
May 20, 2013

Anon-Pass:
Practical Anonymous Subscriptions

Michael Z. Lee†, Alan M. Dunn†,

Jonathan Katz*, Brent Waters†, Emmett Witchel†

† University of Texas at Austin
* University of Maryland

-2-

Media Subscriptions

Unlimited access subscriptions

-3-

Let’s build a service

♫♪♩♬

♫♪♫♩
♪♩

1234…

2345…

1234…

Sharing Resistance

(admission control)

X

-4-

They are collecting information about you.

-5-

Song 1

time

Song 2

Anonymous Media

1234… 8720…

Accesses can’t be correlated

Unlinkability

-6-

Linked accesses

could deanonymize

users

The Netflix Prize dataset

[Narayanan, Shmatikov 2008]

Social networks

[Narayanan, Shmatikov 2009]

Access patterns for enough time

could help deanonymize clients

-7-

But even if tokens are

unlinkable…

♫♪♩♬

1234…

128.83.122.105 141.212.15.125

8720…

37.130.227.133 128.83.122.105

We assume clients are using

a network anonymity service

-8-

Anonymous

Music Service

♫♪♩♬
8720…

1234…

Straw Man

7964…

1910…

8739…

2372…

3141…

Unlinkability

but not sharing resistance

-9-

How do we get both?

Unlinkable Serial Transactions [Syverson et al. 1997]

Sharing resistance, unlinkability

Anonymous Blacklisting Systems [Tsang et al. 2008]

Sharing resistance, unlinkability

but needs unbounded storage

but computationally expensive

-10-

And also be

practical?
Unlinkable Serial Transactions [Syverson et al. 1997]

Sharing resistance, unlinkability

Anonymous Blacklisting Systems [Tsang et al. 2008]

Sharing resistance, unlinkability

but needs unbounded storage

but computationally expensive

Anon-Pass

Sharing resistance, unlinkability, and efficiency

Example: over 12,000 concurrent clients

-11-

How?

How is Anon-Pass built?

How is Anon-Pass used?

How does Anon-Pass perform?

-12-

How is it built?

t–1 t t+1 t+2

time

Split up time into epochs

Each user has a unique token

Each epoch allows a new, unpredictable token

for an epoch

1234…

-13-

t–1 t t+1 t+2

time

Each user has a unique token for an epoch

Each epoch allows a new, unpredictable token

PRF (t) PRF

How is it built?

Split up time into epochs

Use a pseudorandom function (PRF)

<- 1234…

-14-

High Level

Protocols

Register

Get a blinded signature on a secret

Login

Prove the token used the signed secret

(in zero knowledge)

-15-

Song 1 Song 2

Anonymous

Music Service

t–1 t t+1 t+2

time

PRF (t) PRF (t+2)

1234… 8720…

-16-

t–1 t t+1 t+2

time

Anonymous

Music Service
But songs don’t always fit in one epoch

1234… 8720… 5629… PRF (t) PRF (t+1) PRF (t+2)

Song 1

-17-

t–1 t t+1 t+2

time

Conditional Linkability

Anonymous

Music Service
But songs don’t always fit in one epoch

And these accesses are implicitly linked

1234… 8720… 5629…

-18-

Accesses can be

implicitly linked

The service knows when the

same song is repeatedly accessed

Client is implicitly linked

while accessing the same media

And unlinkability costs

the service provider

(and therefore harms the system)

Baby+ 0s

Baby+15s

Baby+30s

Baby+45s

Baby+60s

Baby+75s

Baby+90s

….

-19-

Re-Up

Prove the current token and

the next token are linked

Trades unlinkability for efficiency

But the client already lost unlinkability

while accessing the same media

Our way of getting

conditional linkability

-20-

Re-Up is more

efficient

Login proves you should be allowed access

Login takes 10 expensive operations

Re-Up proves you logged in before

Re-Up takes only 2

-21-

Using Login and Re-

Up

t–1 t t+1 t+2

time

A client must Login to start a new song

And Re-Up to continue playing the same song

To be unlinkable again, the client must wait

until the next epoch

Re-Up Re-Up

-22-

Epoch Lengths:

Long vs. Short
A short epoch means less time to be unlinkable

And less delay between client actions

Happy Clients

A long epoch means fewer client requests

And lower server load

Happy Server

Choosing an epoch length depends on the service

(e.g., 15 seconds for music, 5 minutes for movies)

-23-

Re-Up helps balance

this tension

Short epochs means less wait

between unlinkable actions

Re-Up instead of Login

reduces server load

-24-

And Anon-Pass is

formally proven

Formal proof of security holds under

the DDHI assumption

Stated and proved in the paper

Formal proof of soundness holds under

the LRSW assumption

-25-

How?

How is Anon-Pass built?

How is Anon-Pass used?

How does Anon-Pass perform?

-26-

Anonymous Music Streaming

Music download over normal HTTP

Unlimited-use Subway Pass

NYC’s “unlimited” pass

Account Proxy

Multiplex accounts to news sites

15 second epoch

6 minute epoch

1 minute epoch

How could it be

used?

-27-

System Architecture

Client

Application

subscription service my laptop

Application

Server ♪

-28-

System Architecture
subscription service my laptop

Authentication

Server

User Agent

Client

Application

Application

Server ♪

-29-

System Architecture
subscription service my laptop

Gatewa

y

Application

Server ♪ Client

Application

User Agent

Authentication

Server
3rd party

service

-30-

User Agent

Purpose: minimize changes to client applications

Job: Create Login and Re-Up requests

 Keep the user secret secure

Modified VLC to anonymously stream (54 LoC)

No modifications to support browsers

-31-

 Authentication

Server
Purpose: enforce sharing resistance

Job: Verify tokens and token uniqueness

 Record active tokens

Runs on the service or as a 3rd party

-32-

Gateway

Purpose: enforce access control with minimal change

 to existing services

Job: Prevent unauthorized access and responses

 Remove verification from the critical path

Runs on the service as a front end server

-33-

How?

How is Anon-Pass built?

How is Anon-Pass used?

How does Anon-Pass perform?

-34-

Evaluation

Environment
quad-core 2.66 GHz Intel Core 2 CPU

8GB RAM

1 Gbps network

An HTC Evo 3D to evaluate

the anonymous subway pass

10 client machine to evaluate

the streaming music service

-35-

0

1

2

3

4

5

6

7

8

9

10

Login Re-up

Crypto Cost

m
ill

is
e
c
o
n
d
s

7.8x Faster

 Other

 Verify

-36-

Music Service

Scaling

Used 10 client machines

HTTP server to stream music

15 second epoch

Add clients until we run out of resources

-37-

Music Service

Scaling

%
 C

P
U

Steady

8,000 Clients

12,000 Clients

Login Only vs. Anon-Pass

Time

 Anon-Pass

 Login Only

-38-

Anonymous

Subway Pass

Problem: Need to rate limit between swipes

t t+1

But sharing is still possible…

A long epoch can simulate that timeout

-39-

Anonymous

Subway Pass
Solution: Login and Re-Up at the same time

Accesses during later epochs are linkable

t–1 t t+1 t+2

time

X

-40-

Anonymous

Subway Pass
Implemented as an

Android application

Clients Login and Re-Up twice

 (18 minute NYC policy)

Takes only 0.2 seconds

(on an HTC Evo 3D)

-41-

Anon-Pass

Practical – efficient enough to scale

Flexible – works with different services

Deployable – minimizes service

changes

-42-

