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Abstract

A Compute Express Link (CXL) pod is a group of hosts that
share CXL-attached memory. A memory allocator for a CXL
pod faces novel challenges: (1) CXL devices may not fully
support inter-host hardware cache coherence (HWcc), (2)
the allocator may be concurrently accessed from different
processes, and (3) with more hosts, failures become more
likely.

We present CXLALLOC, a user-space memory allocator that
addresses these challenges through careful metadata layout
and new protocols to maintain cache coherence in software,
coordinate memory mappings across processes, and recover
from crashes. CxrarLoc uses compare-and-swap (CAS) for
efficient synchronization; to support CXL devices with no
HWecc, we present a memory-based CAS (mCAS) primitive
implemented in an FPGA.

Experiments with in-memory key-value store workloads
demonstrate that cxraLLoc retains competitive performance
while enabling new use-cases. Experiments with a commer-
cial CXL device show that cxLALLOC can achieve 80% of its
maximum allocation throughput using mCAS.

CCS Concepts: « Software and its engineering — Mem-
ory management; - Computer systems organization —
Processors and memory architectures.

Keywords: Memory allocation; CXL; shared memory; mCAS;
cache coherence
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1 Introduction

Compute Express Link (CXL) memory provides a load/store
interface that allows processors to access memory across
a CXL link, most commonly transported over PCle. CXL
is maturing into a practical substrate for lower-cost, disag-
gregated memory in data centers, where system software
manages tiering between fast local memory and slower CXL-
attached memory [45, 46, 50, 61, 65, 69]. Initial prototypes
for hardware that allow multiple machines to share a sin-
gle CXL memory device are now available, with plans for
broader commercialization [5, 12]. A small number of hosts
(e.g., 8-16) connected directly to a single multi-headed CXL
memory module and sharing memory at cacheline granular-
ity is called a CXL pod [12, 33, 71]. Applications that want
to dynamically allocate and share memory in a CXL pod
require a memory allocator.

CXL pods present some novel challenges that make it
difficult to use existing memory allocators: limited inter-
host hardware cache coherence (HWcc), cross-process
sharing, and partial failure. We contribute a new memory
allocator, cxrALLOC, that address these challenges.
Limited HWcc. Version 3 of the CXL specification [2] de-
fines an inter-host cache coherence protocol, but given im-
plementation cost and complexity, it is unclear if HWcc will
become widely supported in practice. HWcce is important
for software, as it enables threads on different hosts to syn-
chronize with atomic operations like compare-and-swap
(CAS). Recent work assumes a range of HWcc models: full
HWecece [9], HWcc in a limited memory region [33, 35], and
no HWcc [56, 70].
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CxrALLoC is compatible with all three of these HWcc mod-
els. CxrarLoc’s algorithms reduce the amount of HWec meta-
data while efficiently maintaining cache coherence in soft-
ware for the remaining metadata. CxLALLOC’Ss memory layout
separates HWcc metadata into its own contiguous region.
If there is full HWcc, cxrALLocC remains correct. If HWcce
is limited to a small region (Figure 1(A)), CXLALLOC mini-
mizes its HWcc usage. If there is no HWcc (Figure 1(B)), we
demonstrate how to implement a memory-based compare-
and-swap (mCAS) operation in near-memory processing
logic, using hardware available today. CxLALLOC can use
mCAS instead of CAS.

Cross-process sharing. Memory allocators typically as-
sume that their metadata will be accessed within a single
process, but shared CXL memory may be accessed concur-
rently from different processes on different hosts. To discuss
correctness, it is useful to define two properties:

Definition 1.1 (Spatial pointer consistency (PC-S)). A pointer
refers to the same physical memory in each sharing process.

Definition 1.2 (Temporal pointer consistency (PC-T)). A
pointer to memory allocated in one process can immediately
be dereferenced in any sharing process.

Together, we refer to these properties as pointer consis-
tency (PC). PC must be maintained when memory allocators
manipulate memory mappings—for example, to increase the
size of the heap, or to back a new 1GiB allocation. In a single-
process setting, PC is guaranteed by the OS: concurrent mmap
calls return memory mappings that do not overlap and are im-
mediately visible to all threads. With cross-process sharing,
the OS can no longer provide these guarantees. For exam-
ple, concurrent mmap calls in different processes may return
memory mappings with the same virtual address, and each
memory mapping is initially invisible to other processes.

Cxravrroc is the first memory allocator to provide PC for
cross-process shared memory, without trade-offs like fixed
heap size [1, 72] or maximum allocation size [68]. CXxLALLOC
provides PC-S by using offset pointers (§2.3) and placing
heap metadata and data at consistent offsets in every pro-
cess. Cxrarroc provides PC-T by using a signal handler to
asynchronously install memory mappings in each process,
and introduces a hazard pointer [51] based protocol to safely
reclaim memory mappings.

Partial failure. Compared to a single-process application,
a multi-process application in a CXL pod faces a higher prob-
ability of partial failure [28, 68], where a single thread or pro-
cess may crash (e.g., due to the OS’s out-of-memory killer).
Tolerating partial failures is useful for high-availability ap-
plications [71] like transactional databases [33], machine
learning training [48], and file systems [7], to ensure that
a single software bug or other problem cannot bring down
the whole system. Memory allocators should not cause live
application threads to block, even if a thread crashes inside
an allocator function.
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Prior work [68] achieves partial failure tolerant memory
allocation using lock-free data structures to ensure metadata
shared between threads is always consistent, and reference
counting to recover memory from dead threads. Reference
counting works well for message passing workloads like
RPC, which involve relatively few and uncontended refer-
ence count updates, but less so for shared memory data
structures, where reference counts updates can cause high
contention even under read-heavy access patterns. More-
over, reference counts (which require HWcc) are embedded
in each allocation, making them non-trivial to adapt to other
HWecce models.

cxLALLOC also uses lock-free data structures, but intro-
duces a new recovery protocol to reduce overhead. Each allo-
cator operation starts by updating 8 bytes of state atomically,
in place, like a single-element redo log. This state provides
enough information to idempotently redo an interrupted
operation on recovery.

Contributions. We identify and explain the constraints of
shared CXL memory allocation: limited HWcc, cross-process
sharing, and partial failure. We present the design of cxrAL-
Loc, the first memory allocator to satisfy all of these con-
straints, and an FPGA implementation of mCAS that can be
used for inter-host synchronization for CXL devices that do
not support HWcc.

We evaluate cxraLLoc against shared memory allocators,
persistent memory allocators, and CXL memory allocators
(§5). Using YCSB [20] and real-world traces of memcached
requests [66], we establish that cxrarLoc has best-in-class
performance for time and space. Using a commercial CXL
device, we demonstrate that cxraLLoc can achieve up to
80% of its maximum allocation throughput with no HWcc
(using mCAS). Our allocator is open source and available
here: https://github.com/nwtnni/cxlalloc.

2 Background and motivation

We will discuss CXL hardware and memory allocation.

2.1 Compute Express Link (CXL)

CXL is a communication protocol that defines semantics for
accessing memory across a serial link. CXL can run over PCle
links, allowing processors that support the CXL protocol (e.g.,
Intel’s Sapphire Rapids) to access memory across the PCle
bus. The CXL memory device contains commodity DDR
DRAM modules. CXL memory has evolved from a single
device (1.0), to a switched pool (2.0), to fine-grained sharing
(3.0, and in the current 3.2 specification [2]).

Cache coherence. The CXL standard supports inter-host
hardware cache coherence (HWcc) via back-invalidation [2].
HWecc is important for shared memory programs because it
allows threads to efficiently synchronize across hosts using
standard atomic operations like compare-and-swap (CAS).
Unfortunately, full HWcc seems unlikely due the cost of
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Figure 1. (A) shows shared CXL memory split into a section
that is kept coherent by hardware (HWcc) and a much larger
region that must rely on software for cache coherence (SWcc).
(B) shows shared CXL memory connected to a host via a PCle
bus. One region of CXL memory is device biased, meaning
its contents cannot be cached by a CPU. This region is fully
managed by near memory processing logic (NMP), which
handles load, store, and mCAS operations sent from the CPU
to an address region marked uncachable. Host-biased CXL
memory can be cached by the host.

snoop filters [35]. Two current hardware prototypes that
support inter-host memory sharing do not support HWcc
at all [5, 12]. Other work proposes limiting HWcc to a small
memory region [35].

These two HWcc models are illustrated in Figure 1. Fig-
ure 1(A) shows a CXL device that supports HWcc in a small
contiguous region (HWcc). Figure 1(B) shows a CXL de-
vice with no HWcc: we implement a custom memory-based
compare-and-swap (mCAS) primitive using near memory
processing (NMP) logic (§4). The NMP intercepts operations
to a small contiguous region (device biased) to ensure that
mCAS operations are serialized.

A critical difference between these HWcc models is that
the HWcc region in Figure 1(A) can be cached by CPUs,
but the device biased region in Figure 1(B) must be marked
uncachable (via /proc/mtrr, for example), as the NMP has
no way of tracking or invalidating CPU caches.

Failure model. Like related work [68, 71], we assume our
CXL device is reliable. It keeps its state while processes can
crash and operating systems can reboot. Such reliability can
be achieved using an independent power supply or batteries.

2.2 Traditional memory allocation

We will start with some background, and then discuss why
traditional memory allocators fail to support CXL shared
memory.

Slab allocation. Slab allocation [41] is a common [16, 27, 43]
design where memory is statically split into coarse-grained,
fixed size slabs, which are then dynamically split into fine-
grained, equally sized blocks. This balances fragmentation
and performance.

Remote free. A remote free [43, 47] is when memory allo-
cated by one thread is freed by another, which can result
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in false cache line sharing or even unbounded memory us-
age [13].

Limitations. It is non-trivial to adapt traditional memory
allocators to limited HWcc because their layouts intersperse
thread-local and global metadata. Leaving the global meta-
data in place wastes HWcc memory, but moving it out creates
other problems, like correlating the thread-local and global
metadata.

Cross-process sharing also makes managing memory map-
pings more challenging. Traditional memory allocators use
absolute virtual addresses as pointers and assume a single-
process address space. They rely on the OS to guarantee that
new memory mappings do not overlap, so that a pointer
refers to the same physical memory (PC-S). But new mem-
ory mappings in different processes may have overlapping
virtual addresses, violating PC-S. They also rely on the OS to
guarantee that memory mapping updates are immediately
visible to all threads, so that pointers can be safely derefer-
enced (PC-T). But a new memory mapping in one process
is invisible to other processes, so a pointer passed between
processes may fault when dereferenced, violating PC-T.

Finally, traditional memory allocators do not provide fail-
ure tolerance. Many use locks for synchronization [27], which
can block live threads if a thread crashes in a critical section,
and none provide APIs to allow the application to recover
the in-memory state of a crashed thread.

2.3 Persistent memory (PM) allocation

We again start with background, and then discuss why PM
allocators fail to support CXL shared memory. PM is byte-
addressable, like DRAM, but preserves its contents upon
power loss. CXL memory is not persistent by default (though
it can be made persistent using a backing SSD [22]), but data
in shared CXL memory can survive application and even OS
restarts, if shared by different hosts.

Recoverability. PM allocators can restore their internal
metadata to a consistent state after a crash. There are broadly
two approaches to recoverability: garbage collection [14, 16]
scans the heap for memory leaks on recovery, while redo
logging [23] replays log entries on recovery.

Offset pointers. Offset pointers [17] are a ubiquitous [1,
19, 23, 31, 52] alternative to traditional pointers (absolute
virtual addresses) that allow in-memory data structures con-
taining pointers to be mapped at different virtual addresses.
Traditional pointers require memory mappings to always be
placed at stable addresses, which can conflict with OS and ap-
plication memory mappings. Offset pointers instead require
stable offsets between memory mappings. Other alternatives,
like indirection [15] and relocation [49], are possible, but re-
quire complex runtime support.

Limitations. Like traditional memory allocators (§2.2), PM
allocators are difficult to adapt to limited HWcc: their layouts
also intersperse thread-local and global metadata.
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Figure 2. A sketch of cxrarroc’s memory layout. Heap
metadata is partitioned into HWcc and SWce metadata to
support limited HWcc (§3.2), and separated from applica-
tion data, which can reside in either HWcc or SWee memory.
Grey shaded regions indicate virtual address space reserva-
tions (§3.3), used to maintain pointer consistency (§1) across
processes. SO and L0 indicate slab metadata and data for a
small or large slab, respectively, with index 0. HO indicates a
virtual address region in the huge heap (§3.1.2). Ta indicates
thread-local metadata for thread a.

PM allocators assume sequential access from one process
at a time, but cross-process sharing implies concurrent access.
Even though PM allocators use offset pointers, they still rely
on the OS to guarantee that concurrent memory mapping
updates do not have overlapping offset ranges (PC-S). And
even though PM allocators can replay memory mappings on
recovery, they still rely on the OS to make mapping updates
visible to all threads during normal execution (PC-T).

Partial failure also breaks some common design choices
in PM allocators. PM allocators assume a total failure model,
where all sharing threads crash at once, and there is a qui-
escent period during recovery where no thread is accessing
the heap. As a result, many PM allocators synchronize their
data structures using locks [23, 52], which can block live
threads if a thread crashes in an allocator critical section.
And many PM allocators recover their metadata by using
non-concurrent garbage collection [14, 16], which blocks
live threads from accessing the heap during recovery. Any
blocking is undesirable for highly available applications.

3 Design

We begin by describing cxrarroc ’s core data layout and
algorithms, and then explain how this core is extended to
address limited HWcc, cross-process sharing, and partial
failure.

3.1 Architecture

Cxrarroc comprises three heaps: the small, large, and huge
heaps, which manage allocations of size 8B-1KiB, 1KiB-512KiB,
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struct SmallHeap {
hwcc: (SmallGlobal, [HWccDescl),
swcc: ([SmalllLocal; NUM_THREAD], [SWccDescl),
data: [u8] }
struct SmallGlobal { len: u32, free: u32 }
struct Smalllocal {
unsized: u32, sized: [u32; NUM_SIZE_CLASS] }
struct HWccDesc { remote: ul6 }
struct SWccDesc {
next: u32, owner: Threadld,
class: u8, free: BitSet }

Figure 3. Pseudocode type definitions for the small heap.

and 512KiB+, respectively. Figure 2 sketches how these heaps
are arranged in memory. We note two immediate differences
in how cxraLLoc lays out metadata compared to a traditional
memory allocator: (1) cxrLAaLLOC partitions heap metadata
into HWece and SWece (§3.2), and (2) data regions are contigu-
ous in virtual address space to support offset pointers (§3.3).
We next describe each heap in more detail.

3.1.1 Small and large heap. The small and large heaps
share the same slab allocation design (§2.2), so we omit a
separate discussion of the large heap. Figure 3 lists the core
data structures in the small heap.

At a high level, the data region is divided into fixed-size
slabs. The heap length (SmallGlobal. len) indicates the cur-
rent number of slabs in the heap, and can be increased (§3.3.1).
Slabs are organized into free lists, and each slab is linked to
at most one free list (we will explain how a slab may be un-
linked during allocation). There are three kinds of free lists:
the global free list (SmallGlobal. free) and thread-local un-
sized free lists (SmalllLocal .unsized) contain inactive slabs,
which have no size class and all memory available for allo-
cation; the thread-local sized free lists (SmallLocal.sized)
contain non-full slabs, which have a size class and at least
one block available for allocation.

Each slab has some associated metadata, which is split
across two descriptors: SWccDesc and HWccDesc. A slab has
an owning thread (SWccDesc. owner) that has exclusive write
access to the slab’s SWccDesc, which includes the size class
(SWccDesc. class), a bitset of available blocks
(SWccDesc. free), and a slab index (SWccDesc. next) to link
into free lists (implemented as intrusive linked lists). The
owner of a slab is the only thread that can allocate blocks
from that slab. To handle when a thread frees to a slab it does
not own (remote free), each slab also has a counter of remote
frees (HWccDesc. remote). This counter counts down from
the total number of blocks due to our SWce protocol (§3.2.2).
Figure 4 shows the various state transitions that a slab un-
dergoes during the (de)allocation algorithms described next.

Allocation. To allocate, a thread first checks its thread-
local sized free list. If it is empty, the thread tries to transfer
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Figure 4. The state transition diagram of a slab in the small
heap. Green and red indicate when a slab does or does not
have an owner, respectively, and a dashed outline indicates
that a slab is unlinked from all free lists. A global, thread-
local (TL) unsized, or thread-local (TL) sized slab is linked
to the corresponding free list. An unmapped slab is past the
heap length. A detached slab is full, has an owner, and is
unlinked, while a disowned slab is full, has no owner, and is
unlinked (also see §3.2.1). The more complex transitions are
labelled with conditions.

over a slab from the following sources, in order: the thread-
local unsized free list, global free list, and heap length (i.e.,
extending the heap). After transferring a slab, the thread
initializes the slab by setting SWccDesc. owner to its own ID,
SWccDesc. class to the requested size class, SWccDesc. free
to the full set of blocks, and HWccDesc. remote to the total
number of blocks.

At this point, the thread-local sized free list must contain
at least one slab, so the thread allocates a block from SWc-
cDesc. free. If the slab is still not full, allocation is done. Oth-
erwise, the thread must maintain our invariant that thread-
local sized free lists only contain non-full slabs (which allows
future allocations to avoid traversing full slabs, and remote
frees to avoid coordination).

In the common case with no remote frees (i.e.,
HWccDesc. remote is equal to the total number of blocks), the
thread keeps ownership of the slab, but still unlinks it from
the thread-local sized free list, transitioning the slab to the
detached state in Figure 4. Otherwise, at least one remote free
has occurred, and the thread clears SWccDesc. owner before
unlinking, transitioning the slab to the disowned state in
Figure 4. We discuss the reasoning behind these two states
in more detail (§3.2.1).

Deallocation. To deallocate, a thread identifies the slab
containing the freed pointer (by dividing the pointer’s offset
within the data region by the slab size) and then checks the
owner. If the deallocating thread is the owner, it takes the
local free path and updates SWccDesc. free in place. If this
slab was previously full, it must have been in the detached
state, and the thread pushes it onto the thread-local sized
free list. If this slab is now empty, the thread transfers it to
the thread-local unsized free list.

Otherwise, the thread is not the owner, and it takes the re-

mote free path and uses CAS to decrement HWccDesc. remote.

If this counter reaches 0, this slab must have been detached
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struct HugeHeap {
hwcc: HugeGlobal,
swcc: [Hugelocal; NUM_THREAD],

data: [u8] }
struct HugeGlobal {
reservations: [ThreadId; NUM_RESERVATION] }

struct HugelLocal {
free: IntervalTree,
descs: ub4,
hazards: [u64; NUM_HAZARD] }
struct HugeDesc {
next: u64, offset: u64, size: u64, free: bool }

Figure 5. Pseudocode type definitions for the huge heap.

or disowned, so the thread steals ownership of the slab, trans-
ferring it to its own thread-local unsized free list. Stealing
is safe here because (1) a detached or disowned slab is not
linked to any free list, and (2) if the counter is 0, then every
block has been remotely freed, and there can be no more
allocation from or deallocation to this slab. This code path is
the only way that remotely freed memory can be reclaimed;
we discuss tradeoffs in §3.2.1.

In either case, if the thread-local unsized free list reaches
a configurable threshold length, the thread transfers some
slabs to the global free list.

3.1.2 Huge heap. Allocations in the huge heap are backed
by individual memory mappings, necessitating a different
design than the small heap. The main data structures are
listed in Figure 5. At a high level, the reservation array
(HugeGlobal.reservations) tracks ownership of coarse-
grained virtual address regions; an entry grants a thread
exclusive permission to install new mappings in the corre-
sponding region. Each thread tracks its owned regions using
an interval tree (HugeLocal. free). We note that any deter-
ministic data structure will work here. Whenever a thread
creates a memory mapping to back an allocation, it also allo-
cates a new descriptor (HugeDesc) and links the descriptor
to an intrusive linked list (HugeLocal . descs). Descriptors
record the allocation’s offset (relative to HugeHeap.data)
and size. The free bit (HugeDesc.free) is used in tandem
with hazard offsets (HugeLocal . hazards) to safely reclaim
memory in a cross-process setting.

Allocation. To allocate, a thread finds a contiguous region of
the requested size using HugelLocal. free (requesting more
virtual address space from the reservation array if neces-
sary). The thread then allocates a descriptor, initializes the
descriptor’s size and offset with free bit unset, and links the
descriptor to its descriptor list. Finally, the thread installs the
mapping and returns the resulting pointer to the application.
Deallocation. To deallocate, a thread computes the virtual
address region containing the freed pointer (by subtract-
ing HugeHeap.data from the pointer and dividing by the
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region size), and then looks up the owner in the reserva-
tion array. The thread then traverses the owner’s descriptor
list to find the descriptor with the same offset, and sets the
HugeDesc. free bit. Setting the free bit does not require CAS
because huge descriptors are never updated concurrently.
Finally, the thread unmaps this memory mapping.

3.2 Limited HWcc

Cxravrroc supports limited HWcc by minimizing and separat-
ing metadata that requires HWcc (SmallHeap.hwcc in Fig-
ure 3 and HugeHeap . hwcc in Figure 5). For the small and large
heaps, cxrarLoc uses only 2B of HWcc memory (HWccDesc)
per slab—a small slab is 32KiB and a large slab is 512KiB—
with 8B constant overhead (SmallGlobal). The huge heap
uses a constant amount of HWcc memory (HugeGlobal),
which is 8KiB in our prototype. We will first discuss cxraL-
Loc’s small heap remote free protocol, as metadata to manage
remote frees is the only HWcc metadata that scales with the
size of the heap, and then explain cxrarLoc’s SWee protocol.

3.2.1 Remote free. CxrarLoC’s slab allocation design is
similar to mimalloc [43] in that (1) each slab has its own free
bitset to decrease contention and improve spatial locality,
and (2) each slab has separate local and remote free metadata,
allowing local frees to take a fast unsychronized path, while
only remote frees need to synchronize via CAS for platforms
with HWcc, mCAS otherwise.

Cxrarroc introduces two major changes for remote frees.
The first change is the detached state (Figure 4), which al-
lows a slab that is entirely remotely freed (e.g., in a producer-
consumer workload) to be stolen by a thread without coor-
dinating with the slab’s previous owner. The second change
is using a counter to track remote frees, which minimizes
HWecc memory overhead compared to, say, a bitset or intru-
sive free list. However, a counter loses information about
which specific blocks have been freed, which prevents re-
motely freed blocks from being reused until the entire slab
has been remotely freed. To ensure that slabs with a mix of
local and remote frees are eventually reclaimed, cxraLLoc
introduces the disowned state (Figure 4); any slab that has
at least one remote free and is being actively allocated from
will be disowned instead of detached, forcing all subsequent
frees to take the remote free path (§3.1.1.Deallocation) and
allowing the whole slab to be reclaimed.

There are pathological cases for our remote free proto-
col, but these cases require a thread to allocate many slabs,
locally free a few blocks in each slab (while the rest are
freed remotely), and then stop allocating from those size
classes. We do not expect this pattern to be common in nor-
mal workloads, and our evaluation does not show excessive
fragmentation.

3.2.2 SWecc protocol. Cxrarroc assumes that SWee CXL
memory does not have hardware inter-host cache coherence,
but does let hosts keep state in their CPU caches. CxrALLOC
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also assumes that any application written for SWee memory
will pin threads to cores, to avoid inconsistent cache contents
due to the OS scheduling a thread on different core. CxrarLOC
manually controls cache state by flushing and fencing.

We begin with the small heap. The two sources of SWcc
data are thread-local free lists (SmalllLocal) and SWccDesc.
Thread-local free lists are only read and written by a single
thread, and trivially do not require any flushing or fencing.
SWccDescs require more care: while they are only written
by their owner, ownership can change, and SWccDescs can
also be read by many threads.

For SWccDesc writers, we observe that flushing and fenc-
ing is necessary only when ownership may change (see Fig-
ure 4); the owner may otherwise keep SWccDesc in cache.
For example, a thread must flush and fence a SWccDesc be-
fore transferring the slab from the thread-local unsized free
list to the global free list. More subtly, a flush and fence is
required before a slab transitions to detached or disowned
states, since ownership may change due to remote frees.

For SWccDesc readers, there are two locations where a
non-owning thread can read a SWccDesc. The first is push-
ing and popping from the global free list, which reads SWc-
cDesc.next. Since global free list operations are rare, read-
ers simply flush and fence before each load. The value of
SWccDesc.next cannot change without popping the slab
from the global free list, so a stale load will be detected by a
CAS (or mCAS) conflict on SmallGlobal. free. The second
location is freeing, which starts by loading SWccDesc. owner.
Crucially for performance, it is safe for a thread to cache SWc-
cDesc.owner; no flush or fence is required. To understand
why, we do case analysis on the value of SWccDesc.owner
in thread t’s cache and in memory.

1. Owner is t in cache and memory. This is the common
case of a thread freeing to a slab it owns, which is safe.

2. Owner is t in memory, but not in cache. Same as (1).

3. Owner is ¢ in cache, but not in memory. This is impos-
sible, since it implies ¢ gave up ownership of this slab
without flushing and fencing its SWccDesc.

4. Owner is not ¢ in cache or memory. In this case, the
thread performs a remote free by CASing (or mCAS-
ing) to decrement HWccDesc. remote. Importantly, this
decrement is correct even if the cached owner is in-
consistent with memory (e.g., if the SWccDesc is trans-
ferred between two other threads while this thread
holds a cached copy of SWccDesc.owner). This is pos-
sible because HWccDesc. remote counts down to 0 in-
stead of up to the block count, so remote free logic
does not depend on the potentially inconsistent value
of SWccDesc. class (which is in the same cache line
as SWccDesc. owner).

For the huge heap, performance is less critical, so we sim-
ply treat all SWec data (HugeLocal and HugeDesc) as un-
cachable, and flush and fence after every write and before
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every read. This does not cause any data races, because Huge-
Local and HugeDesc are never concurrently updated.

3.3 Cross-process sharing

CxraLroc provides pointer consistency (PC, §1) across pro-
cesses by coordinating the location, installation, and removal
of memory mappings. We first introduce two basic mecha-
nisms that are used by both the small and huge heap, and
then explain how each heap maintains PC.

Virtual address space reservation. In order to provide
PC-S for offset pointers, cXxLALLOC must create memory map-
pings at exactly the same offset in each process, which re-
quires calling mmap with the MAP_FIXED flag. To avoid over-
writing existing memory mappings, CXLALLOC reserves large
contiguous regions of virtual address space during heap ini-
tialization, in each process, by calling mmap with the PROT_-
NONE flag. The absolute address of a reservation does not
matter, and the OS may choose different addresses for each
process. What matters is that a reservation gives cxLaLLoc
a contiguous range of offsets where it can its manage its
own memory mappings. Reservations are visible as the gray
regions in Figure 2.

Signal handler. In order to provide PC-T, cxLALLOC must
ensure that new memory mappings in one process are made
visible to sharing processes. For example, if a thread in one
process requests a huge allocation (backed by a new memory
mapping), and writes a pointer to this new memory mapping
into a shared data structure, a thread in a different process
should be able to dereference the pointer without crashing.

CxraLLoc updates memory mappings asynchronously by
installing a signal handler in each process that intercepts
SIGSEGV signals when a thread dereferences an unmapped
pointer. A SIGSEGV might be a program bug or it might be
a thread trying to access a region that has been mapped by
CXLALLOC in some processes, but not in the current one. The
signal handler inspects heap metadata to determine if the
pointer is within the heap and if it should be backed by a
valid memory mapping. If so, the signal handler installs the
memory mapping for the current process and reissues the
faulting instruction; if not, the signal is forwarded to the
default signal handler.

We considered and rejected a synchronous design, where
processes participate in a barrier when updating memory
mappings. A barrier would (a) introduce global overhead for
memory mappings that are only accessed by a subset of pro-
cesses, (b) prevent concurrent updates of memory mappings,
and (c) block live threads under partial failure.

3.3.1 Small heap. Cxrarroc extends the small heap by
atomically increasing the heap length (SmallGlobal. len),
which requires creating three new memory mappings: one
for each of the HWccDesc, SWccDesc, and SmallHeap.data
regions. To provide PC-S, the small heap reserves virtual
address space for each of these regions at initialization time,
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ensuring they have room to extend, and then places new
memory mappings linearly within the reservations (Figure 2).
There can be no overlapping memory mappings because the
heap length is changed atomically. To provide PC-T, cxLAL-
1oc’s signal handler checks the heap length to see if a pointer
is within the heap.

We simplify heap extension by having it be monotonic—
CXLALLOC never unmaps small heap memory mappings. The
underlying memory can be returned to the OS by calling
MADV_REMOVE (or any equivalent mechanism) when transfer-
ring a slab to the global free list.

3.3.2 Huge heap. The huge heap must create new mem-
ory mappings to back allocations. To provide PC-S, the reser-
vation array ensures that each thread creates memory map-
pings in disjoint regions. To provide PC-T, cxLaLLOC’s signal
handler walks huge descriptor lists to see if a pointer is
within a huge allocation. However, unlike the small heap,
memory mappings can be unmapped when a huge alloca-
tion is freed. Frees are challenging in a cross-process setting
because memory must be unmapped in all processes when
a huge allocation is freed in any process; only then are its
resources (physical memory, huge descriptor, virtual address
region) safe to reclaim and reuse. CxrALLOC introduces a
hazard offset protocol to determine when reclamation is
safe.

Hazard offsets. Hazard offsets are a variant of hazard point-
ers [51], which are used for safe memory reclamation in
lock-free data structures. Hazard pointers work roughly as
follows: before dereferencing a pointer, a thread publishes
the pointer to a globally readable list, which prevents this
pointer from being reclaimed while the thread is accessing
the memory. In cxraLLOC, before installing a memory map-
ping, a thread publishes the offset to a globally readable list,
which prevents the memory mapping from being reclaimed
while a process has the memory mapped. Our protocol fol-
lows three simple rules:

o Publish hazard offset before mapping a huge allocation.

e Remove hazard offset after unmapping a huge alloca-
tion.

e Reclaim huge allocation if HugeDesc. free is set and
HugeDesc.offset is not published in any hazard offset list.

Together, these imply that a huge allocation will be re-
claimed if it has been freed and no process has this allocation
mapped. To implement these rules, we update allocation and
cxrALLocC’s signal handler to publish hazard offsets, and
deallocation to remove hazard offsets. We do not expect the
length of the huge allocation hazard list to pose a perfor-
mance issue because huge allocations are relatively rare and
long-lived.

Cxrarroc must clean up unused memory mappings and
huge descriptors: a memory mapping can be unmapped and
its hazard offset removed if the corresponding huge descrip-
tor’s free bit is set. A huge descriptor can be reclaimed if its
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free bit is set and its offset is not published in any hazard
offset list. CxraLLOC cleans up asynchronously by having
each thread occasionally walk its hazard offset list and huge
descriptor list.

Finally, we point out one subtlety: hazard pointers require
a validation step after publishing a hazard pointer, to make
sure the pointer wasn’t freed in between loading the pointer
and publishing it as a hazard. The equivalent race condition
for hazard offsets would require one thread to dereference
a huge allocation (to publish a hazard offset) while another
thread frees the huge allocation, which is a use after free vio-
lation and can be ruled out for correct programs. Accordingly,
hazard offsets do not require this validation step.

3.4 Partial failure

CxraLroc avoids blocking live threads during crashes by us-
ing lock-free data structures, and recovers without blocking
using a combination of detectable CAS [10] and atomic state
changes.

3.4.1 Non-blocking crashes. Single-writer, single-reader
data structures, like thread-local sized free lists, may be in-
consistent after a crash. These transient inconsistencies are
not a problem, because these data structures are not visible to
other threads. They can be repaired by the recovered thread
and will not block other live threads. Single-writer, multiple-
reader data structures, like hazard offsets or huge descriptors,
are updated through atomic writes and are always consistent.
Multiple-writer, multiple-reader data structures, of which
there are four—heap length, global free list, HwccDesc, and
reservation array—are lock-free; furthermore, every opera-
tion on these data structures requires only a single CAS, mak-
ing them much easier to reason about. Since lock-free data
structures transition atomically between consistent states,
CXLALLOC remains available even in the presence of thread
crashes.

3.4.2 Non-blockingrecovery. To recover without having
to scan the heap for memory leaks [14, 16], each thread
atomically updates 8 bytes of state in place, which records
which operation the thread is currently performing, and
contains enough information to recover the operation in an
idempotent manner.

Small heap. For the small heap, each operation roughly
corresponds to a state transition in Figure 4. For example,
before transferring a slab from the thread-local unsized free
list to the thread-local sized free list, a thread records the
operation ID (4 bits), slab index (32 bits), and size class (8 bits).
On recovery, the thread ensures this slab has been popped
from the thread-local unsized free list and pushed onto the
correct thread-local sized free list.

For operations involving lock-free data structures, like
transferring a slab from the global free list to the thread-local
unsized free list, we use detectable CAS [10] as a primitive
to help implement idempotence. In short, detectable CAS
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allows a thread to attach a version to a CAS operation; upon
recovery, the thread can query a global help array to see
if its operation succeeded, i.e., became visible to another
thread. For example, before popping from the global free list,
a thread records the operation ID (4 bits), the slab index (32
bits) to pop, and a version (16 bits). On recovery, the thread
checks if its CAS succeeded. If the CAS did not succeed, the
thread retries the CAS; otherwise, the thread ensures that
the popped slab index has been pushed to the thread-local
unsized free list.

Detectable CAS requires embedding a thread ID and logi-
cal version in each CAS target: our CAS targets are at most
32 bits, so we use a 16-bit thread ID and version to support
systems with only 8-byte CAS. This strategy increases our
HWecc (or mCAS) overhead for remote free metadata from
2B to 6B (8B aligned) per slab (§3.2)

Huge heap. For the huge heap, on recovery, a thread can
deterministically reconstruct its thread-local allocation state
(HugeLocal. free) from the reservation array and its huge
descriptor list. Since the huge heap is much simpler than the
small heap, and its data structures almost all have a single
writer, recording the huge descriptor offset (the offset of the
huge descriptor itself, not the offset of its memory mapping)
is sufficient to recover its operations.

4 Implementation

Prototyping mCAS. We design customized near-memory

processing (NMP) logic in the FPGA of Intel’s Agilex 7 board [21]

to provide an mCAS operation for architectures that do not
support inter-host HWcc (Figure 1(B)).

We partition the CXL physical address space into two
regions: device-biased and host-biased [2]. The NMP unit
is positioned between the CXL interface (IP) and the CXL
memory controller, and it manages the device-biased memory.
All load, store, and mCAS requests for the device-biased
memory go through the NMP unit (see Figure 1(B)). Only
memory within this device-biased region can be mCASed
and because the memory is device-biased, it must never
be cached by a CPU [2]. These mCAS restrictions create
barriers to porting software to make use of mCAS. Any
memory location that might be used in an mCAS should
be sequestered from other data structures, to minimize the
amount of memory that needs to be marked uncachable.

Our mCAS interface avoids MMIO to reduce latency. In-
stead, we reserve two address ranges for threads to interact
with the NMP: the special write (spwr) region and special
read (sprd) region. Each thread accesses different cache lines
within these regions according to its thread ID.

To initiate an mCAS, a thread writes 64B containing the
expected value, swap value, and target address to the spwr
region. To retrieve the response, a thread reads 16B from
the sprd region, which returns a success or failure bit and
the previous value at the target address. To ensure these
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(a) mCAS returning success (Y) upon a matching value (CMP-Y)
on the left and failure (N) upon a mismatch (CMP-N) on the right.
The dashed line indicates the spwr while the solid line indicates
the sprd.

NMP

Mem

(b) Thread 1 (T1) issues spwr-sprd pair before thread 2 (T2) to the
same target address. T1 succeeds (T1-Y) in the comparison and
blocks T2’s operation (CMP-N), resulting in T2 failing its mCAS
operation (T2-N).

Figure 6. mCAS timing diagram

writes and reads reach the NMP, we mark the spwr and sprd
regions uncachable.

On the NMP side, upon receiving a spwr, the NMP unit

stores the operands in its internal register array and waits for
a sprd to trigger the mCAS operation. When the NMP unit
receives a sprd, it reads the target address and compares the
value with the expected value. At the end of each sprd, the
NMP unit checks its register array to see if any other spwr
or sprd is in progress and has a matching target address.
If there is a match, the NMP unit will return mCAS failure
for the competing spwr or sprd. On an mCAS success, all
subsequent sprd and spwr operations are stalled until the
swap value is written to the memory. These checks ensure
that for a given address, only one spwr-sprd pair can be in
progress at a time. Figure 6 shows the timing diagram of the
mCAS operation.
Heap initialization. Most allocators require some single-
thread initialization of the heap [1, 16, 43, 68] which creates a
bootstrapping problem for cross-process applications. Some
external coordination becomes necessary to allow one pro-
cess to initialize the heap before any other processes can
access it.

Cxratroc is carefully constructed so that zeroed memory
constitutes a valid and initialized heap. Processes do not need
to coordinate to initialize a shared heap.

5 Evaluation

Our design seeks to answer the following questions:
e Is cxrLALLOC correct (§5.1)?
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Allocator Mem. XP mmap Fail Rec. Str.
mimalloc [43] M X v NB X X

boost [1] XP v X B X X

lightning [72] XP v X B B GC
cxl-shm [68]  CXL v X NB NB GC
ralloc [16] PM X X NB B App
CxLALLOC XP,CXL V v NB NB App

Table 1. Properties of memory allocators in our evaluation.
Mem. shows what kind of memory the allocator was de-
signed to manage (M is “normal”, volatile, in-process mem-
ory, XP is cross-process memory, CXL is compute express
link memory, and PM is persistent memory). XP means
supports cross-process allocations by using pointer alter-
natives (§2.3). mmap means allocator can use mmap for large
allocations or to extend the heap. Fail means behavior on
failure (blocking (B), non-blocking (NB)) Rec. means be-
havior on recovery (blocking (B), non-blocking (NB), or not
recoverable(X)) Str. is the recovery strategy (garbage collect
allocations from dead threads (GC), allow application to re-
cover (App), or not recoverable (X)).

e How does cxrarroc affect performance of end-to-end
key-value store workloads (§5.2.1)?

e How does cxrarLoc perform on low contention and
high contention microbenchmarks (§5.2.2)?

e How scalable are huge allocations (§5.3)?

e How is performance affected by HWcc support (§5.4)?

We evaluate on two machines: a Chameleon [39] instance
that does not have a CXL device, but does have 80 cores to
better compare scalability, and another machine with a CXL
Type-2 device, 32 cores, and our mCAS prototype to measure
the effect of HWCcc.

Baselines. We choose our baselines (summarized in Ta-
ble 1) for the following reasons: mimalloc [43] is a state-of-
the-art traditional memory allocator that provides the best
performance for most allocation benchmarks [4]. Boost [1]
is an industry C++ library and one of the only explicit cross-
process shared memory allocators we found. Lightning [72]
is a shared-memory key-value store, one of our motivating
use-cases. We extract its internal, cross-process memory al-
locator. Ralloc [16] is a lock-free recoverable allocator for
PM. Finally, cxl-shm [68] is the state-of-the-art partial fault
tolerant memory management system for CXL shared mem-
ory.

None of our baselines optimize for limited HWcc. All al-
locators (except mimalloc) support pointer consistency for
cross-process shared memory, but only trivially, because
they do not allow heap extension or huge allocation, and do
not update memory mappings. Mimalloc does not support
cross-process sharing at all, but serves as an indicator of
maximum allocator performance.
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Experimental setup. All benchmarks are run for 10 trials,
and include error bars for standard deviation (these are often
too close to be visible because of low performance variability).
All CPU performance governors are set to performance, and
the NMI watchdog, NUMA balancing, KSM, turbo boost, and
hyperthreading disabled. Threads are always pinned to a
core. We configure all benchmarks to perform fixed amounts
of work as the thread count varies; we choose amounts that
(a) can be divided evenly across all thread counts and (b)
run long enough for throughput to be stable across trials.
Each memory allocator is backed by a 64 GiB shared memory
file. We configure ralloc and cxl-shm to remove flushing and
fencing.

5.1 Correctness

We compile cxrarLoc with a host of runtime invariant checks,
for example: SWccDesc. owner is null when popping a slab
from the global free list, all slabs in thread-local sized free
lists are non-full, all free lists are acyclic. We run all of our
benchmarks with these checks enabled and observe no er-
rors. We evaluate the correctness of recovery using a mix of
black-box tests with random thread crashes, and white-box
tests with defined thread crash points, again with invariant
checks enabled.

5.2 Performance

We run our first set of benchmarks on a Chameleon [39]
compute_icelake_r650 instance running Ubuntu 22.04.5 LTS
and Linux kernel version 5.15. It has two Intel Xeon Plat-
inum 8380 CPUs running at 2.30GHz, with 40 cores, 120 MiB
LLC, and 128GiB DDR4 3200 DRAM per socket. We bind
all memory to NUMA node 0 because NUMA-awareness is
not a stated goal of any of the benchmarked systems, and to
avoid introducing bias from NUMA interleaving correlating
with allocator data structure layout.

Cxrarroc is a multi-process allocator, and we want to test
cross-process allocation. (All allocators are cross-process
except mimalloc.) Our understanding is that most multi-
process applications are also multi-threaded, but how many
threads should run per process? We experimentally verified
that performance of the allocators generally decreases with
increasing process counts, though there was no universal
trend. We choose to run cross-process allocators in 10 pro-
cesses because it provides good performance (relative to, say
2 processes or 80), and it allows us to vary the number of
threads per process from 1 to 8. We report the total propor-
tional set size (PSS) across all processes to directly compare
the cross-process allocators with mimalloc.

5.2.1 YCSB and memcached traces. We benchmark a
key-value store by port YCSB [20] and running production
traces from Twitter memcached clusters [66], which are sum-
marized in Table 2. The throughput and sum of the pro-
portional set size (PSS) for each workload are reported in
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Workload Ins. % Key Distr. Key Size Value Size
YCSB-Load 100 Uniform 8B 960B
YCSB-A 25 Skew 8B 960B
YCSB-D 5 Skew &B 960B
MC-12 79.7 Uniform 44 B 0-307 KiB
MC-15 99.9  Uniform 14-19B 0-144B
MC-31 93.0 Uniform 40-46B 0-15B
MC-37 38.8 Skew 68-82B  0-325 KiB

Table 2. Summary statistics for in-memory key-value store
workloads. Ins. % is the percentage of operations that insert
data (causing an allocation). We configure YCSB with the
default Zipfian constant of 0.99, and modify YCSB-A from
50% update to 25% insert and 25% delete operations to stress
the memory allocator. All other workloads consist entirely
of read and insert operations.

Figure 8. For our index data structure, we adapt cxl-shm’s
non-resizable lock-free hash table to support all allocators,
configuring it with 32M buckets. In order to support dele-
tion, we also adapt it to use token-passing epoch-based recla-
mation [40]. Because we are comparing the impact of the
underlying allocator, and not the index data structure, we
omit workloads that do not involve allocation (e.g., most
read-biased YCSB workload mixes).

We configure YCSB with the default Zipfian constant of
0.99, 8 byte keys, and 960 byte values, with an initial in-
dex size of 8.4M key-value pairs for YCSB-A and YCSB-D
(0 for YCSB-Load), and run each workload for 8.4M total
operations.

For memcached, we use the original paper’s representa-
tive clusters for write-heavy workloads, and execute 8.4M
operations from each trace (840K for MC-37, which requires
more memory). Each trace consists solely of read and insert
operations.

General analysis. Figure 8 shows that Boost and Light-
ning are fundamentally unscalable, as they both acquire a
global mutex. Lightning’s PSS usage is not included in the
figure, because it uses a large array to track each individual
allocation for garbage collection, and requires an order of
magnitude more memory.

Cxl-shm’s performance suffers on skewed workloads like
YCSB-A and YCSB-D because its reference counting creates
additional contention on hot items, even though YCSB-D is
read-heavy. Cxl-shm also requires 24B of inline header meta-
data for each allocation, which causes noticeable overhead
in workloads with small allocations like MC-15 and MC-31.

Mimalloc, ralloc, and cxlalloc generally perform similarly.
Across all workloads and thread counts, cxlalloc achieves
93.9% of mimalloc’s performance on average, while ralloc
achieves 90.9%.

HWcce memory. Besides cXLALLOC, ralloc is the only base-
line that separates heap metadata from data. It can naively
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Figure 7. Execution time of inserting and removing 1M
objects from Memento [18] recoverable data structures under
0, 1, or 2 thread crashes. This experiment demonstrates how
PM allocators that recover using garbage collection, like
ralloc, must choose to block heap access to run GC (ralloc-
gc) or leak memory (ralloc-leak). CxrLALLOC recovers without
leaking or blocking.

support limited HWcce by placing only its metadata in the
HWecc region, rather than the entire heap, so we will use it
as a reference point for our HWcc optimizations. Across all
workloads and thread counts, cxrarLoc uses only 0.02% of
HWcc memory relative to total memory usage on average,
and 7.1% relative to ralloc’s HWcc memory usage.

Partial failure. We evaluate the overhead of cxrarroc’s
partial failure tolerance by comparing a variant of cxrarLoc
(cxraLLOC-nonrecoverable) that disables recovery state up-
dates and uses a normal CAS instead of a detectable CAS.
Across all workloads and thread counts, cxraLLOC is only
0.3% slower than cxLALLOC-nonrecoverable.

We also show some simple experiments with a recover-
able queue and hash table from Memento [18]. We insert
1M objects with sizes chosen uniformly randomly between
8B-1KiB into each data structure, and then remove them,
crashing 0, 1, or 2 threads during the insertion phase. Af-
ter a crash, ralloc has to block heap access to run recovery
garbage collection, or else leak memory; cXLALLOC recovers
without leaking or blocking.

5.2.2 Allocator microbenchmarks. We next evaluate
two microbenchmarks in Figure 9: thread-test and xmalloc.
Thread-test estimates the highest possible allocator through-
put using a fixed allocation size and entirely thread-local
operations. Xmalloc is a producer-consumer workload that
stresses the remote free code path, which requires synchro-
nization.

General analysis. Threadtest reveals mimalloc’s highly
optimized fast path, which uses an intrusive linked list. CxrLAL-
Loc achieves only 47% of mimalloc’s throughput on average,
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while ralloc achieves 41%. Xmalloc shows that mimalloc,
ralloc, and cxrarLoc’s designs are effective at reducing con-
tention for remote free operations. CxLALLoC achieves 81%
of mimalloc’s throughput, while ralloc achieves 106%. Ralloc
falls off at higher thread counts because it returns partially
full slabs to the global free list, which introduces contention.

HWcce memory. Overall memory usage is low for these
benchmarks, so cxrarroc’s HWcc optimizations are less
effective. CxraLLocC still only requires 2.5% and 0.09% HWcc
memory relative to total memory usage for thread-test and
xmalloc, respectively, which is 9.4% and 9.5% of ralloc’s HWcc
memory usage. Xmalloc shows how Cxrarroc’s split HWee
and SWcc metadata design reduces HWcc usage, but can
cause increased total memory usage.

Partial failure. Cxrarroc achieves 94.7% of cxraLLOC-
nonrecoverable’s throughput for thread-test, which shows
the low overhead of cxrLALLOC’S recovery logic in the fast
path. And cxraLLoc achieves 88.4% of
cxraLLoc-nonrecoverable’s throughput for xmalloc, which
shows the cost of using detectable CAS to perform remote
frees.

5.3 Huge allocations

CxrALLoC’s support for cross-process huge allocations (§3.3.2)
is a novel feature. We evaluate its performance by config-
uring both threadtest and xmalloc with a fixed object size
of 1GiB, and run them for 9.6M total operations, with re-
sults shown in Figure 10. There are no baselines because
every other allocator crashes or does not complete within
30 minutes.

Threadtest performance is pretty flat with increasing thread
count within one NUMA node indicating that the scala-
bility limit is from the OS memory mapping work, which
shows greater throughput as work is split across more pro-
cesses. Xmalloc stresses remote frees, and for larger process
counts, as we increase the number of threads, performance
increases, because there is enough OS level parallelism. For
low process counts, increasing the number of threads slightly
decreases performance as the workload bottlenecks on OS
maintainance of a small number of process address spaces.
Going to multiple NUMA nodes (80 threads) decreases per-
formance as threads access remote memory.

Memory consumption in all cases is modest because these
are allocator microbenchmarks and they do not access all
of the allocated data. Therefore memory consumption is
proportional to the size of allocator metadata.

While thread-test does not cause cross-process faults, xmal-
loc does exercise both CxraLLOC’s cross-process faults and
hazard offset operations, and demonstrates its efficient reuse
of huge descriptors and address space. Overall, these results
validate our huge allocation design (§3.3.2) by showing sta-
ble performance even for a punishingly unrealistic workload
that unnaturally stresses huge allocations.
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Figure 9. Throughput (logarithmic Y-axis) and memory con-
sumption for small heap allocation microbenchmarks across
all allocators with increasing numbers of threads distributed
among 10 processes, run on the Intel ICX machine. CxrAL-
roc, mimalloc, and ralloc are the highest performing options.

5.4 CXL memory hardware

Our test machine runs Ubuntu 24.04.2 LTS, Linux kernel ver-
sion 6.8. It has an Intel Xeon 8568 CPU running at 2.0GHz,
with 48 cores and 300MB LLC. The machine is equipped with
8-channel DDR5 4800 DRAM. We use a commercially avail-
able CXL Type-2 device, the Intel Agilex 7 [21], connected to
the CPU via a PCle 5.0 x16 link. It integrates an FPGA with
ASIC-based CXL IPs. The memory controller is an ASIC, the
FPGA is only for implementing near memory processing
logic (NMP). While the device supports CXL 2.0, our Intel
Emerald Rapids CPU only supports 1.1 [37, 58].

We measure the latency and bandwidth values of local
DRAM and CXL memory using Intel’s Memory Latency
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Figure 10. Throughput and memory consumption for huge
allocation microbenchmarks as the number of threads are
increased for different numbers of processes, run on the
Intel ICX machine. Performance (and memory consumption)
improves monotonically for increasing process counts. Note
that there is only a single data point for 80 threads in 80
processes.

Checker (MLC) [34] with a 3:1 read-write ratio. CXL read
latency is 357ns, compared with 112ns for local memory.
Its bandwidth is 19.9 GB/s (using two channels), compared
with 114 GB/s for local memory (using four channels). The
CXL memory access latency and bandwidth are in line with
the latest study on characterizing commercial CXL memory
devices [37]. We disable hyper-threading and turbo boost
and set the CPU frequency governor to performance.

5.4.1 CXL: mCAS prototyping. Figure 11 shows the la-
tency of a compare-and-swap (CAS) operation on a CXL
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Figure 11. The latency of CAS operation with GCC CAS
(sw_cas), cacheline flush and CAS (sw_{flush_cas), and hard-
ware NMP enabled CAS (hw_cas).

memory location for various implementations. For the soft-
ware CAS (sw_cas), the CAS instruction is issued by the
CPU to CXL memory. Its performance benefits from the low-
latency CPU cache, and its atomicity is guaranteed by the
cache-coherence protocol. The sw_flush_cas configuration
models an mCAS by having the CPU first flush the target
from the cache, then issue the CAS. For systems without
NMP, this is a software emulation for a system that does not
have HWecc.

It is important to remember that neither sw_cas nor sw_-
flush_cas would be safe in a CXL pod without inter-host
hardware cache coherence. CAS safety comes from coher-
ence. Two hosts could CAS the same location and both suc-
ceed because each would have exclusive access to the line
relative to all other caches in its coherence domain.

The hw_cas measures our NMP mCAS implementation,
which works without HWce. At 16 threads (the maximum in
our experiments) hw_cas achieves 17.4% lower p50 latency,
and 20% lower p99 latency than sw_flush_cas. However, for
1 thread, hw_cas is slower than sw_flush_cas, with a p50
latency of 2.3us and a p99 of 2.8us. We believe an ASIC ver-
sion of the NMP will further reduce this latency gap when
the contention is low. However, many projects have used
sw_flush_cas to model mCAS [33, 68], and our measure-
ments show that the latencies of these two primitives are
comparable.

5.4.2 CXL:allocator microbenchmarks. Figure 12 shows
throughput for small heap allocations on CXL memory. We

compare against ralloc as a baseline since its heap metadata

is separate from application data—though it does not sepa-
rate HWcc and SWce metadata—so it can somewhat reduce

HWecc usage by placing only its metadata in the HWcc re-
gion. We do not compare against cxl-shm because it embeds

a HWocc reference count in each allocation; with our mCAS

implementation, this would require the whole heap to be

marked uncachable, making a fair comparison impossible.
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Figure 12. Throughput of small heap allocator microbench-
marks for different CXL HWcc architectural assumptions and
increasing thread counts. Experiments are run on a machine
with physical CXL memory (§5.4). CxrLaLLOC and ralloc use
local DRAM; -hwecce variants use CXL memory and assume
HWecc; -mcas variants use our NMP mCAS prototype (§4).

Overall performance is similar for local DRAM and HWcc
CXL memory. For threadtest, cxLALLOC-mcas achieves 80%
of cxrarLoc-hwec’s throughput, and 10-99x of ralloc-mcas’s
throughput: our SWcc protocol allows local operations to
keep metadata cached, while ralloc must read a size class
from uncachable memory on every free. For xmalloc, cXLAL-
roc-mcas drops to 1% of cxrarLLoc-hwec’s throughput, as
every remote free requires an mCAS. Below 8 threads, ralloc-
mcas has higher throughput because it shares partial slabs be-
tween threads, allowing remote frees to go into thread-local
caches. However, slab sharing increases mCAS contention
on slab metadata, causing ralloc-mcas to scale poorly; cxLAL-
Loc-mcas attains 9.9x higher throughput at 24 threads.

6 Related Work

CxraLLoc takes inspiration from previous allocators for dif-
ferent types of memory: volatile, persistent, cross-process,
and CXL, but contributes novel huge allocation management
and combines previous techniques in a new way that pro-
vides strong performance across a variety of use cases.

Persistent memory allocation. Ralloc [16] and zalloca-
tor [64] are lock-free allocators, while libpmem [6], makalu [14],
nvm_malloc [54], and nvalloc [23] use locks. All of them do
garbage collection during a blocking recovery period after a
failure. Offline GC is attractive because it allows optimizing
the common case of avoiding cache flushes and fences for
allocator metadata during allocation.

Cxl-shm [68]. Cxl-shm is another memory management
system for CXL that tolerates partial failures. Cxl-shm makes
several design choices that are incompatible with our con-
straints. First, it embeds a 24B header into each allocation to
support reference counting, 8B of which requires HWcc. This
metadata is scattered throughout the heap, inflating HWcc
usage. Second, it provides only basic pointer consistency:
the heap is created with a fixed size and cannot be extended,
and it does not support allocation sizes larger than 1KiB,
so it never modifies memory mappings. Thirdly, it requires
reference counting, which is suitable for message passing
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applications that rarely modify reference counts, but not for
applications with shared data structures, for which reference
count modifications artificially increase contention, even for
read-only workloads.

Tigon [33]. Tigon is an in-memory transactional database
that uses explicit allocation of CXL memory to share and
synchronize data used in cross-partition transactions. The
authors of Tigon used an early version of cxrarLoc in their
system. Tigon assumes inter-host hardware cache coher-
ent memory and does not tolerate partial failures. Adapting
Tigon to mCAS is interesting future work.

Memory protection. There is recent work on memory
allocators [24, 53] that protect the heap from buggy or mali-
cious programs using hardware memory protection mecha-
nisms like Intel’s memory protection keys (MPK) [3]. CxLAL-
Loc does not currently implement these mechanisms because
we assume processes sharing memory are correct and trusted.
That being said, our design does separate heap metadata and
heap data, and can therefore be extended with protection
mechanisms in the future.

CXL tiered memory management. Recent work explores
using CXL to enable memory disaggregation and pooling
for improved utilization and reduced costs in datacenter
servers [11, 26, 44, 45]. Key research directions include opti-
mizing CXL memory pool configurations for performance
and cost savings [50], developing resilient memory man-
agers and intelligent page placement policies to mitigate
CXL’s higher access latency [37, 42, 57, 58, 61, 68], reducing
process and container startup time [8, 32] and leveraging
CXL’s expanded memory capacity and bandwidth for large-
scale applications [30, 36, 62]. These approaches treat CXL
as a memory tier that is not directly visible to user software,
though some recent work has looked at how to provide an
extensible interface [59, 60]. Comparisons on genuine CXL
hardware reveal differences from emulated CXL that compel
revisiting prior assumptions [58].

CXL and partial failures. Other recent work [55, 63,
68, 71] makes the same observation as this work that CXL
systems can observe partial failures, with FUSEE [55] and
rTX [63] focusing on RDMA and remote memory nodes.
RDMA. Systems built using RDMA [25, 38, 67] have a dis-
aggregated view of memory, but remote allocation is not
controlled directly by a malloc/free interface used by the ap-
plication. These systems use message passing to coordinate
state, not explicit memory allocation. Also, the latency for
memory access through RDMA networks is still one to two
orders of magnitude higher than local memory [29], while it
is 2.3 higher latency in our experimental testbed (§5.4).

7 Conclusion

Cxrarroc is the first memory allocator appropriate for a
CXL pod. It is efficient, it supports memory sharing among

Newton Ni, Yan Sun, Zhiting Zhu, and Emmett Witchel

processes with pointer consistency, and it supports the lim-
ited inter-host hardware cache coherence of CXL. CxrALLOC
also tolerates partial failures [28], which makes it resilient
to thread or process failures. Our evaluation demonstrates
cxrLaLLoc’s performance.
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A Artifact Appendix
A.1 Abstract

The main benchmark harness is the cxlalloc-bench crate,
which reads workload configuration files in the
cxlalloc-bench/workloads directory and runs the YCSB
and memcached macrobenchmarks and thread-test and xmal-
loc microbenchmarks in our evaluation. We use one external
data set for the memcached traces [66].

A.2 Artifact check-list (meta-information)

Program: YCSB, included

Compilation: rustc 1.88.0, included by installation

Data set: Memcached traces, 6.7GiB

Run-time environment: Linux, dependencies managed

by Nix

Execution: Hardware settings set during installation

e Metrics: Throughput, peak memory usage

e Output: NDJSON files containing throughput and memory
usage, pdf plots

o How much disk space required (approximately)?: 10GiB

e How much time is needed to prepare workflow (ap-
proximately)?: 10min

e How much time is needed to complete experiments
(approximately)?: 11h per iteration

e Publicly available?: https://github.com/nwtnni/cxlalloc

e Code licenses (if publicly available)?: MIT

e Data licenses (if publicly available)?: SNIA Trace Data
Files Download License

e Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

18234672

A.3 Description
A.3.1 How to access.

git clone https://github.com/nwtnni/cxlalloc.git

A.3.2 Hardware dependencies. Our figures 4, 5, and 6
(main macrobenchmarks and microbenchmarks) are evalu-
ated on a machine with 80 physical cores (no hyper-threading).
The workload configurations can be freely adjusted to use
fewer threads and processes, but the figures won’t match
exactly. The default heap size is 64GiB; it can be reduced
based on the hardware, but some baselines may crash.

Our figure 9 is evaluated with a 32-core Intel SPR machine
with CXL FPGA. We can provide the FPGA RTL and bit-
stream, but the current bitstream only works with Altera
Agilex 7 I-series FPGA, version R1BES.

A.3.3 Software dependencies. Managed by Nix during
installation process.

A.3.4 Data sets. We use the first subtrace of clusters 12,
15, 31, and 37 from [66]. The trace data can be downloaded
via this SNIA link. We convert each CSV trace to Parquet.
After installation (§A.4), run the following to convert:

mv cluster{12,15,31,37}.000.zst cxlalloc/twitter/

./cxlalloc/twitter/convert.sh 12
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./cxlalloc/twitter/convert.sh 15
./cxlalloc/twitter/convert.sh 31
./cxlalloc/twitter/convert.sh 37

The resulting parquet files occupy about 6.7 GiB.

A.4 Installation

Run cxlalloc/script/setup.sh to install nix and direnv
(which we use for dependency management), clone submod-
ules, and set up the hardware for reproducibility (e.g., dis-
abling CPU frequency scaling). Make sure the
cluster{12,15,31,373}.000.parquet files (§A.3.4) are moved
into the cxlalloc/twitter/ directory.

Basic test. From the root of the cxlalloc repository, run
./script/run.sh cxlalloc-bench/workloads/mini.toml,
which compiles and runs a small subset of the macro- and
micro-benchmarks. The results will be inmini . ndjson, which
contains throughput and memory usage information for each
benchmark.

A.5 Experiment workflow

Relative paths assume we are at the root of the cxlalloc
repository. The run script . /script/run. sh takes a path to
a workload configuration file as an argument, and appends
results to an ndjson file. The workloads from our paper are
defined in . /cxlalloc-bench/workloads/.
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A.6 Evaluation and expected results

To reproduce the main figures (8,9, and 10) in our paper, run
the following commands:
./script/run.sh ./cxlalloc-bench/workloads/main.toml
./script/run.sh ./cxlalloc-bench/workloads/huge. toml
python3 ./plot/macro.py main.ndjson # macro.pdf
python3 ./plot/micro.py main.ndjson # micro.pdf
python3 ./plot/huge.py huge.ndjson # huge.pdf

To reproduce the MCAS results (Figure 12), assuming ap-
propriate hardware, run:
./script/ablation.sh
python3 ./plot/ablation.py ablation.ndjson

A.7 Experiment customization

The fields of the configuration files should be mostly self-
explanatory, but we note that our benchmark harness iterates
over the cartesian product of the fields within each experi-
ment. The reviewer can vary these fields according to their
hardware (e.g., thread count). Note that mimalloc can only
be run in a single process, which is why the configuration
files are essentially duplicated (once for mimalloc, once for
all other allocators).
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