
Cxlalloc: Safe and Efficient Memory Allocation for a
CXL Pod

Newton Ni

nwtnni@cs.utexas.edu

The University of Texas at Austin

Austin, Texas, USA

Yan Sun

yans3@illinois.edu

University of Illinois Urbana-Champaign

Champaign, Illinois, USA

Zhiting Zhu
∗

zhitingz@nvidia.com

The University of Texas at Austin

Austin, Texas, USA

NVIDIA

Santa Clara, California, USA

Emmett Witchel

witchel@cs.utexas.edu

The University of Texas at Austin

Austin, Texas, USA

Abstract
A Compute Express Link (CXL) pod is a group of hosts that

share CXL-attached memory. A memory allocator for a CXL

pod faces novel challenges: (1) CXL devices may not fully

support inter-host hardware cache coherence (HWcc), (2)

the allocator may be concurrently accessed from different

processes, and (3) with more hosts, failures become more

likely.

We present cxlalloc, a user-space memory allocator that

addresses these challenges through careful metadata layout

and new protocols to maintain cache coherence in software,

coordinate memory mappings across processes, and recover

from crashes. Cxlalloc uses compare-and-swap (CAS) for

efficient synchronization; to support CXL devices with no

HWcc, we present a memory-based CAS (mCAS) primitive

implemented in an FPGA.

Experiments with in-memory key-value store workloads

demonstrate that cxlalloc retains competitive performance

while enabling new use-cases. Experiments with a commer-

cial CXL device show that cxlalloc can achieve 80% of its

maximum allocation throughput using mCAS.

CCS Concepts: • Software and its engineering → Mem-
ory management; • Computer systems organization →
Processors and memory architectures.

Keywords: Memory allocation; CXL; sharedmemory;mCAS;

cache coherence

∗
Work done while at The University of Texas at Austin.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

ASPLOS ’26, Pittsburgh, PA, USA
© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2359-9/2026/03

https://doi.org/10.1145/3779212.3790149

ACM Reference Format:
Newton Ni, Yan Sun, Zhiting Zhu, and Emmett Witchel. 2026.

Cxlalloc: Safe and Efficient Memory Allocation for a CXL Pod. In

Proceedings of the 31st ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
2 (ASPLOS ’26), March 22–26, 2026, Pittsburgh, PA, USA. ACM, New

York, NY, USA, 18 pages. https://doi.org/10.1145/3779212.3790149

1 Introduction
Compute Express Link (CXL) memory provides a load/store

interface that allows processors to access memory across

a CXL link, most commonly transported over PCIe. CXL

is maturing into a practical substrate for lower-cost, disag-

gregated memory in data centers, where system software

manages tiering between fast local memory and slower CXL-

attached memory [45, 46, 50, 61, 65, 69]. Initial prototypes

for hardware that allow multiple machines to share a sin-

gle CXL memory device are now available, with plans for

broader commercialization [5, 12]. A small number of hosts

(e.g., 8–16) connected directly to a single multi-headed CXL

memory module and sharing memory at cacheline granular-

ity is called a CXL pod [12, 33, 71]. Applications that want

to dynamically allocate and share memory in a CXL pod

require a memory allocator.

CXL pods present some novel challenges that make it

difficult to use existing memory allocators: limited inter-
host hardware cache coherence (HWcc), cross-process
sharing, and partial failure. We contribute a new memory

allocator, cxlalloc, that address these challenges.

Limited HWcc. Version 3 of the CXL specification [2] de-

fines an inter-host cache coherence protocol, but given im-

plementation cost and complexity, it is unclear if HWcc will

become widely supported in practice. HWcc is important

for software, as it enables threads on different hosts to syn-

chronize with atomic operations like compare-and-swap

(CAS). Recent work assumes a range of HWcc models: full

HWcc [9], HWcc in a limited memory region [33, 35], and

no HWcc [56, 70].

https://orcid.org/0009-0002-2491-1880
https://orcid.org/0009-0007-5128-4399
https://orcid.org/0009-0005-9598-3875
https://orcid.org/0000-0002-1391-2880
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779212.3790149
https://doi.org/10.1145/3779212.3790149


ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Newton Ni, Yan Sun, Zhiting Zhu, and Emmett Witchel

Cxlalloc is compatible with all three of these HWcc mod-

els. Cxlalloc’s algorithms reduce the amount of HWccmeta-

data while efficiently maintaining cache coherence in soft-

ware for the remainingmetadata. Cxlalloc’smemory layout

separates HWcc metadata into its own contiguous region.

If there is full HWcc, cxlalloc remains correct. If HWcc

is limited to a small region (Figure 1(A)), cxlalloc mini-

mizes its HWcc usage. If there is no HWcc (Figure 1(B)), we

demonstrate how to implement a memory-based compare-

and-swap (mCAS) operation in near-memory processing

logic, using hardware available today. Cxlalloc can use

mCAS instead of CAS.

Cross-process sharing. Memory allocators typically as-

sume that their metadata will be accessed within a single

process, but shared CXL memory may be accessed concur-

rently from different processes on different hosts. To discuss

correctness, it is useful to define two properties:

Definition 1.1 (Spatial pointer consistency (PC-S)). Apointer

refers to the same physical memory in each sharing process.

Definition 1.2 (Temporal pointer consistency (PC-T)). A
pointer to memory allocated in one process can immediately

be dereferenced in any sharing process.

Together, we refer to these properties as pointer consis-

tency (PC). PC must be maintained when memory allocators

manipulate memory mappings—for example, to increase the

size of the heap, or to back a new 1GiB allocation. In a single-

process setting, PC is guaranteed by the OS: concurrent mmap
calls returnmemorymappings that do not overlap and are im-

mediately visible to all threads. With cross-process sharing,

the OS can no longer provide these guarantees. For exam-

ple, concurrent mmap calls in different processes may return

memory mappings with the same virtual address, and each

memory mapping is initially invisible to other processes.

Cxlalloc is the first memory allocator to provide PC for

cross-process shared memory, without trade-offs like fixed

heap size [1, 72] or maximum allocation size [68]. Cxlalloc

provides PC-S by using offset pointers (§2.3) and placing

heap metadata and data at consistent offsets in every pro-

cess. Cxlalloc provides PC-T by using a signal handler to

asynchronously install memory mappings in each process,

and introduces a hazard pointer [51] based protocol to safely

reclaim memory mappings.

Partial failure. Compared to a single-process application,

a multi-process application in a CXL pod faces a higher prob-

ability of partial failure [28, 68], where a single thread or pro-

cess may crash (e.g., due to the OS’s out-of-memory killer).

Tolerating partial failures is useful for high-availability ap-

plications [71] like transactional databases [33], machine

learning training [48], and file systems [7], to ensure that

a single software bug or other problem cannot bring down

the whole system. Memory allocators should not cause live

application threads to block, even if a thread crashes inside

an allocator function.

Prior work [68] achieves partial failure tolerant memory

allocation using lock-free data structures to ensure metadata

shared between threads is always consistent, and reference

counting to recover memory from dead threads. Reference

counting works well for message passing workloads like

RPC, which involve relatively few and uncontended refer-

ence count updates, but less so for shared memory data

structures, where reference counts updates can cause high

contention even under read-heavy access patterns. More-

over, reference counts (which require HWcc) are embedded

in each allocation, making them non-trivial to adapt to other

HWcc models.

cxlalloc also uses lock-free data structures, but intro-

duces a new recovery protocol to reduce overhead. Each allo-

cator operation starts by updating 8 bytes of state atomically,

in place, like a single-element redo log. This state provides

enough information to idempotently redo an interrupted

operation on recovery.

Contributions. We identify and explain the constraints of

shared CXL memory allocation: limited HWcc, cross-process

sharing, and partial failure. We present the design of cxlal-

loc, the first memory allocator to satisfy all of these con-

straints, and an FPGA implementation of mCAS that can be

used for inter-host synchronization for CXL devices that do

not support HWcc.

We evaluate cxlalloc against shared memory allocators,

persistent memory allocators, and CXL memory allocators

(§5). Using YCSB [20] and real-world traces of memcached

requests [66], we establish that cxlalloc has best-in-class

performance for time and space. Using a commercial CXL

device, we demonstrate that cxlalloc can achieve up to

80% of its maximum allocation throughput with no HWcc

(using mCAS). Our allocator is open source and available

here: https://github.com/nwtnni/cxlalloc.

2 Background and motivation
We will discuss CXL hardware and memory allocation.

2.1 Compute Express Link (CXL)
CXL is a communication protocol that defines semantics for

accessingmemory across a serial link. CXL can run over PCIe

links, allowing processors that support the CXL protocol (e.g.,

Intel’s Sapphire Rapids) to access memory across the PCIe

bus. The CXL memory device contains commodity DDR

DRAM modules. CXL memory has evolved from a single

device (1.0), to a switched pool (2.0), to fine-grained sharing

(3.0, and in the current 3.2 specification [2]).

Cache coherence. The CXL standard supports inter-host

hardware cache coherence (HWcc) via back-invalidation [2].

HWcc is important for shared memory programs because it

allows threads to efficiently synchronize across hosts using

standard atomic operations like compare-and-swap (CAS).

Unfortunately, full HWcc seems unlikely due the cost of

https://github.com/nwtnni/cxlalloc


Cxlalloc : Safe and Efficient Memory Allocation for a CXL Pod ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

Figure 1. (A) shows shared CXL memory split into a section

that is kept coherent by hardware (HWcc) and a much larger

region that must rely on software for cache coherence (SWcc).

(B) shows shared CXLmemory connected to a host via a PCIe

bus. One region of CXL memory is device biased, meaning

its contents cannot be cached by a CPU. This region is fully

managed by near memory processing logic (NMP), which

handles load, store, and mCAS operations sent from the CPU

to an address region marked uncachable. Host-biased CXL

memory can be cached by the host.

snoop filters [35]. Two current hardware prototypes that

support inter-host memory sharing do not support HWcc

at all [5, 12]. Other work proposes limiting HWcc to a small

memory region [35].

These two HWcc models are illustrated in Figure 1. Fig-

ure 1(A) shows a CXL device that supports HWcc in a small

contiguous region (HWcc). Figure 1(B) shows a CXL de-

vice with no HWcc: we implement a custom memory-based

compare-and-swap (mCAS) primitive using near memory

processing (NMP) logic (§4). The NMP intercepts operations

to a small contiguous region (device biased) to ensure that

mCAS operations are serialized.

A critical difference between these HWcc models is that

the HWcc region in Figure 1(A) can be cached by CPUs,

but the device biased region in Figure 1(B) must be marked

uncachable (via /proc/mtrr, for example), as the NMP has

no way of tracking or invalidating CPU caches.

Failure model. Like related work [68, 71], we assume our

CXL device is reliable. It keeps its state while processes can

crash and operating systems can reboot. Such reliability can

be achieved using an independent power supply or batteries.

2.2 Traditional memory allocation
We will start with some background, and then discuss why

traditional memory allocators fail to support CXL shared

memory.

Slab allocation. Slab allocation [41] is a common [16, 27, 43]

design where memory is statically split into coarse-grained,

fixed size slabs, which are then dynamically split into fine-

grained, equally sized blocks. This balances fragmentation

and performance.

Remote free. A remote free [43, 47] is when memory allo-

cated by one thread is freed by another, which can result

in false cache line sharing or even unbounded memory us-

age [13].

Limitations. It is non-trivial to adapt traditional memory

allocators to limited HWcc because their layouts intersperse

thread-local and global metadata. Leaving the global meta-

data in place wastes HWccmemory, but moving it out creates

other problems, like correlating the thread-local and global

metadata.

Cross-process sharing also makes managing memory map-

pings more challenging. Traditional memory allocators use

absolute virtual addresses as pointers and assume a single-

process address space. They rely on the OS to guarantee that

new memory mappings do not overlap, so that a pointer

refers to the same physical memory (PC-S). But new mem-

ory mappings in different processes may have overlapping

virtual addresses, violating PC-S. They also rely on the OS to

guarantee that memory mapping updates are immediately

visible to all threads, so that pointers can be safely derefer-

enced (PC-T). But a new memory mapping in one process

is invisible to other processes, so a pointer passed between

processes may fault when dereferenced, violating PC-T.

Finally, traditional memory allocators do not provide fail-

ure tolerance.Many use locks for synchronization [27], which

can block live threads if a thread crashes in a critical section,

and none provide APIs to allow the application to recover

the in-memory state of a crashed thread.

2.3 Persistent memory (PM) allocation
We again start with background, and then discuss why PM

allocators fail to support CXL shared memory. PM is byte-

addressable, like DRAM, but preserves its contents upon

power loss. CXL memory is not persistent by default (though

it can be made persistent using a backing SSD [22]), but data

in shared CXL memory can survive application and even OS

restarts, if shared by different hosts.

Recoverability. PM allocators can restore their internal

metadata to a consistent state after a crash. There are broadly

two approaches to recoverability: garbage collection [14, 16]

scans the heap for memory leaks on recovery, while redo

logging [23] replays log entries on recovery.

Offset pointers. Offset pointers [17] are a ubiquitous [1,

19, 23, 31, 52] alternative to traditional pointers (absolute

virtual addresses) that allow in-memory data structures con-

taining pointers to be mapped at different virtual addresses.

Traditional pointers require memory mappings to always be

placed at stable addresses, which can conflict with OS and ap-

plication memory mappings. Offset pointers instead require

stable offsets between memory mappings. Other alternatives,

like indirection [15] and relocation [49], are possible, but re-

quire complex runtime support.

Limitations. Like traditional memory allocators (§2.2), PM

allocators are difficult to adapt to limited HWcc: their layouts

also intersperse thread-local and global metadata.



ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Newton Ni, Yan Sun, Zhiting Zhu, and Emmett Witchel

Figure 2. A sketch of cxlalloc’s memory layout. Heap

metadata is partitioned into HWcc and SWcc metadata to

support limited HWcc (§3.2), and separated from applica-

tion data, which can reside in either HWcc or SWcc memory.

Grey shaded regions indicate virtual address space reserva-

tions (§3.3), used to maintain pointer consistency (§1) across

processes. S0 and L0 indicate slab metadata and data for a

small or large slab, respectively, with index 0. H0 indicates a

virtual address region in the huge heap (§3.1.2). Ta indicates

thread-local metadata for thread a.

PM allocators assume sequential access from one process

at a time, but cross-process sharing implies concurrent access.

Even though PM allocators use offset pointers, they still rely

on the OS to guarantee that concurrent memory mapping

updates do not have overlapping offset ranges (PC-S). And

even though PM allocators can replay memory mappings on

recovery, they still rely on the OS to make mapping updates

visible to all threads during normal execution (PC-T).

Partial failure also breaks some common design choices

in PM allocators. PM allocators assume a total failure model,

where all sharing threads crash at once, and there is a qui-

escent period during recovery where no thread is accessing

the heap. As a result, many PM allocators synchronize their

data structures using locks [23, 52], which can block live

threads if a thread crashes in an allocator critical section.

And many PM allocators recover their metadata by using

non-concurrent garbage collection [14, 16], which blocks

live threads from accessing the heap during recovery. Any

blocking is undesirable for highly available applications.

3 Design
We begin by describing cxlalloc ’s core data layout and

algorithms, and then explain how this core is extended to

address limited HWcc, cross-process sharing, and partial

failure.

3.1 Architecture
Cxlalloc comprises three heaps: the small, large, and huge

heaps, whichmanage allocations of size 8B-1KiB, 1KiB-512KiB,

struct SmallHeap {
hwcc: (SmallGlobal, [HWccDesc]),
swcc: ([SmallLocal; NUM_THREAD], [SWccDesc]),
data: [u8] }

struct SmallGlobal { len: u32, free: u32 }
struct SmallLocal {

unsized: u32, sized: [u32; NUM_SIZE_CLASS] }
struct HWccDesc { remote: u16 }
struct SWccDesc {

next: u32, owner: ThreadId,
class: u8, free: BitSet }

Figure 3. Pseudocode type definitions for the small heap.

and 512KiB+, respectively. Figure 2 sketches how these heaps

are arranged in memory. We note two immediate differences

in how cxlalloc lays out metadata compared to a traditional

memory allocator: (1) cxlalloc partitions heap metadata

into HWcc and SWcc (§3.2), and (2) data regions are contigu-

ous in virtual address space to support offset pointers (§3.3).

We next describe each heap in more detail.

3.1.1 Small and large heap. The small and large heaps

share the same slab allocation design (§2.2), so we omit a

separate discussion of the large heap. Figure 3 lists the core

data structures in the small heap.

At a high level, the data region is divided into fixed-size

slabs. The heap length (SmallGlobal.len) indicates the cur-
rent number of slabs in the heap, and can be increased (§3.3.1).

Slabs are organized into free lists, and each slab is linked to

at most one free list (we will explain how a slab may be un-

linked during allocation). There are three kinds of free lists:

the global free list (SmallGlobal.free) and thread-local un-
sized free lists (SmallLocal.unsized) contain inactive slabs,
which have no size class and all memory available for allo-

cation; the thread-local sized free lists (SmallLocal.sized)
contain non-full slabs, which have a size class and at least

one block available for allocation.

Each slab has some associated metadata, which is split

across two descriptors: SWccDesc and HWccDesc. A slab has

an owning thread (SWccDesc.owner) that has exclusivewrite
access to the slab’s SWccDesc, which includes the size class

(SWccDesc.class), a bitset of available blocks
(SWccDesc.free), and a slab index (SWccDesc.next) to link

into free lists (implemented as intrusive linked lists). The

owner of a slab is the only thread that can allocate blocks

from that slab. To handle when a thread frees to a slab it does

not own (remote free), each slab also has a counter of remote

frees (HWccDesc.remote). This counter counts down from

the total number of blocks due to our SWcc protocol (§3.2.2).

Figure 4 shows the various state transitions that a slab un-

dergoes during the (de)allocation algorithms described next.

Allocation. To allocate, a thread first checks its thread-

local sized free list. If it is empty, the thread tries to transfer



Cxlalloc : Safe and Efficient Memory Allocation for a CXL Pod ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

Figure 4. The state transition diagram of a slab in the small

heap. Green and red indicate when a slab does or does not

have an owner, respectively, and a dashed outline indicates

that a slab is unlinked from all free lists. A global, thread-

local (TL) unsized, or thread-local (TL) sized slab is linked

to the corresponding free list. An unmapped slab is past the

heap length. A detached slab is full, has an owner, and is

unlinked, while a disowned slab is full, has no owner, and is

unlinked (also see §3.2.1). The more complex transitions are

labelled with conditions.

over a slab from the following sources, in order: the thread-

local unsized free list, global free list, and heap length (i.e.,

extending the heap). After transferring a slab, the thread

initializes the slab by setting SWccDesc.owner to its own ID,

SWccDesc.class to the requested size class, SWccDesc.free
to the full set of blocks, and HWccDesc.remote to the total

number of blocks.

At this point, the thread-local sized free list must contain

at least one slab, so the thread allocates a block from SWc-
cDesc.free. If the slab is still not full, allocation is done. Oth-
erwise, the thread must maintain our invariant that thread-

local sized free lists only contain non-full slabs (which allows

future allocations to avoid traversing full slabs, and remote

frees to avoid coordination).

In the common case with no remote frees (i.e.,

HWccDesc.remote is equal to the total number of blocks), the

thread keeps ownership of the slab, but still unlinks it from

the thread-local sized free list, transitioning the slab to the

detached state in Figure 4. Otherwise, at least one remote free

has occurred, and the thread clears SWccDesc.owner before

unlinking, transitioning the slab to the disowned state in

Figure 4. We discuss the reasoning behind these two states

in more detail (§3.2.1).

Deallocation. To deallocate, a thread identifies the slab

containing the freed pointer (by dividing the pointer’s offset

within the data region by the slab size) and then checks the

owner. If the deallocating thread is the owner, it takes the

local free path and updates SWccDesc.free in place. If this

slab was previously full, it must have been in the detached

state, and the thread pushes it onto the thread-local sized

free list. If this slab is now empty, the thread transfers it to

the thread-local unsized free list.

Otherwise, the thread is not the owner, and it takes the re-

mote free path and uses CAS to decrement HWccDesc.remote.
If this counter reaches 0, this slab must have been detached

struct HugeHeap {
hwcc: HugeGlobal,
swcc: [HugeLocal; NUM_THREAD],
data: [u8] }

struct HugeGlobal {
reservations: [ThreadId; NUM_RESERVATION] }

struct HugeLocal {
free: IntervalTree,
descs: u64,
hazards: [u64; NUM_HAZARD] }

struct HugeDesc {
next: u64, offset: u64, size: u64, free: bool }

Figure 5. Pseudocode type definitions for the huge heap.

or disowned, so the thread steals ownership of the slab, trans-

ferring it to its own thread-local unsized free list. Stealing

is safe here because (1) a detached or disowned slab is not

linked to any free list, and (2) if the counter is 0, then every

block has been remotely freed, and there can be no more

allocation from or deallocation to this slab. This code path is

the only way that remotely freed memory can be reclaimed;

we discuss tradeoffs in §3.2.1.

In either case, if the thread-local unsized free list reaches

a configurable threshold length, the thread transfers some

slabs to the global free list.

3.1.2 Huge heap. Allocations in the huge heap are backed

by individual memory mappings, necessitating a different

design than the small heap. The main data structures are

listed in Figure 5. At a high level, the reservation array

(HugeGlobal.reservations) tracks ownership of coarse-

grained virtual address regions; an entry grants a thread

exclusive permission to install new mappings in the corre-

sponding region. Each thread tracks its owned regions using

an interval tree (HugeLocal.free). We note that any deter-

ministic data structure will work here. Whenever a thread

creates a memory mapping to back an allocation, it also allo-

cates a new descriptor (HugeDesc) and links the descriptor

to an intrusive linked list (HugeLocal.descs). Descriptors
record the allocation’s offset (relative to HugeHeap.data)
and size. The free bit (HugeDesc.free) is used in tandem

with hazard offsets (HugeLocal.hazards) to safely reclaim

memory in a cross-process setting.

Allocation. To allocate, a thread finds a contiguous region of
the requested size using HugeLocal.free (requesting more

virtual address space from the reservation array if neces-

sary). The thread then allocates a descriptor, initializes the

descriptor’s size and offset with free bit unset, and links the

descriptor to its descriptor list. Finally, the thread installs the

mapping and returns the resulting pointer to the application.

Deallocation. To deallocate, a thread computes the virtual

address region containing the freed pointer (by subtract-

ing HugeHeap.data from the pointer and dividing by the



ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Newton Ni, Yan Sun, Zhiting Zhu, and Emmett Witchel

region size), and then looks up the owner in the reserva-

tion array. The thread then traverses the owner’s descriptor

list to find the descriptor with the same offset, and sets the

HugeDesc.free bit. Setting the free bit does not require CAS
because huge descriptors are never updated concurrently.

Finally, the thread unmaps this memory mapping.

3.2 Limited HWcc
Cxlalloc supports limited HWcc byminimizing and separat-

ing metadata that requires HWcc (SmallHeap.hwcc in Fig-

ure 3 and HugeHeap.hwcc in Figure 5). For the small and large

heaps, cxlalloc uses only 2B of HWcc memory (HWccDesc)
per slab—a small slab is 32KiB and a large slab is 512KiB—

with 8B constant overhead (SmallGlobal). The huge heap
uses a constant amount of HWcc memory (HugeGlobal),
which is 8KiB in our prototype. We will first discuss cxlal-

loc’s small heap remote free protocol, as metadata tomanage

remote frees is the only HWcc metadata that scales with the

size of the heap, and then explain cxlalloc’s SWcc protocol.

3.2.1 Remote free. Cxlalloc’s slab allocation design is

similar to mimalloc [43] in that (1) each slab has its own free

bitset to decrease contention and improve spatial locality,

and (2) each slab has separate local and remote free metadata,

allowing local frees to take a fast unsychronized path, while

only remote frees need to synchronize via CAS for platforms

with HWcc, mCAS otherwise.

Cxlalloc introduces two major changes for remote frees.

The first change is the detached state (Figure 4), which al-

lows a slab that is entirely remotely freed (e.g., in a producer-

consumer workload) to be stolen by a thread without coor-

dinating with the slab’s previous owner. The second change

is using a counter to track remote frees, which minimizes

HWcc memory overhead compared to, say, a bitset or intru-

sive free list. However, a counter loses information about

which specific blocks have been freed, which prevents re-

motely freed blocks from being reused until the entire slab

has been remotely freed. To ensure that slabs with a mix of

local and remote frees are eventually reclaimed, cxlalloc

introduces the disowned state (Figure 4); any slab that has

at least one remote free and is being actively allocated from

will be disowned instead of detached, forcing all subsequent

frees to take the remote free path (§3.1.1.Deallocation) and

allowing the whole slab to be reclaimed.

There are pathological cases for our remote free proto-

col, but these cases require a thread to allocate many slabs,

locally free a few blocks in each slab (while the rest are

freed remotely), and then stop allocating from those size

classes. We do not expect this pattern to be common in nor-

mal workloads, and our evaluation does not show excessive

fragmentation.

3.2.2 SWcc protocol. Cxlalloc assumes that SWcc CXL

memory does not have hardware inter-host cache coherence,

but does let hosts keep state in their CPU caches. Cxlalloc

also assumes that any application written for SWcc memory

will pin threads to cores, to avoid inconsistent cache contents

due to theOS scheduling a thread on different core. Cxlalloc

manually controls cache state by flushing and fencing.

We begin with the small heap. The two sources of SWcc

data are thread-local free lists (SmallLocal) and SWccDesc.
Thread-local free lists are only read and written by a single

thread, and trivially do not require any flushing or fencing.

SWccDescs require more care: while they are only written

by their owner, ownership can change, and SWccDescs can
also be read by many threads.

For SWccDesc writers, we observe that flushing and fenc-

ing is necessary only when ownership may change (see Fig-

ure 4); the owner may otherwise keep SWccDesc in cache.

For example, a thread must flush and fence a SWccDesc be-
fore transferring the slab from the thread-local unsized free

list to the global free list. More subtly, a flush and fence is

required before a slab transitions to detached or disowned

states, since ownership may change due to remote frees.

For SWccDesc readers, there are two locations where a

non-owning thread can read a SWccDesc. The first is push-
ing and popping from the global free list, which reads SWc-
cDesc.next. Since global free list operations are rare, read-
ers simply flush and fence before each load. The value of

SWccDesc.next cannot change without popping the slab

from the global free list, so a stale load will be detected by a

CAS (or mCAS) conflict on SmallGlobal.free. The second
location is freeing, which starts by loading SWccDesc.owner.
Crucially for performance, it is safe for a thread to cache SWc-
cDesc.owner; no flush or fence is required. To understand

why, we do case analysis on the value of SWccDesc.owner
in thread 𝑡 ’s cache and in memory.

1. Owner is 𝑡 in cache and memory. This is the common

case of a thread freeing to a slab it owns, which is safe.

2. Owner is 𝑡 in memory, but not in cache. Same as (1).

3. Owner is 𝑡 in cache, but not in memory. This is impos-

sible, since it implies 𝑡 gave up ownership of this slab

without flushing and fencing its SWccDesc.
4. Owner is not 𝑡 in cache or memory. In this case, the

thread performs a remote free by CASing (or mCAS-

ing) to decrement HWccDesc.remote. Importantly, this

decrement is correct even if the cached owner is in-

consistent with memory (e.g., if the SWccDesc is trans-
ferred between two other threads while this thread

holds a cached copy of SWccDesc.owner). This is pos-
sible because HWccDesc.remote counts down to 0 in-

stead of up to the block count, so remote free logic

does not depend on the potentially inconsistent value

of SWccDesc.class (which is in the same cache line

as SWccDesc.owner).
For the huge heap, performance is less critical, so we sim-

ply treat all SWcc data (HugeLocal and HugeDesc) as un-
cachable, and flush and fence after every write and before



Cxlalloc : Safe and Efficient Memory Allocation for a CXL Pod ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

every read. This does not cause any data races, because Huge-
Local and HugeDesc are never concurrently updated.

3.3 Cross-process sharing
Cxlalloc provides pointer consistency (PC, §1) across pro-

cesses by coordinating the location, installation, and removal

of memory mappings. We first introduce two basic mecha-

nisms that are used by both the small and huge heap, and

then explain how each heap maintains PC.

Virtual address space reservation. In order to provide

PC-S for offset pointers, cxlalloc must create memory map-

pings at exactly the same offset in each process, which re-

quires calling mmap with the MAP_FIXED flag. To avoid over-

writing existing memory mappings, cxlalloc reserves large

contiguous regions of virtual address space during heap ini-

tialization, in each process, by calling mmap with the PROT_-
NONE flag. The absolute address of a reservation does not

matter, and the OS may choose different addresses for each

process. What matters is that a reservation gives cxlalloc

a contiguous range of offsets where it can its manage its

own memory mappings. Reservations are visible as the gray

regions in Figure 2.

Signal handler. In order to provide PC-T, cxlalloc must

ensure that new memory mappings in one process are made

visible to sharing processes. For example, if a thread in one

process requests a huge allocation (backed by a new memory

mapping), and writes a pointer to this new memory mapping

into a shared data structure, a thread in a different process

should be able to dereference the pointer without crashing.

Cxlalloc updates memory mappings asynchronously by

installing a signal handler in each process that intercepts

SIGSEGV signals when a thread dereferences an unmapped

pointer. A SIGSEGV might be a program bug or it might be

a thread trying to access a region that has been mapped by

cxlalloc in some processes, but not in the current one. The

signal handler inspects heap metadata to determine if the

pointer is within the heap and if it should be backed by a

valid memory mapping. If so, the signal handler installs the

memory mapping for the current process and reissues the

faulting instruction; if not, the signal is forwarded to the

default signal handler.

We considered and rejected a synchronous design, where

processes participate in a barrier when updating memory

mappings. A barrier would (a) introduce global overhead for

memory mappings that are only accessed by a subset of pro-

cesses, (b) prevent concurrent updates of memory mappings,

and (c) block live threads under partial failure.

3.3.1 Small heap. Cxlalloc extends the small heap by

atomically increasing the heap length (SmallGlobal.len),
which requires creating three new memory mappings: one

for each of the HWccDesc, SWccDesc, and SmallHeap.data
regions. To provide PC-S, the small heap reserves virtual

address space for each of these regions at initialization time,

ensuring they have room to extend, and then places new

memorymappings linearly within the reservations (Figure 2).

There can be no overlapping memory mappings because the

heap length is changed atomically. To provide PC-T, cxlal-

loc’s signal handler checks the heap length to see if a pointer

is within the heap.

We simplify heap extension by having it be monotonic—

cxlalloc never unmaps small heap memory mappings. The

underlying memory can be returned to the OS by calling

MADV_REMOVE (or any equivalent mechanism) when transfer-

ring a slab to the global free list.

3.3.2 Huge heap. The huge heap must create new mem-

ory mappings to back allocations. To provide PC-S, the reser-

vation array ensures that each thread creates memory map-

pings in disjoint regions. To provide PC-T, cxlalloc’s signal

handler walks huge descriptor lists to see if a pointer is

within a huge allocation. However, unlike the small heap,

memory mappings can be unmapped when a huge alloca-

tion is freed. Frees are challenging in a cross-process setting

because memory must be unmapped in all processes when
a huge allocation is freed in any process; only then are its

resources (physical memory, huge descriptor, virtual address

region) safe to reclaim and reuse. Cxlalloc introduces a

hazard offset protocol to determine when reclamation is

safe.

Hazard offsets.Hazard offsets are a variant of hazard point-
ers [51], which are used for safe memory reclamation in

lock-free data structures. Hazard pointers work roughly as

follows: before dereferencing a pointer, a thread publishes

the pointer to a globally readable list, which prevents this

pointer from being reclaimed while the thread is accessing

the memory. In cxlalloc, before installing a memory map-

ping, a thread publishes the offset to a globally readable list,

which prevents the memory mapping from being reclaimed

while a process has the memory mapped. Our protocol fol-

lows three simple rules:

• Publish hazard offset before mapping a huge allocation.

• Remove hazard offset after unmapping a huge alloca-

tion.

• Reclaim huge allocation if HugeDesc.free is set and

HugeDesc.offset is not published in any hazard offset list.

Together, these imply that a huge allocation will be re-

claimed if it has been freed and no process has this allocation

mapped. To implement these rules, we update allocation and

cxlalloc’s signal handler to publish hazard offsets, and

deallocation to remove hazard offsets. We do not expect the

length of the huge allocation hazard list to pose a perfor-

mance issue because huge allocations are relatively rare and

long-lived.

Cxlalloc must clean up unused memory mappings and

huge descriptors: a memory mapping can be unmapped and

its hazard offset removed if the corresponding huge descrip-

tor’s free bit is set. A huge descriptor can be reclaimed if its



ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Newton Ni, Yan Sun, Zhiting Zhu, and Emmett Witchel

free bit is set and its offset is not published in any hazard

offset list. Cxlalloc cleans up asynchronously by having

each thread occasionally walk its hazard offset list and huge

descriptor list.

Finally, we point out one subtlety: hazard pointers require

a validation step after publishing a hazard pointer, to make

sure the pointer wasn’t freed in between loading the pointer

and publishing it as a hazard. The equivalent race condition

for hazard offsets would require one thread to dereference

a huge allocation (to publish a hazard offset) while another

thread frees the huge allocation, which is a use after free vio-

lation and can be ruled out for correct programs. Accordingly,

hazard offsets do not require this validation step.

3.4 Partial failure
Cxlalloc avoids blocking live threads during crashes by us-

ing lock-free data structures, and recovers without blocking

using a combination of detectable CAS [10] and atomic state

changes.

3.4.1 Non-blocking crashes. Single-writer, single-reader
data structures, like thread-local sized free lists, may be in-

consistent after a crash. These transient inconsistencies are

not a problem, because these data structures are not visible to

other threads. They can be repaired by the recovered thread

and will not block other live threads. Single-writer, multiple-

reader data structures, like hazard offsets or huge descriptors,

are updated through atomic writes and are always consistent.

Multiple-writer, multiple-reader data structures, of which

there are four—heap length, global free list, HwccDesc, and
reservation array—are lock-free; furthermore, every opera-

tion on these data structures requires only a single CAS, mak-

ing them much easier to reason about. Since lock-free data

structures transition atomically between consistent states,

cxlalloc remains available even in the presence of thread

crashes.

3.4.2 Non-blocking recovery. To recover without having
to scan the heap for memory leaks [14, 16], each thread

atomically updates 8 bytes of state in place, which records

which operation the thread is currently performing, and

contains enough information to recover the operation in an

idempotent manner.

Small heap. For the small heap, each operation roughly

corresponds to a state transition in Figure 4. For example,

before transferring a slab from the thread-local unsized free

list to the thread-local sized free list, a thread records the

operation ID (4 bits), slab index (32 bits), and size class (8 bits).

On recovery, the thread ensures this slab has been popped

from the thread-local unsized free list and pushed onto the

correct thread-local sized free list.

For operations involving lock-free data structures, like

transferring a slab from the global free list to the thread-local

unsized free list, we use detectable CAS [10] as a primitive

to help implement idempotence. In short, detectable CAS

allows a thread to attach a version to a CAS operation; upon

recovery, the thread can query a global help array to see

if its operation succeeded, i.e., became visible to another

thread. For example, before popping from the global free list,

a thread records the operation ID (4 bits), the slab index (32

bits) to pop, and a version (16 bits). On recovery, the thread

checks if its CAS succeeded. If the CAS did not succeed, the

thread retries the CAS; otherwise, the thread ensures that

the popped slab index has been pushed to the thread-local

unsized free list.

Detectable CAS requires embedding a thread ID and logi-

cal version in each CAS target: our CAS targets are at most

32 bits, so we use a 16-bit thread ID and version to support

systems with only 8-byte CAS. This strategy increases our

HWcc (or mCAS) overhead for remote free metadata from

2B to 6B (8B aligned) per slab (§3.2)

Huge heap. For the huge heap, on recovery, a thread can

deterministically reconstruct its thread-local allocation state

(HugeLocal.free) from the reservation array and its huge

descriptor list. Since the huge heap is much simpler than the

small heap, and its data structures almost all have a single

writer, recording the huge descriptor offset (the offset of the

huge descriptor itself, not the offset of its memory mapping)

is sufficient to recover its operations.

4 Implementation
Prototyping mCAS.We design customized near-memory

processing (NMP) logic in the FPGAof Intel’s Agilex 7 board [21]

to provide an mCAS operation for architectures that do not

support inter-host HWcc (Figure 1(B)).

We partition the CXL physical address space into two

regions: device-biased and host-biased [2]. The NMP unit

is positioned between the CXL interface (IP) and the CXL
memory controller, and it manages the device-biased memory.

All load, store, and mCAS requests for the device-biased

memory go through the NMP unit (see Figure 1(B)). Only

memory within this device-biased region can be mCASed

and because the memory is device-biased, it must never

be cached by a CPU [2]. These mCAS restrictions create

barriers to porting software to make use of mCAS. Any

memory location that might be used in an mCAS should

be sequestered from other data structures, to minimize the

amount of memory that needs to be marked uncachable.

Our mCAS interface avoids MMIO to reduce latency. In-

stead, we reserve two address ranges for threads to interact

with the NMP: the special write (spwr) region and special

read (sprd) region. Each thread accesses different cache lines
within these regions according to its thread ID.

To initiate an mCAS, a thread writes 64B containing the

expected value, swap value, and target address to the spwr
region. To retrieve the response, a thread reads 16B from

the sprd region, which returns a success or failure bit and

the previous value at the target address. To ensure these



Cxlalloc : Safe and Efficient Memory Allocation for a CXL Pod ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

CMP-Y

Y

Y

CMP-N

NCPU

NMP

Mem

(a) mCAS returning success (Y) upon a matching value (CMP-Y)

on the left and failure (N) upon a mismatch (CMP-N) on the right.

The dashed line indicates the spwr while the solid line indicates

the sprd.

CMP-Y

T1-YT1

T1-Y

T2

CMP-N

T2-NCPU

NMP

Mem

(b) Thread 1 (T1) issues spwr-sprd pair before thread 2 (T2) to the

same target address. T1 succeeds (T1-Y) in the comparison and

blocks T2’s operation (CMP-N), resulting in T2 failing its mCAS

operation (T2-N).

Figure 6. mCAS timing diagram

writes and reads reach the NMP, we mark the spwr and sprd
regions uncachable.

On the NMP side, upon receiving a spwr, the NMP unit

stores the operands in its internal register array and waits for

a sprd to trigger the mCAS operation. When the NMP unit

receives a sprd, it reads the target address and compares the

value with the expected value. At the end of each sprd, the
NMP unit checks its register array to see if any other spwr
or sprd is in progress and has a matching target address.

If there is a match, the NMP unit will return mCAS failure

for the competing spwr or sprd. On an mCAS success, all

subsequent sprd and spwr operations are stalled until the

swap value is written to the memory. These checks ensure

that for a given address, only one spwr-sprd pair can be in

progress at a time. Figure 6 shows the timing diagram of the

mCAS operation.

Heap initialization.Most allocators require some single-

thread initialization of the heap [1, 16, 43, 68] which creates a

bootstrapping problem for cross-process applications. Some

external coordination becomes necessary to allow one pro-

cess to initialize the heap before any other processes can

access it.

Cxlalloc is carefully constructed so that zeroed memory

constitutes a valid and initialized heap. Processes do not need

to coordinate to initialize a shared heap.

5 Evaluation
Our design seeks to answer the following questions:

• Is cxlalloc correct (§5.1)?

Allocator Mem. XP mmap Fail Rec. Str.
mimalloc [43] M × ✓ NB × ×
boost [1] XP ✓ × B × ×
lightning [72] XP ✓ × B B GC

cxl-shm [68] CXL ✓ × NB NB GC

ralloc [16] PM × × NB B App

Cxlalloc XP, CXL ✓ ✓ NB NB App

Table 1. Properties of memory allocators in our evaluation.

Mem. shows what kind of memory the allocator was de-

signed to manage (M is “normal”, volatile, in-process mem-

ory, XP is cross-process memory, CXL is compute express

link memory, and PM is persistent memory). XP means

supports cross-process allocations by using pointer alter-

natives (§2.3).mmapmeans allocator can use mmap for large
allocations or to extend the heap. Fail means behavior on

failure (blocking (B), non-blocking (NB)) Rec. means be-

havior on recovery (blocking (B), non-blocking (NB), or not

recoverable(×)) Str. is the recovery strategy (garbage collect

allocations from dead threads (GC), allow application to re-

cover (App), or not recoverable (×)).

• How does cxlalloc affect performance of end-to-end

key-value store workloads (§5.2.1)?

• How does cxlalloc perform on low contention and

high contention microbenchmarks (§5.2.2)?

• How scalable are huge allocations (§5.3)?

• How is performance affected by HWcc support (§5.4)?

We evaluate on two machines: a Chameleon [39] instance

that does not have a CXL device, but does have 80 cores to

better compare scalability, and another machine with a CXL

Type-2 device, 32 cores, and our mCAS prototype to measure

the effect of HWcc.

Baselines. We choose our baselines (summarized in Ta-

ble 1) for the following reasons: mimalloc [43] is a state-of-

the-art traditional memory allocator that provides the best

performance for most allocation benchmarks [4]. Boost [1]

is an industry C++ library and one of the only explicit cross-

process shared memory allocators we found. Lightning [72]

is a shared-memory key-value store, one of our motivating

use-cases. We extract its internal, cross-process memory al-

locator. Ralloc [16] is a lock-free recoverable allocator for

PM. Finally, cxl-shm [68] is the state-of-the-art partial fault

tolerant memory management system for CXL shared mem-

ory.

None of our baselines optimize for limited HWcc. All al-

locators (except mimalloc) support pointer consistency for

cross-process shared memory, but only trivially, because

they do not allow heap extension or huge allocation, and do

not update memory mappings. Mimalloc does not support

cross-process sharing at all, but serves as an indicator of

maximum allocator performance.



ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Newton Ni, Yan Sun, Zhiting Zhu, and Emmett Witchel

Experimental setup. All benchmarks are run for 10 trials,

and include error bars for standard deviation (these are often

too close to be visible because of low performance variability).

All CPU performance governors are set to performance, and

the NMI watchdog, NUMA balancing, KSM, turbo boost, and

hyperthreading disabled. Threads are always pinned to a

core. We configure all benchmarks to perform fixed amounts

of work as the thread count varies; we choose amounts that

(a) can be divided evenly across all thread counts and (b)

run long enough for throughput to be stable across trials.

Each memory allocator is backed by a 64 GiB shared memory

file. We configure ralloc and cxl-shm to remove flushing and

fencing.

5.1 Correctness
We compile cxlallocwith a host of runtime invariant checks,

for example: SWccDesc.owner is null when popping a slab

from the global free list, all slabs in thread-local sized free

lists are non-full, all free lists are acyclic. We run all of our

benchmarks with these checks enabled and observe no er-

rors. We evaluate the correctness of recovery using a mix of

black-box tests with random thread crashes, and white-box

tests with defined thread crash points, again with invariant

checks enabled.

5.2 Performance
We run our first set of benchmarks on a Chameleon [39]

compute_icelake_r650 instance running Ubuntu 22.04.5 LTS

and Linux kernel version 5.15. It has two Intel Xeon Plat-

inum 8380 CPUs running at 2.30GHz, with 40 cores, 120 MiB

LLC, and 128GiB DDR4 3200 DRAM per socket. We bind

all memory to NUMA node 0 because NUMA-awareness is

not a stated goal of any of the benchmarked systems, and to

avoid introducing bias from NUMA interleaving correlating

with allocator data structure layout.

Cxlalloc is a multi-process allocator, and we want to test

cross-process allocation. (All allocators are cross-process

except mimalloc.) Our understanding is that most multi-

process applications are also multi-threaded, but how many

threads should run per process? We experimentally verified

that performance of the allocators generally decreases with

increasing process counts, though there was no universal

trend. We choose to run cross-process allocators in 10 pro-

cesses because it provides good performance (relative to, say

2 processes or 80), and it allows us to vary the number of

threads per process from 1 to 8. We report the total propor-

tional set size (PSS) across all processes to directly compare

the cross-process allocators with mimalloc.

5.2.1 YCSB and memcached traces. We benchmark a

key-value store by port YCSB [20] and running production

traces from Twitter memcached clusters [66], which are sum-

marized in Table 2. The throughput and sum of the pro-

portional set size (PSS) for each workload are reported in

Workload Ins. % Key Distr. Key Size Value Size

YCSB-Load 100 Uniform 8B 960B

YCSB-A 25 Skew 8B 960B

YCSB-D 5 Skew 8B 960B

MC-12 79.7 Uniform 44 B 0-307 KiB

MC-15 99.9 Uniform 14-19 B 0-144 B

MC-31 93.0 Uniform 40-46 B 0-15 B

MC-37 38.8 Skew 68-82 B 0-325 KiB

Table 2. Summary statistics for in-memory key-value store

workloads. Ins. % is the percentage of operations that insert

data (causing an allocation). We configure YCSB with the

default Zipfian constant of 0.99, and modify YCSB-A from

50% update to 25% insert and 25% delete operations to stress

the memory allocator. All other workloads consist entirely

of read and insert operations.

Figure 8. For our index data structure, we adapt cxl-shm’s

non-resizable lock-free hash table to support all allocators,

configuring it with 32M buckets. In order to support dele-

tion, we also adapt it to use token-passing epoch-based recla-

mation [40]. Because we are comparing the impact of the

underlying allocator, and not the index data structure, we

omit workloads that do not involve allocation (e.g., most

read-biased YCSB workload mixes).

We configure YCSB with the default Zipfian constant of

0.99, 8 byte keys, and 960 byte values, with an initial in-

dex size of 8.4M key-value pairs for YCSB-A and YCSB-D

(0 for YCSB-Load), and run each workload for 8.4M total

operations.

For memcached, we use the original paper’s representa-

tive clusters for write-heavy workloads, and execute 8.4M

operations from each trace (840K for MC-37, which requires

more memory). Each trace consists solely of read and insert

operations.

General analysis. Figure 8 shows that Boost and Light-

ning are fundamentally unscalable, as they both acquire a

global mutex. Lightning’s PSS usage is not included in the

figure, because it uses a large array to track each individual

allocation for garbage collection, and requires an order of

magnitude more memory.

Cxl-shm’s performance suffers on skewed workloads like

YCSB-A and YCSB-D because its reference counting creates

additional contention on hot items, even though YCSB-D is

read-heavy. Cxl-shm also requires 24B of inline header meta-

data for each allocation, which causes noticeable overhead

in workloads with small allocations like MC-15 and MC-31.

Mimalloc, ralloc, and cxlalloc generally perform similarly.

Across all workloads and thread counts, cxlalloc achieves

93.9% of mimalloc’s performance on average, while ralloc

achieves 90.9%.

HWccmemory. Besides cxlalloc, ralloc is the only base-
line that separates heap metadata from data. It can naively



Cxlalloc : Safe and Efficient Memory Allocation for a CXL Pod ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

0 1 2
0

20

40

60

80

100

120

0 1 2
0

50

100

150

200

G
C

 3
7%

G
C

 5
9%

G
C

 8
9% G
C

 8
9%

cxlalloc ralloc-leak ralloc-gcCrash Count (#threads)

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

s)

queue hashmap

Le
ak

 1
3.

6 
K

iB

Le
ak

 2
9.

6 
K

iB

Le
ak

 1
7.

3 
K

iB

Le
ak

 3
4.

6 
K

iB

Figure 7. Execution time of inserting and removing 1M

objects fromMemento [18] recoverable data structures under

0, 1, or 2 thread crashes. This experiment demonstrates how

PM allocators that recover using garbage collection, like

ralloc, must choose to block heap access to run GC (ralloc-

gc) or leak memory (ralloc-leak). Cxlalloc recovers without

leaking or blocking.

support limited HWcc by placing only its metadata in the

HWcc region, rather than the entire heap, so we will use it

as a reference point for our HWcc optimizations. Across all

workloads and thread counts, cxlalloc uses only 0.02% of

HWcc memory relative to total memory usage on average,

and 7.1% relative to ralloc’s HWcc memory usage.

Partial failure. We evaluate the overhead of cxlalloc’s

partial failure tolerance by comparing a variant of cxlalloc

(cxlalloc-nonrecoverable) that disables recovery state up-

dates and uses a normal CAS instead of a detectable CAS.

Across all workloads and thread counts, cxlalloc is only

0.3% slower than cxlalloc-nonrecoverable.

We also show some simple experiments with a recover-

able queue and hash table from Memento [18]. We insert

1M objects with sizes chosen uniformly randomly between

8B-1KiB into each data structure, and then remove them,

crashing 0, 1, or 2 threads during the insertion phase. Af-

ter a crash, ralloc has to block heap access to run recovery

garbage collection, or else leak memory; cxlalloc recovers

without leaking or blocking.

5.2.2 Allocator microbenchmarks. We next evaluate

two microbenchmarks in Figure 9: thread-test and xmalloc.

Thread-test estimates the highest possible allocator through-

put using a fixed allocation size and entirely thread-local

operations. Xmalloc is a producer-consumer workload that

stresses the remote free code path, which requires synchro-

nization.

General analysis. Threadtest reveals mimalloc’s highly

optimized fast path, which uses an intrusive linked list. Cxlal-

loc achieves only 47% of mimalloc’s throughput on average,

while ralloc achieves 41%. Xmalloc shows that mimalloc,

ralloc, and cxlalloc’s designs are effective at reducing con-

tention for remote free operations. Cxlalloc achieves 81%

of mimalloc’s throughput, while ralloc achieves 106%. Ralloc

falls off at higher thread counts because it returns partially

full slabs to the global free list, which introduces contention.

HWcc memory. Overall memory usage is low for these

benchmarks, so cxlalloc’s HWcc optimizations are less

effective. Cxlalloc still only requires 2.5% and 0.09% HWcc

memory relative to total memory usage for thread-test and

xmalloc, respectively, which is 9.4% and 9.5% of ralloc’s HWcc

memory usage. Xmalloc shows how Cxlalloc’s split HWcc

and SWcc metadata design reduces HWcc usage, but can

cause increased total memory usage.

Partial failure. Cxlalloc achieves 94.7% of cxlalloc-

nonrecoverable’s throughput for thread-test, which shows

the low overhead of cxlalloc’s recovery logic in the fast

path. And cxlalloc achieves 88.4% of

cxlalloc-nonrecoverable’s throughput for xmalloc, which

shows the cost of using detectable CAS to perform remote

frees.

5.3 Huge allocations
Cxlalloc’s support for cross-process huge allocations (§3.3.2)

is a novel feature. We evaluate its performance by config-

uring both threadtest and xmalloc with a fixed object size

of 1GiB, and run them for 9.6M total operations, with re-

sults shown in Figure 10. There are no baselines because

every other allocator crashes or does not complete within

30 minutes.

Threadtest performance is pretty flatwith increasing thread

count within one NUMA node indicating that the scala-

bility limit is from the OS memory mapping work, which

shows greater throughput as work is split across more pro-

cesses. Xmalloc stresses remote frees, and for larger process

counts, as we increase the number of threads, performance

increases, because there is enough OS level parallelism. For

low process counts, increasing the number of threads slightly

decreases performance as the workload bottlenecks on OS

maintainance of a small number of process address spaces.

Going to multiple NUMA nodes (80 threads) decreases per-

formance as threads access remote memory.

Memory consumption in all cases is modest because these

are allocator microbenchmarks and they do not access all

of the allocated data. Therefore memory consumption is

proportional to the size of allocator metadata.

While thread-test does not cause cross-process faults, xmal-

loc does exercise both Cxlalloc’s cross-process faults and

hazard offset operations, and demonstrates its efficient reuse

of huge descriptors and address space. Overall, these results

validate our huge allocation design (§3.3.2) by showing sta-

ble performance even for a punishingly unrealistic workload

that unnaturally stresses huge allocations.



ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Newton Ni, Yan Sun, Zhiting Zhu, and Emmett Witchel

100k

2

5

1M

2

5

10M

10k

2

5

100k

2

5

1M

2

5

10M

5

100k

2

5

1M

2

5

10M

2

2

3

4
5
6
7
8
9

1M

2

3

4
5
6
7
8
9

10M

2

5

1M

2

5

10M

2

5

2

5

1M

2

5

10M

2

5

2

3

4

5

6
7
8
9

1M

0 20 40 60 80
0
2
4
6
8

0 20 40 60 80
0

5

10

0 20 40 60 80
0
2
4
6
8

0 20 40 60 80
0
2
4
6
8

0 20 40 60 80
0

0.5
1

1.5
2

0 20 40 60 80
0

0.5

1

0 20 40 60 80
0

2

4

cxlalloc cxlalloc-nonrecoverable mimalloc ralloc cxl-shm boost lightningThread Count

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

P
S

S
 (G

iB
)

YCSB-Load YCSB-A YCSB-D MC-12 MC-15 MC-31 MC-37

Figure 8. Throughput (logarithmic Y-axis) and memory consumption for different memory allocators running in-memory

key-value store workloads from YCSB and Twitter memcached traces [66]. Experiments up to and including 40 threads run on

a single socket in a single NUMA node. Experiments with more than 40 threads (shaded in gray) run on two sockets using two

NUMA nodes. Cxl-shm crashes for workloads MC-12 and MC-37 because it does not support allocations larger than 1KiB.

1M

10M

100M

1B

1M

2

5

10M

2

5

100M

2

0 20 40 60 80
0

0.02
0.04
0.06
0.08

20 40 60 80
0

0.02
0.04
0.06
0.08

cxlalloc cxlalloc-nonrecoverable mimalloc ralloc cxl-shm
boost lightning

Thread Count Thread Count

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

P
S

S
 (G

iB
)

threadtest-small xmalloc-small

Figure 9. Throughput (logarithmic Y-axis) and memory con-

sumption for small heap allocation microbenchmarks across

all allocators with increasing numbers of threads distributed

among 10 processes, run on the Intel ICX machine. Cxlal-

loc, mimalloc, and ralloc are the highest performing options.

5.4 CXL memory hardware
Our test machine runs Ubuntu 24.04.2 LTS, Linux kernel ver-

sion 6.8. It has an Intel Xeon 8568 CPU running at 2.0GHz,

with 48 cores and 300MB LLC. The machine is equipped with

8-channel DDR5 4800 DRAM. We use a commercially avail-

able CXL Type-2 device, the Intel Agilex 7 [21], connected to

the CPU via a PCIe 5.0 x16 link. It integrates an FPGA with

ASIC-based CXL IPs. The memory controller is an ASIC, the

FPGA is only for implementing near memory processing

logic (NMP). While the device supports CXL 2.0, our Intel

Emerald Rapids CPU only supports 1.1 [37, 58].

We measure the latency and bandwidth values of local

DRAM and CXL memory using Intel’s Memory Latency

50k

100k

150k

200k

250k

300k

350k

200k

400k

600k

800k

20 40 60 80
0.001

0.002

0.003

20 40 60 80
0

0.002
0.004
0.006
0.008

Process Count 1 2 10 40 80

Thread Count Thread Count

Thread Count Thread Count

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

P
S

S
 (G

iB
)

threadtest-huge xmalloc-huge

Figure 10. Throughput and memory consumption for huge

allocation microbenchmarks as the number of threads are

increased for different numbers of processes, run on the

Intel ICX machine. Performance (and memory consumption)

improves monotonically for increasing process counts. Note

that there is only a single data point for 80 threads in 80

processes.

Checker (MLC) [34] with a 3:1 read-write ratio. CXL read

latency is 357ns, compared with 112ns for local memory.

Its bandwidth is 19.9 GB/s (using two channels), compared

with 114 GB/s for local memory (using four channels). The

CXL memory access latency and bandwidth are in line with

the latest study on characterizing commercial CXL memory

devices [37]. We disable hyper-threading and turbo boost

and set the CPU frequency governor to performance.

5.4.1 CXL: mCAS prototyping. Figure 11 shows the la-
tency of a compare-and-swap (CAS) operation on a CXL



Cxlalloc : Safe and Efficient Memory Allocation for a CXL Pod ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

1 4 7 10 13 16

102

103

104

105

La
te

nc
y 

(n
s)

sw_cas
Percentile

p99.9
p99
p90
p50

1 4 7 10 13 16
Thread count

sw_flush_cas

1 4 7 10 13 16

hw_cas

Figure 11. The latency of CAS operation with GCC CAS

(sw_cas), cacheline flush and CAS (sw_flush_cas), and hard-

ware NMP enabled CAS (hw_cas).

memory location for various implementations. For the soft-

ware CAS (sw_cas), the CAS instruction is issued by the

CPU to CXL memory. Its performance benefits from the low-

latency CPU cache, and its atomicity is guaranteed by the

cache-coherence protocol. The sw_flush_cas configuration

models an mCAS by having the CPU first flush the target

from the cache, then issue the CAS. For systems without

NMP, this is a software emulation for a system that does not

have HWcc.

It is important to remember that neither sw_cas nor sw_-

flush_cas would be safe in a CXL pod without inter-host

hardware cache coherence. CAS safety comes from coher-

ence. Two hosts could CAS the same location and both suc-

ceed because each would have exclusive access to the line

relative to all other caches in its coherence domain.

The hw_cas measures our NMP mCAS implementation,

which works without HWcc. At 16 threads (the maximum in

our experiments) hw_cas achieves 17.4% lower p50 latency,

and 20% lower p99 latency than sw_flush_cas. However, for

1 thread, hw_cas is slower than sw_flush_cas, with a p50

latency of 2.3𝜇s and a p99 of 2.8𝜇s. We believe an ASIC ver-

sion of the NMP will further reduce this latency gap when

the contention is low. However, many projects have used

sw_flush_cas to model mCAS [33, 68], and our measure-

ments show that the latencies of these two primitives are

comparable.

5.4.2 CXL: allocatormicrobenchmarks. Figure 12 shows
throughput for small heap allocations on CXL memory. We

compare against ralloc as a baseline since its heap metadata

is separate from application data—though it does not sepa-

rate HWcc and SWcc metadata—so it can somewhat reduce

HWcc usage by placing only its metadata in the HWcc re-

gion. We do not compare against cxl-shm because it embeds

a HWcc reference count in each allocation; with our mCAS

implementation, this would require the whole heap to be

marked uncachable, making a fair comparison impossible.

0 10 20

2

5
10M

2

5
100M

2

5

10 20

5
1M

2

5
10M

2

5
100M

cxlalloc cxlalloc-hwcc cxlalloc-mcas

ralloc ralloc-hwcc ralloc-mcas

Thread Count

Th
ro

ug
hp

ut
 (o

ps
/s

ec
) threadtest-small xmalloc-small

Figure 12. Throughput of small heap allocator microbench-

marks for different CXLHWcc architectural assumptions and

increasing thread counts. Experiments are run on a machine

with physical CXL memory (§5.4). Cxlalloc and ralloc use

local DRAM; -hwcc variants use CXL memory and assume

HWcc; -mcas variants use our NMP mCAS prototype (§4).

Overall performance is similar for local DRAM and HWcc

CXL memory. For threadtest, cxlalloc-mcas achieves 80%

of cxlalloc-hwcc’s throughput, and 10-99x of ralloc-mcas’s

throughput: our SWcc protocol allows local operations to

keep metadata cached, while ralloc must read a size class

from uncachable memory on every free. For xmalloc, cxlal-

loc-mcas drops to 1% of cxlalloc-hwcc’s throughput, as

every remote free requires an mCAS. Below 8 threads, ralloc-

mcas has higher throughput because it shares partial slabs be-

tween threads, allowing remote frees to go into thread-local

caches. However, slab sharing increases mCAS contention

on slab metadata, causing ralloc-mcas to scale poorly; cxlal-

loc-mcas attains 9.9x higher throughput at 24 threads.

6 Related Work
Cxlalloc takes inspiration from previous allocators for dif-

ferent types of memory: volatile, persistent, cross-process,

and CXL, but contributes novel huge allocation management

and combines previous techniques in a new way that pro-

vides strong performance across a variety of use cases.

Persistent memory allocation. Ralloc [16] and zalloca-

tor [64] are lock-free allocators, while libpmem [6], makalu [14],

nvm_malloc [54], and nvalloc [23] use locks. All of them do

garbage collection during a blocking recovery period after a

failure. Offline GC is attractive because it allows optimizing

the common case of avoiding cache flushes and fences for

allocator metadata during allocation.

Cxl-shm [68]. Cxl-shm is another memory management

system for CXL that tolerates partial failures. Cxl-shmmakes

several design choices that are incompatible with our con-

straints. First, it embeds a 24B header into each allocation to

support reference counting, 8B of which requires HWcc. This

metadata is scattered throughout the heap, inflating HWcc

usage. Second, it provides only basic pointer consistency:

the heap is created with a fixed size and cannot be extended,

and it does not support allocation sizes larger than 1KiB,

so it never modifies memory mappings. Thirdly, it requires

reference counting, which is suitable for message passing



ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Newton Ni, Yan Sun, Zhiting Zhu, and Emmett Witchel

applications that rarely modify reference counts, but not for

applications with shared data structures, for which reference

count modifications artificially increase contention, even for

read-only workloads.

Tigon [33]. Tigon is an in-memory transactional database

that uses explicit allocation of CXL memory to share and

synchronize data used in cross-partition transactions. The

authors of Tigon used an early version of cxlalloc in their

system. Tigon assumes inter-host hardware cache coher-

ent memory and does not tolerate partial failures. Adapting

Tigon to mCAS is interesting future work.

Memory protection. There is recent work on memory

allocators [24, 53] that protect the heap from buggy or mali-

cious programs using hardware memory protection mecha-

nisms like Intel’s memory protection keys (MPK) [3]. Cxlal-

loc does not currently implement these mechanisms because

we assume processes sharingmemory are correct and trusted.

That being said, our design does separate heap metadata and

heap data, and can therefore be extended with protection

mechanisms in the future.

CXL tiered memory management. Recent work explores

using CXL to enable memory disaggregation and pooling

for improved utilization and reduced costs in datacenter

servers [11, 26, 44, 45]. Key research directions include opti-

mizing CXL memory pool configurations for performance

and cost savings [50], developing resilient memory man-

agers and intelligent page placement policies to mitigate

CXL’s higher access latency [37, 42, 57, 58, 61, 68], reducing

process and container startup time [8, 32] and leveraging

CXL’s expanded memory capacity and bandwidth for large-

scale applications [30, 36, 62]. These approaches treat CXL

as a memory tier that is not directly visible to user software,

though some recent work has looked at how to provide an

extensible interface [59, 60]. Comparisons on genuine CXL

hardware reveal differences from emulated CXL that compel

revisiting prior assumptions [58].

CXL and partial failures. Other recent work [55, 63,

68, 71] makes the same observation as this work that CXL

systems can observe partial failures, with FUSEE [55] and

rTX [63] focusing on RDMA and remote memory nodes.

RDMA. Systems built using RDMA [25, 38, 67] have a dis-

aggregated view of memory, but remote allocation is not

controlled directly by a malloc/free interface used by the ap-

plication. These systems use message passing to coordinate

state, not explicit memory allocation. Also, the latency for

memory access through RDMA networks is still one to two

orders of magnitude higher than local memory [29], while it

is 2.3× higher latency in our experimental testbed (§5.4).

7 Conclusion
Cxlalloc is the first memory allocator appropriate for a

CXL pod. It is efficient, it supports memory sharing among

processes with pointer consistency, and it supports the lim-

ited inter-host hardware cache coherence of CXL. Cxlalloc

also tolerates partial failures [28], which makes it resilient

to thread or process failures. Our evaluation demonstrates

cxlalloc’s performance.

8 Acknowledgements
We thank the anonymous reviewers, Vijay Chidambaram,

Hayley Leblanc, and Arthur Peters for their insightful com-

ments. Results presented in this paper were obtained using

the Chameleon testbed [39] supported by the National Sci-

ence Foundation. This work was supported in part by the

Center for Processing with Intelligent Storage and Memories

(PRISM), one of seven centers in JUMP 2.0, a Semiconductor

Research Corporation (SRC) program sponsored by DARPA.

References
[1] [n. d.]. Boost.Interprocess. https://www.boost.org/doc/libs/1_77_0/

doc/html/interprocess.html. (Accessed: April 2025).

[2] [n. d.]. Compute Express Link (CXL) Specification, Revision 3.2. https:

//computeexpresslink.org/cxl-specification/. (Accessed: April 2025).

[3] [n. d.]. Memory Protection Keys. https://docs.kernel.org/core-api/

protection-keys.html (Accessed: August 2025).

[4] [n. d.]. mimalloc-bench. https://github.com/daanx/mimalloc-bench

(Accessed: 2024).

[5] [n. d.]. SK hynix Presents CXL Memory Solutions Set to Power the

AI Era at CXL DevCon 2024. https://news.skhynix.com/sk-hynix-

presents-ai-memory-solutions-at-cxl-devcon-2024/. (Accessed May

2025).

[6] [n. d.]. The libpmem library. https://pmem.io/pmdk/libpmem. (Ac-

cessed: April 2025).

[7] Marcos K. Aguilera, Emmanuel Amaro, Nadav Amit, Erika Hunhoff,

Anil Yelam, and Gerd Zellweger. 2023. Memory disaggregation: why

now and what are the challenges. SIGOPS Oper. Syst. Rev. 57, 1 (June
2023), 38–46. doi:10.1145/3606557.3606563

[8] Chloe Alverti, Stratos Psomadakis, Burak Ocalan, Shashwat Jaiswal,

Tianyin Xu, and Josep Torrellas. 2025. CXLfork: Fast Remote Fork over

CXL Fabrics. In Proceedings of the 30th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (Rotterdam, Netherlands) (ASPLOS ’25). Association
for Computing Machinery, New York, NY, USA, 210–226. doi:10.1145/

3676641.3715988

[9] Gal Assa, Michal Friedman, and Ori Lahav. 2024. A Programming

Model for Disaggregated Memory over CXL. arXiv:2407.16300 (July

2024). doi:10.48550/arXiv.2407.16300 arXiv:2407.16300 [cs].

[10] Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. 2018. Nesting-

Safe Recoverable Linearizability: Modular Constructions for Non-

Volatile Memory. In Proceedings of the 2018 ACM Symposium on Princi-
ples of Distributed Computing. ACM, Egham United Kingdom, 7–16.

doi:10.1145/3212734.3212753

[11] Daniel S. Berger, Daniel Ernst, Huaicheng Li, Pantea Zardoshti, Monish

Shah, Samir Rajadnya, Scott Lee, Lisa Hsu, Ishwar Agarwal, Mark D.

Hill, and Ricardo Bianchini. 2023. Design Tradeoffs in CXL-Based

Memory Pools for Public Cloud Platforms. IEEE Micro 43, 2 (2023),

30–38. doi:10.1109/MM.2023.3241586

[12] Daniel S. Berger, Yuhong Zhong, Pantea Zardoshti, Shuwei Teng, Fio-

dar Kazhamiaka, and Rodrigo Fonseca. 2025. Octopus: Scalable Low-

Cost CXL Memory Pooling. https://arxiv.org/abs/2501.09020. (Ac-

cessed: April 2025).

[13] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R.

Wilson. 2000. Hoard: a scalable memory allocator for multithreaded

 https://www.boost.org/doc/libs/1_77_0/doc/html/interprocess.html 
 https://www.boost.org/doc/libs/1_77_0/doc/html/interprocess.html 
 https://computeexpresslink.org/cxl-specification/ 
 https://computeexpresslink.org/cxl-specification/ 
 https://docs.kernel.org/core-api/protection-keys.html 
 https://docs.kernel.org/core-api/protection-keys.html 
 https://github.com/daanx/mimalloc-bench 
 https://news.skhynix.com/sk-hynix-presents-ai-memory-solutions-at-cxl-devcon-2024/ 
 https://news.skhynix.com/sk-hynix-presents-ai-memory-solutions-at-cxl-devcon-2024/ 
 https://pmem.io/pmdk/libpmem 
https://doi.org/10.1145/3606557.3606563
https://doi.org/10.1145/3676641.3715988
https://doi.org/10.1145/3676641.3715988
https://doi.org/10.48550/arXiv.2407.16300
https://doi.org/10.1145/3212734.3212753
https://doi.org/10.1109/MM.2023.3241586
https://arxiv.org/abs/2501.09020


Cxlalloc : Safe and Efficient Memory Allocation for a CXL Pod ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

applications. SIGPLAN Not. 35, 11 (Nov. 2000), 117–128. doi:10.1145/
356989.357000

[14] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. 2016.

Makalu: Fast Recoverable Allocation of Non-Volatile Memory. In Pro-
ceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (Amster-

dam, Netherlands) (OOPSLA 2016). Association for Computing Ma-

chinery, New York, NY, USA, 677–694. doi:10.1145/2983990.2984019

[15] Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell D. E. Long, and

Ethan L. Miller. 2021. Twizzler: A Data-centric OS for Non-volatile

Memory. ACM Trans. Storage 17, 2 (June 2021), 11:1–11:31. doi:10.

1145/3454129

[16] Wentao Cai, HaosenWen, H. Alan Beadle, Chris Kjellqvist, Mohammad

Hedayati, and Michael L. Scott. 2020. Understanding and optimizing

persistent memory allocation. In Proceedings of the 2020 ACM SIGPLAN
International Symposium onMemory Management (London, UK) (ISMM
2020). Association for Computing Machinery, New York, NY, USA,

60–73. doi:10.1145/3381898.3397212

[17] Guoyang Chen, Lei Zhang, Richa Budhiraja, Xipeng Shen, and Youfeng

Wu. 2017. Efficient Support of Position Independence on Non-Volatile

Memory. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture (Cambridge, Massachusetts) (MICRO-
50 ’17). Association for Computing Machinery, New York, NY, USA,

191–203. doi:10.1145/3123939.3124543

[18] Kyeongmin Cho, Seungmin Jeon, Azalea Raad, and Jeehoon Kang. 2023.

Memento: A Framework for Detectable Recoverability in Persistent

Memory. Proc. ACM Program. Lang. 7, PLDI, Article 118 (jun 2023),

26 pages. doi:10.1145/3591232

[19] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-

jesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:

making persistent objects fast and safe with next-generation, non-

volatile memories. SIGARCH Comput. Archit. News 39, 1 (March 2011),

105–118. doi:10.1145/1961295.1950380

[20] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking cloud serving systems with

YCSB. In Proceedings of the 1st ACM symposium on Cloud comput-
ing. ACM, Indianapolis Indiana USA, 143–154. doi:10.1145/1807128.

1807152

[21] Intel Corporation. [n. d.]. Agilex
TM

7 FPGA I-Series Development

Kit. https://www.intel.com/content/www/us/en/products/details/

fpga/development-kits/agilex/agi027.html. (Accessed: April 2025).

[22] Samsung corporation. 2024. Samsung CXL Solutions – CMM-H.

(2024). https://semiconductor.samsung.com/news-events/tech-blog/

samsung-cxl-solutions-cmm-h

[23] Zheng Dang, Shuibing He, Peiyi Hong, Zhenxin Li, Xuechen Zhang,

Xian-He Sun, and Gang Chen. 2022. NVAlloc: Rethinking Heap Meta-

data Management in Persistent Memory Allocators. In Proceedings of
the 27th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Lausanne, Switzerland)
(ASPLOS ’22). Association for Computing Machinery, New York, NY,

USA, 115–127. doi:10.1145/3503222.3507743

[24] Anthony Demeri, Wook-Hee Kim, R. Madhava Krishnan, Jaeho Kim,

Mohannad Ismail, and Changwoo Min. 2020. Poseidon: Safe, Fast

and Scalable Persistent Memory Allocator. In Proceedings of the 21st
International Middleware Conference. ACM, Delft Netherlands, 207–220.

doi:10.1145/3423211.3425671

[25] Aleksandar Dragojevic, Dushyanth Narayanan, Edmund B. Nightin-

gale, Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel

Castro. 2015. No compromises: distributed transactions with consis-

tency, availability, and performance. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles, SOSP 2015, Monterey, CA, USA,
October 4-7, 2015, Ethan L. Miller and Steven Hand (Eds.). ACM, 54–70.

doi:10.1145/2815400.2815425

[26] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler,

Zhiyi Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela

Mijailovic, Brian Morris, Chiranjit Mukherjee, Jingliang Ren, Greg

Thelen, Paul Turner, Carlos Villavieja, Parthasarathy Ranganathan, and

Amin Vahdat. 2023. Towards an Adaptable Systems Architecture for

Memory Tiering at Warehouse-Scale. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (Vancouver, BC, Canada)
(ASPLOS 2023). Association for Computing Machinery, New York, NY,

USA, 727–741. doi:10.1145/3582016.3582031

[27] Jason Evans. 2006. A Scalable Concurrent malloc(3) Implementation

for FreeBSD. (2006). https://people.freebsd.org/~jasone/jemalloc/

bsdcan2006/jemalloc.pdf

[28] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Pe-

trank. 2018. A Persistent Lock-Free Queue for Non-Volatile Memory.

SIGPLAN Not. 53, 1 (feb 2018), 28–40. doi:10.1145/3200691.3178490
[29] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira,

Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.

2016. Network requirements for resource disaggregation. In Proceed-
ings of the 12th USENIX conference on Operating Systems Design and
Implementation (OSDI’16). USENIX Association, USA, 249–264.

[30] Yufeng Gu, Alireza Khadem, Sumanth Umesh, Ning Liang, Xavier

Servot, Onur Mutlu, Ravi Iyer, and Reetuparna Das. 2025. PIM Is All

YouNeed: ACXL-Enabled GPU-Free System for Large LanguageModel

Inference. In Proceedings of the 30th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (Rotterdam, Netherlands) (ASPLOS ’25). Association
for Computing Machinery, New York, NY, USA, 862–881. doi:10.1145/

3676641.3716267

[31] MortezaHoseinzadeh and Steven Swanson. 2021. Corundum: statically-

enforced persistent memory safety. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, Virtual USA, 429–442. doi:10.

1145/3445814.3446710

[32] Jialiang Huang, MingXing Zhang, Teng Ma, Zheng Liu, Sixing Lin,

Kang Chen, Jinlei Jiang, Xia Liao, Yingdi Shan, Ning Zhang, Mengting

Lu, Tao Ma, Haifeng Gong, and YongWei Wu. 2024. TrEnv: Trans-

parently Share Serverless Execution Environments Across Different

Functions and Nodes. In Proceedings of the ACM SIGOPS 30th Sym-
posium on Operating Systems Principles (Austin, TX, USA) (SOSP ’24).
Association for Computing Machinery, New York, NY, USA, 421–437.

doi:10.1145/3694715.3695967

[33] Yibo Huang, Haowei Chen, Newton Ni, Yan Sun, Vijay Chidambaram,

Dixin Tang, and Emmett Witchel. 2025. Tigon: A Distributed Database

for a CXL Pod. In 19th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2025, Boston, MA, USA, July 7-9, 2025, Lidong
Zhou and Yuanyuan Zhou (Eds.). USENIX Association, 109–128. https:

//www.usenix.org/conference/osdi25/presentation/huang-yibo

[34] Intel Corporation. accessed in 2024. Intel® Memory Latency Checker

v3.10. https://www.intel.com/content/www/us/en/developer/articles/

tool/intelr-memory-latency-checker.html.

[35] Sunita Jain, Nagaradhesh Yeleswarapu, Hasan Al Maruf, and Rita

Gupta. 2024. Memory Sharing with CXL: Hardware and Software

Design Approaches. arXiv:2404.03245 (April 2024). http://arxiv.org/

abs/2404.03245 arXiv:2404.03245 [cs].

[36] Junhyeok Jang, Hanjin Choi, Hanyeoreum Bae, Seungjun Lee,

Miryeong Kwon, and Myoungsoo Jung. 2023. CXL-ANNS: Software-

Hardware Collaborative Memory Disaggregation and Computation for

Billion-Scale Approximate Nearest Neighbor Search. In 2023 USENIX
Annual Technical Conference (USENIX ATC 23). USENIX Association,

Boston, MA, 585–600. https://www.usenix.org/conference/atc23/

presentation/jang

[37] Houxiang Ji, Srikar Vanavasam, Yang Zhou, Qirong Xia, Jinghan

Huang, Yifan Yuan, Ren Wang, Pekon Gupta, Bhushan Chitlur, Ipoom

https://doi.org/10.1145/356989.357000
https://doi.org/10.1145/356989.357000
https://doi.org/10.1145/2983990.2984019
https://doi.org/10.1145/3454129
https://doi.org/10.1145/3454129
https://doi.org/10.1145/3381898.3397212
https://doi.org/10.1145/3123939.3124543
https://doi.org/10.1145/3591232
https://doi.org/10.1145/1961295.1950380
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
 https://www.intel.com/content/www/us/en/products/details/fpga/development-kits/agilex/agi027.html 
 https://www.intel.com/content/www/us/en/products/details/fpga/development-kits/agilex/agi027.html 
https://semiconductor.samsung.com/news-events/tech-blog/samsung-cxl-solutions-cmm-h
https://semiconductor.samsung.com/news-events/tech-blog/samsung-cxl-solutions-cmm-h
https://doi.org/10.1145/3503222.3507743
https://doi.org/10.1145/3423211.3425671
https://doi.org/10.1145/2815400.2815425
https://doi.org/10.1145/3582016.3582031
https://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf
https://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf
https://doi.org/10.1145/3200691.3178490
https://doi.org/10.1145/3676641.3716267
https://doi.org/10.1145/3676641.3716267
https://doi.org/10.1145/3445814.3446710
https://doi.org/10.1145/3445814.3446710
https://doi.org/10.1145/3694715.3695967
https://www.usenix.org/conference/osdi25/presentation/huang-yibo
https://www.usenix.org/conference/osdi25/presentation/huang-yibo
 https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html 
 https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html 
http://arxiv.org/abs/2404.03245
http://arxiv.org/abs/2404.03245
https://www.usenix.org/conference/atc23/presentation/jang
https://www.usenix.org/conference/atc23/presentation/jang


ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Newton Ni, Yan Sun, Zhiting Zhu, and Emmett Witchel

Jeong, and Nam Sung Kim. 2024. Demystifying a CXL Type-2 Device: A

Heterogeneous Cooperative Computing Perspective. In 57th IEEE/ACM
International Symposium on Microarchitecture (MICRO). 1504–1517.
doi:10.1109/MICRO61859.2024.00110

[38] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST:

Fast, Scalable and Simple Distributed Transactions with Two-Sided

(RDMA) Datagram RPCs. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). USENIX Association,

Savannah, GA, 185–201. https://www.usenix.org/conference/osdi16/

technical-sessions/presentation/kalia

[39] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth,

Dan Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody

Hammock, Joe Mambretti, Alexander Barnes, François Halbach, Alex

Rocha, and Joe Stubbs. 2020. Lessons Learned from the Chameleon

Testbed. In Proceedings of the 2020 USENIX Annual Technical Conference
(USENIX ATC ’20). USENIX Association.

[40] Daewoo Kim, Trevor Brown, and Ajay Singh. 2024. Are Your Epochs

Too Epic? Batch Free Can Be Harmful. In Proceedings of the 29th ACM
SIGPLAN Annual Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP ’24). Association for Computing Machinery, New

York, NY, USA, 30–41. doi:10.1145/3627535.3638491

[41] Christoph Lameter. 2007. SLUB: The unqueued slab allocator V6.

https://lwn.net/Articles/229096/

[42] Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and Young Ik

Eom. 2023. MEMTIS: Efficient Memory Tiering with Dynamic Page

Classification and Page Size Determination. In Proceedings of the 29th
Symposium on Operating Systems Principles (Koblenz, Germany) (SOSP
’23). Association for Computing Machinery, New York, NY, USA, 17–34.

doi:10.1145/3600006.3613167

[43] Daan Leijen, Benjamin Zorn, and Leonardo De Moura. 2019. Mi-
malloc: Free List Sharding in Action. Lecture Notes in Computer Sci-

ence, Vol. 11893. Springer International Publishing, Cham, 244–265.

doi:10.1007/978-3-030-34175-6_13

[44] Philip Levis, Kun Lin, and Amy Tai. 2023. A Case Against CXL Mem-

ory Pooling. In Proceedings of the 22nd ACMWorkshop on Hot Topics in
Networks (, Cambridge, MA, USA,) (HotNets ’23). Association for Com-

puting Machinery, New York, NY, USA, 18–24. doi:10.1145/3626111.

3628195

[45] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-

doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,

Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini.

2023. Pond: CXL-Based Memory Pooling Systems for Cloud Platforms.

In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2
(Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing

Machinery, New York, NY, USA, 574–587. doi:10.1145/3575693.3578835

[46] Jinshu Liu, Hamid Hadian, Hanchen Xu, and Huaicheng Li. 2025.

Tiered Memory Management Beyond Hotness. In 19th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 25).
USENIX Association. https://www.usenix.org/system/files/osdi25-

liu.pdf

[47] Paul Liétar, Theodore Butler, Sylvan Clebsch, Sophia Drossopoulou,

Juliana Franco, Matthew J. Parkinson, Alex Shamis, Christoph M. Win-

tersteiger, and David Chisnall. 2019. snmalloc: a message passing

allocator. In Proceedings of the 2019 ACM SIGPLAN International Sym-
posium on Memory Management. ACM, Phoenix AZ USA, 122–135.

doi:10.1145/3315573.3329980

[48] Kiwan Maeng, Shivam Bharuka, Isabel Gao, Mark Jeffrey, Vikram

Saraph, Bor-Yiing Su, Caroline Trippel, Jiyan Yang, Mike Rabbat,

Brandon Lucia, and Carole-Jean Wu. 2021. Understanding and Im-

proving Failure Tolerant Training for Deep Learning Recommen-

dation with Partial Recovery. In Proceedings of Machine Learning
and Systems, A. Smola, A. Dimakis, and I. Stoica (Eds.), Vol. 3.

637–651. https://proceedings.mlsys.org/paper_files/paper/2021/file/

f0f9e98bc2e2f0abc3e315eaa0d808fc-Paper.pdf

[49] Suyash Mahar, Mingyao Shen, Tj Smith, Joseph Izraelevitz, and Steven

Swanson. 2024. Puddles: Application-Independent Recovery and

Location-Independent Data for Persistent Memory. In Proceedings
of the Nineteenth European Conference on Computer Systems. ACM,

Athens Greece, 575–589. doi:10.1145/3627703.3629555

[50] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,

Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-

hury, Shobhit Kanaujia, and Prakash Chauhan. 2023. TPP: Transparent

Page Placement for CXL-Enabled Tiered-Memory. In Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3 (Vancouver,
BC, Canada) (ASPLOS 2023). Association for Computing Machinery,

New York, NY, USA, 742–755. doi:10.1145/3582016.3582063

[51] M.M. Michael. 2004. Hazard pointers: safe memory reclamation for

lock-free objects. IEEE Transactions on Parallel and Distributed Systems
15, 6 (June 2004), 491–504. doi:10.1109/TPDS.2004.8

[52] PMem.io. [n. d.]. Persistent memory development kit (PMDK). https:

//pmem.io/pmdk/

[53] Antonin Reitz, Aymeric Fromherz, and Jonathan Protzenko. 2024.

StarMalloc: Verifying a Modern, Hardened Memory Allocator. Proc.
ACM Program. Lang. 8, OOPSLA2, Article 333 (Oct. 2024), 30 pages.
doi:10.1145/3689773

[54] David Schwalb, Tim Berning, Martin Faust, Markus Dreseler, and

Hasso Plattner. 2015. nvm_malloc: Memory Allocation for NVRAM.

ADMS@VLDB 15 (2015), 61–72.

[55] Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Tianyi Yang, Yuxin Su,

Yangfan Zhou, and Michael R. Lyu. 2023. FUSEE: A Fully Memory-

Disaggregated Key-Value Store. In 21st USENIX Conference on File and
Storage Technologies (FAST 23). USENIX Association, Santa Clara, CA,

81–98. https://www.usenix.org/conference/fast23/presentation/shen

[56] Joshua Suetterlein, Joseph Manzano, and Andres Marquez. 2024. Syn-

chronization for CXL BasedMemory. In Proceedings of the International
Symposium on Memory Systems (MEMSYS ’24). Association for Com-

puting Machinery, New York, NY, USA, 178–185. doi:10.1145/3695794.

3695810

[57] Yan Sun, Jongyul Kim, Zeduo Yu, Jiyuan Zhang, Siyuan Chai,

Michael Jaemin Kim, Hwayong Nam, Jaehyun Park, Eojin Na, Yi-

fan Yuan, Ren Wang, Jung Ho Ahn, Tianyin Xu, and Nam Sung Kim.

2025. M5: Mastering Page Migration and Memory Management for

CXL-based Tiered Memory Systems. In Proceedings of the 30th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (Rotterdam, Netherlands)

(ASPLOS ’25). Association for Computing Machinery, New York, NY,

USA, 604–621. doi:10.1145/3676641.3711999

[58] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan

Huang, Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, Ren

Wang, Jung Ho Ahn, Tianyin Xu, and Nam Sung Kim. 2023. De-

mystifying CXL Memory with Genuine CXL-Ready Systems and De-

vices. In Proceedings of the 56th Annual IEEE/ACM International Sym-
posium on Microarchitecture (Toronto, ON, Canada) (MICRO ’23). As-
sociation for Computing Machinery, New York, NY, USA, 105–121.

doi:10.1145/3613424.3614256

[59] Bijan Tabatabai, Mark Mansi, and Michael M. Swift. 2023. FBMM:

Using the VFS for Extensibility in Kernel Memory Management. In

Proceedings of the 19th Workshop on Hot Topics in Operating Systems,
HOTOS 2023, Providence, RI, USA, June 22-24, 2023, Malte Schwarzkopf,

Andrew Baumann, and Natacha Crooks (Eds.). ACM, 181–187. doi:10.

1145/3593856.3595908

[60] Bijan Tabatabai, James Sorenson, and Michael M. Swift. 2024. FBMM:

Making Memory Management Extensible With Filesystems. In 2024
USENIX Annual Technical Conference (USENIX ATC 24). USENIXAssoci-

ation, Santa Clara, CA, 785–798. https://www.usenix.org/conference/

atc24/presentation/tabatabai

https://doi.org/10.1109/MICRO61859.2024.00110
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kalia
https://doi.org/10.1145/3627535.3638491
https://lwn.net/Articles/229096/
https://doi.org/10.1145/3600006.3613167
https://doi.org/10.1007/978-3-030-34175-6_13
https://doi.org/10.1145/3626111.3628195
https://doi.org/10.1145/3626111.3628195
https://doi.org/10.1145/3575693.3578835
https://www.usenix.org/system/files/osdi25-liu.pdf
https://www.usenix.org/system/files/osdi25-liu.pdf
https://doi.org/10.1145/3315573.3329980
https://proceedings.mlsys.org/paper_files/paper/2021/file/f0f9e98bc2e2f0abc3e315eaa0d808fc-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/f0f9e98bc2e2f0abc3e315eaa0d808fc-Paper.pdf
https://doi.org/10.1145/3627703.3629555
https://doi.org/10.1145/3582016.3582063
https://doi.org/10.1109/TPDS.2004.8
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://doi.org/10.1145/3689773
https://www.usenix.org/conference/fast23/presentation/shen
https://doi.org/10.1145/3695794.3695810
https://doi.org/10.1145/3695794.3695810
https://doi.org/10.1145/3676641.3711999
https://doi.org/10.1145/3613424.3614256
https://doi.org/10.1145/3593856.3595908
https://doi.org/10.1145/3593856.3595908
https://www.usenix.org/conference/atc24/presentation/tabatabai
https://www.usenix.org/conference/atc24/presentation/tabatabai


Cxlalloc : Safe and Efficient Memory Allocation for a CXL Pod ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

[61] Midhul Vuppalapati and Rachit Agarwal. 2024. Tiered Memory Man-

agement: Access Latency is the Key!. In Proceedings of the ACM SIGOPS
30th Symposium on Operating Systems Principles (Austin, TX, USA)
(SOSP ’24). Association for Computing Machinery, New York, NY, USA,

79–94. doi:10.1145/3694715.3695968

[62] Zhao Wang, Yiqi Chen, Cong Li, Yijin Guan, Dimin Niu, Tianchan

Guan, Zhaoyang Du, Xingda Wei, and Guangyu Sun. 2025. CTXNL:

A Software-Hardware Co-designed Solution for Efficient CXL-Based

Transaction Processing. In Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (Rotterdam, Netherlands) (ASPLOS ’25).
Association for Computing Machinery, New York, NY, USA, 192–209.

doi:10.1145/3676641.3716244

[63] Xingda Wei, Haotian Wang, Tianxia Wang, Rong Chen, Jinyu Gu,

Pengfei Zuo, and Haibo Chen. 2023. Transactional Indexes on (RDMA

or CXL-based) Disaggregated Memory with Repairable Transaction.

arXiv:2308.02501 [cs.DB]

[64] You Wu and Lin Li. 2022. Zallocator: A High Throughput Write-

Optimized Persistent Allocator for Non-Volatile Memory. J. Emerg.
Technol. Comput. Syst. 18, 4, Article 80 (oct 2022), 20 pages. doi:10.

1145/3549528

[65] Lingfeng Xiang, Zhen Lin, Weishu Deng, Hui Lu, Jia Rao, Yifan Yuan,

and Ren Wang. 2024. NOMAD: non-exclusive memory tiering via

transactional page migration. In Proceedings of the 18th USENIX Con-
ference on Operating Systems Design and Implementation (Santa Clara,

CA, USA) (OSDI’24). USENIX Association, USA, Article 2, 17 pages.

[66] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2021. A Large-scale Analysis

of Hundreds of In-memory Key-value Cache Clusters at Twitter. ACM
Trans. Storage 17, 3 (Aug. 2021), 17:1–17:35. doi:10.1145/3468521

[67] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. 2022. FORD: Fast

One-sided RDMA-based Distributed Transactions for Disaggregated

Persistent Memory. In 20th USENIX Conference on File and Storage
Technologies (FAST 22). USENIX Association, Santa Clara, CA, 51–68.

https://www.usenix.org/conference/fast22/presentation/zhang-ming

[68] Mingxing Zhang, Teng Ma, Jinqi Hua, Zheng Liu, Kang Chen, Ning

Ding, Fan Du, Jinlei Jiang, Tao Ma, and Yongwei Wu. 2023. Par-

tial Failure Resilient Memory Management System for (CXL -based)

Distributed Shared Memory. In Proceedings of the 29th Symposium
on Operating Systems Principles (Koblenz, Germany) (SOSP ’23). As-
sociation for Computing Machinery, New York, NY, USA, 658–674.

doi:10.1145/3600006.3613135

[69] Yuhong Zhong, Daniel S. Berger, Carl Waldspurger, Ryan Wee, Ishwar

Agarwal, Rajat Agarwal, Frank Hady, Karthik Kumar, Mark D. Hill,

Mosharaf Chowdhury, and Asaf Cidon. 2024. Managing Memory Tiers

with CXL in Virtualized Environments. In 18th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 24). USENIX Asso-

ciation, Santa Clara, CA, 37–56. https://www.usenix.org/conference/

osdi24/presentation/zhong-yuhong

[70] Yuhong Zhong, Daniel S. Berger, Pantea Zardoshti, Enrique Saurez,

JacobNelson, Antonis Psistakis, Joshua Fried, andAsaf Cidon. 2025. My

CXL Pool Obviates Your PCIe Switch. In Proceedings of the Workshop
on Hot Topics in Operating Systems. ACM, Banff AB Canada, 58–66.

doi:10.1145/3713082.3730393

[71] Zhiting Zhu, Newton Ni, Yibo Huang, Yan Sun, Zhipeng Jia, Nam Sung

Kim, and Emmett Witchel. 2024. Lupin: Tolerating Partial Failures in

a CXL Pod. In Proceedings of the 2nd Workshop on Disruptive Memory
Systems (Austin, TX, USA) (DIMES ’24). Association for Computing

Machinery, New York, NY, USA, 41–50. doi:10.1145/3698783.3699377

[72] Danyang Zhuo, Kaiyuan Zhang, Zhuohan Li, Siyuan Zhuang,

Stephanie Wang, Ang Chen, and Ion Stoica. 2021. Rearchitecting

in-memory object stores for low latency. Proceedings of the VLDB
Endowment 15, 3 (Nov. 2021), 555–568. doi:10.14778/3494124.3494138

A Artifact Appendix
A.1 Abstract
The main benchmark harness is the cxlalloc-bench crate,

which reads workload configuration files in the

cxlalloc-bench/workloads directory and runs the YCSB

andmemcachedmacrobenchmarks and thread-test and xmal-

loc microbenchmarks in our evaluation. We use one external

data set for the memcached traces [66].

A.2 Artifact check-list (meta-information)
• Program: YCSB, included

• Compilation: rustc 1.88.0, included by installation

• Data set: Memcached traces, 6.7GiB

• Run-time environment: Linux, dependencies managed

by Nix

• Execution: Hardware settings set during installation

• Metrics: Throughput, peak memory usage

• Output: NDJSON files containing throughput and memory

usage, pdf plots

• Howmuchdisk space required (approximately)?: 10GiB
• How much time is needed to prepare workflow (ap-
proximately)?: 10min

• How much time is needed to complete experiments
(approximately)?: 11h per iteration

• Publicly available?: https://github.com/nwtnni/cxlalloc

• Code licenses (if publicly available)?: MIT

• Data licenses (if publicly available)?: SNIA Trace Data

Files Download License

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

18234672

A.3 Description
A.3.1 How to access.
git clone https://github.com/nwtnni/cxlalloc.git

A.3.2 Hardware dependencies. Our figures 4, 5, and 6

(main macrobenchmarks and microbenchmarks) are evalu-

ated on amachinewith 80 physical cores (no hyper-threading).

The workload configurations can be freely adjusted to use

fewer threads and processes, but the figures won’t match

exactly. The default heap size is 64GiB; it can be reduced

based on the hardware, but some baselines may crash.

Our figure 9 is evaluated with a 32-core Intel SPR machine

with CXL FPGA. We can provide the FPGA RTL and bit-

stream, but the current bitstream only works with Altera

Agilex 7 I-series FPGA, version R1BES.

A.3.3 Software dependencies. Managed by Nix during

installation process.

A.3.4 Data sets. We use the first subtrace of clusters 12,

15, 31, and 37 from [66]. The trace data can be downloaded

via this SNIA link. We convert each CSV trace to Parquet.

After installation (§A.4), run the following to convert:

mv cluster{12,15,31,37}.000.zst cxlalloc/twitter/
./cxlalloc/twitter/convert.sh 12

https://doi.org/10.1145/3694715.3695968
https://doi.org/10.1145/3676641.3716244
https://arxiv.org/abs/2308.02501
https://doi.org/10.1145/3549528
https://doi.org/10.1145/3549528
https://doi.org/10.1145/3468521
https://www.usenix.org/conference/fast22/presentation/zhang-ming
https://doi.org/10.1145/3600006.3613135
https://www.usenix.org/conference/osdi24/presentation/zhong-yuhong
https://www.usenix.org/conference/osdi24/presentation/zhong-yuhong
https://doi.org/10.1145/3713082.3730393
https://doi.org/10.1145/3698783.3699377
https://doi.org/10.14778/3494124.3494138
https://github.com/nwtnni/cxlalloc
https://iotta.snia.org/repository/download_license
https://iotta.snia.org/repository/download_license
https://doi.org/10.5281/zenodo.18234672
https://doi.org/10.5281/zenodo.18234672
https://iotta.snia.org/traces/key-value/28652


ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Newton Ni, Yan Sun, Zhiting Zhu, and Emmett Witchel

./cxlalloc/twitter/convert.sh 15

./cxlalloc/twitter/convert.sh 31

./cxlalloc/twitter/convert.sh 37

The resulting parquet files occupy about 6.7 GiB.

A.4 Installation
Run cxlalloc/script/setup.sh to install nix and direnv

(which we use for dependency management), clone submod-

ules, and set up the hardware for reproducibility (e.g., dis-

abling CPU frequency scaling). Make sure the

cluster{12,15,31,37}.000.parquet files (§A.3.4) aremoved

into the cxlalloc/twitter/ directory.
Basic test. From the root of the cxlalloc repository, run

./script/run.sh cxlalloc-bench/workloads/mini.toml,
which compiles and runs a small subset of the macro- and

micro-benchmarks. The results will be in mini.ndjson, which
contains throughput andmemory usage information for each

benchmark.

A.5 Experiment workflow
Relative paths assume we are at the root of the cxlalloc
repository. The run script ./script/run.sh takes a path to

a workload configuration file as an argument, and appends

results to an ndjson file. The workloads from our paper are

defined in ./cxlalloc-bench/workloads/.

A.6 Evaluation and expected results
To reproduce the main figures (8,9, and 10) in our paper, run

the following commands:

./script/run.sh ./cxlalloc-bench/workloads/main.toml

./script/run.sh ./cxlalloc-bench/workloads/huge.toml
python3 ./plot/macro.py main.ndjson # macro.pdf
python3 ./plot/micro.py main.ndjson # micro.pdf
python3 ./plot/huge.py huge.ndjson # huge.pdf

To reproduce the MCAS results (Figure 12), assuming ap-

propriate hardware, run:

./script/ablation.sh
python3 ./plot/ablation.py ablation.ndjson

A.7 Experiment customization
The fields of the configuration files should be mostly self-

explanatory, but we note that our benchmark harness iterates

over the cartesian product of the fields within each experi-

ment. The reviewer can vary these fields according to their

hardware (e.g., thread count). Note that mimalloc can only

be run in a single process, which is why the configuration

files are essentially duplicated (once for mimalloc, once for

all other allocators).

https://nixos.org/
https://direnv.net/

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Compute Express Link (CXL)
	2.2 Traditional memory allocation
	2.3 Persistent memory (PM) allocation

	3 Design
	3.1 Architecture
	3.2 Limited HWcc
	3.3 Cross-process sharing
	3.4 Partial failure

	4 Implementation
	5 Evaluation
	5.1 Correctness
	5.2 Performance
	5.3 Huge allocations
	5.4 CXL memory hardware

	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization


