-overlooked-linux-os-tweaks
http://blog.couchbase.com/often-overlooked-linux-os-tweaks
http://blog.couchbase.com/often-overlooked-linux-os-tweaks
https://www.percona.com/blog/2014/07/23/why-tokudb-hates-transparent-hugepages/
https://www.percona.com/blog/2014/07/23/why-tokudb-hates-transparent-hugepages/
https://www.percona.com/blog/2014/07/23/why-tokudb-hates-transparent-hugepages/
https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
https://www.ghostar.org/2015/02/transparent-huge-pages-on-hadoop-makes-me-sad/
https://www.ghostar.org/2015/02/transparent-huge-pages-on-hadoop-makes-me-sad/
https://www.ghostar.org/2015/02/transparent-huge-pages-on-hadoop-makes-me-sad/
http://developer.okta.com/blog/2015/05/22/tcmalloc
http://developer.okta.com/blog/2015/05/22/tcmalloc
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man2/mmap.2.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man2/mmap.2.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man2/mmap.2.html
http://www.networkworld.com/article/2230172/opensource-subnet/red-hat-s-kvm-virtualization-proves-itself-in-ibm-s-cloud.html
http://www.networkworld.com/article/2230172/opensource-subnet/red-hat-s-kvm-virtualization-proves-itself-in-ibm-s-cloud.html
http://www.networkworld.com/article/2230172/opensource-subnet/red-hat-s-kvm-virtualization-proves-itself-in-ibm-s-cloud.html
http://www.networkworld.com/article/2230172/opensource-subnet/red-hat-s-kvm-virtualization-proves-itself-in-ibm-s-cloud.html
http://www.networkworld.com/article/2230172/opensource-subnet/red-hat-s-kvm-virtualization-proves-itself-in-ibm-s-cloud.html
http://www-01.ibm.com/support/docview.wss?uid=swg21677458
http://www-01.ibm.com/support/docview.wss?uid=swg21677458
https://github.com/intel-hadoop/HiBench/tree/master/workloads
https://github.com/intel-hadoop/HiBench/tree/master/workloads
http://www.canonware.com/jemalloc/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366720(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366720(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366720(v=vs.85).aspx
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.mongodb.com/
https://docs.mongodb.org/manual/tutorial/transparent-huge-pages/
https://docs.mongodb.org/manual/tutorial/transparent-huge-pages/
https://docs.mongodb.org/manual/tutorial/transparent-huge-pages/
http://ampcamp.berkeley.edu/big-data-mini-course/movie-recommendation-with-mllib.html
http://ampcamp.berkeley.edu/big-data-mini-course/movie-recommendation-with-mllib.html
http://ampcamp.berkeley.edu/big-data-mini-course/movie-recommendation-with-mllib.html
http://www.nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb
http://www.nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb
http://www.nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb
https://openvirtualizationalliance.org/what-kvm/openstack
https://openvirtualizationalliance.org/what-kvm/openstack
http://parsec.cs.princeton.edu/
http://parsec.cs.princeton.edu/
http://redis.io/
http://redis.io/topics/latency
http://redis.io/topics/latency
http://scn.sap.com/people/markmumy/blog/2014/05/22/sap-iq-and-linux-hugepagestransparent-hugepages
http://scn.sap.com/people/markmumy/blog/2014/05/22/sap-iq-and-linux-hugepagestransparent-hugepages
http://scn.sap.com/people/markmumy/blog/2014/05/22/sap-iq-and-linux-hugepagestransparent-hugepages
https://www.spec.org/cpu2006/
http://docs.splunk.com/Documentation/Splunk/6.1.3/ReleaseNotes/SplunkandTHP
http://docs.splunk.com/Documentation/Splunk/6.1.3/ReleaseNotes/SplunkandTHP
http://docs.splunk.com/Documentation/Splunk/6.1.3/ReleaseNotes/SplunkandTHP
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://lwn.net/Articles/423584/
https://lwn.net/Articles/423584/
https://docs.voltdb.com/AdminGuide/adminmemmgt.php
https://docs.voltdb.com/AdminGuide/adminmemmgt.php
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf

[46] Y. Du, M. Zhou, B. Childers, D. Mosse, and R. Melhem. Sup-
porting superpages in non-contiguous physical memory. In IEEE
International Symposium on High Performance Computer Archi-
tecture (HPCA), 2015.

[47] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi.
Clearing the clouds: A study of emerging scale-out workloads on
modern hardware. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVII, pages 37–48, New York,
NY, USA, 2012. ACM.

[48] J. Gandhi, , M. D. Hill, and M. M. Swift. Exceeding the best
of nested and shadow paging. In International Symposium on
Computer Architecture (ISCA), 2016.

[49] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift. Efficient memory
virtualization. In International Symposium on Microarchitecture,
2014.

[50] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on natural
graphs. In Presented as part of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 12), pages
17–30, Hollywood, CA, 2012. USENIX.

[51] M. Gorman and P. Healy. Supporting superpage allocation without
additional hardware support. In Proceedings of the 7th Interna-
tional Symposium on Memory Management, 2008.

[52] M. Gorman and P. Healy. Performance characteristics of explicit
superpage support. In Workshorp on the Interaction between
Operating Systems and Computer Architecture (WIOSCA), 2010.

[53] M. Gorman and A. Whitcroft. The what, the why and the where
to of anti-fragmentation. In Linux Symposium, 2005.

[54] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developers Manual, 2016. https://www-
ssl.intel.com/content/dam/www/public/us/en/
documents/manuals/64-ia-32-architectures-
software-developer-manual-325462.pdf.

[55] G. B. Kandiraju and A. Sivasubramaniam. Going the distance for
TLB prefetching: An application-driven study. In International
Symposium on Computer Architecture (ISCA), 2002.

[56] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S.
McKinley, M. Nemirovsky, M. M. Swift, and O. nsal. Redun-
dant memory mappings for fast access to large memories. In
International Symposium on Computer Architecture (ISCA), 2015.

[57] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM:
The linux virtual machine monitor. In Linux Symposium, 2007.

[58] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel. Co-
ordinated and efficient huge page management with ingens. In
12th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 16), pages 705–721, GA, 2016. USENIX
Association.

[59] C.-P. Lee and C.-J. Lin. Large-scale linear RankSVM. Neural
Comput., 26(4):781–817, Apr. 2014.

[60] Huge Pages Part 2 (Interfaces). https://lwn.net/
Articles/375096/. [February, 2010].

[61] D. Lustig, A. Bhattacharjee, and M. Martonosi. TLB improve-
ments for chip multiprocessors: Inter-core cooperative prefetchers
and shared last-level TLBs. ACM Transactions on Architecture
and Code Optimization (TACO), 2013.

[62] T. Merrifield and H. R. Taheri. Performance implications of ex-
tended page tables on virtualized x86 processors. In Proceedings
of the12th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, VEE ’16, pages 25–35, New
York, NY, USA, 2016. ACM.

[63] J. Navarro, S. Iyer, P. Druschel, and A. Cox. Practical, transparent
operating system support for superpages. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2002.

[64] M.-M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos.
Prediction-based superpage-friendly TLB designs. In IEEE Inter-
national Symposium on High Performance Computer Architecture
(HPCA), 2015.

[65] Idle Page Tracking. http://lxr.free-electrons.com/
source/Documentation/vm/idle_page_tracking.
txt. [November, 2015].

[66] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh. Increas-
ing TLB reach by exploiting clustering in page translations. In
IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2014.

[67] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee. CoLT:
Coalesced large-reach TLBs. In International Symposium on
Microarchitecture, 2012.

[68] B. Pham, J. Vesely, G. Loh, and A. Bhattacharjee. Large pages
and lightweight memory management in virtualized systems: Can
you have it both ways? In International Symposium on Microar-
chitecture, 2015.

[69] A. Saulsbury, F. Dahlgren, and P. Stenström. Recency-based TLB
preloading. In International Symposium on Computer Architecture
(ISCA), 2000.

[70] T. Shanley. Pentium Pro Processor System Architecture. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1996.

[71] R. L. Sites and R. T. Witek. ALPHA architecture reference manual.
Digital Press, Boston, Oxford, Melbourne, 1998.

[72] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,
A. Klepchukov, S. Patil, O. Fox, and D. Patterson. Cloudstone:
Multi-platform, multi-language benchmark and measurement tools
for web 2.0, 2008.

[73] S. Srikantaiah and M. Kandemir. Synergistic tlbs for high perfor-
mance address translation in chip multiprocessors. In International
Symposium on Microarchitecture, 2010.

[74] M. Talluri and M. D. Hill. Surpassing the TLB performance of
superpages with less operating system support. In International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 1994.

[75] Transparent Hugepages. https://lwn.net/Articles/
359158/. [October, 2009].

[76] C. A. Waldspurger. Memory resource management in VMware
ESX server. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2002.

https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://lwn.net/Articles/375096/
https://lwn.net/Articles/375096/
http://lxr.free-electrons.com/source/Documentation/vm/idle_page_tracking.txt
http://lxr.free-electrons.com/source/Documentation/vm/idle_page_tracking.txt
http://lxr.free-electrons.com/source/Documentation/vm/idle_page_tracking.txt
https://lwn.net/Articles/359158/
https://lwn.net/Articles/359158/

	Introduction
	Background
	Hardware trends
	System software support for huge pages
	Performance improvement from huge pages

	Huge page problems
	Page fault latency and synchronous promotion
	Increased memory footprint (bloat)
	Huge pages increase fragmentation
	Unfair performance

	Design and Implementation
	Monitoring space and time
	Fast page faults
	Utilization-based promotion.
	Proactive batched compaction
	Proportional promotion manages contiguity
	Fair promotion

	Evaluation
	Ingens overhead
	Utilization-based promotion
	Memory bloating evaluation
	Fair huge page promotion

	Related work
	Conclusion

