OPERATING SYSTEM TRANSACTIONS

Donald E. Porter, Owen S. Hofmann,
Christopher J. Rossbach, Alexander Benn,
and Emmett Witchel

The University of Texas at Austin

OS APIs don’t handle concurrency

OS is weak link in concurrent programming model

Can’t make consistent updates to system resources
across multiple system calls

Race conditions for resources such as the file system

No simple work-around
Applications can’t express consistency requirements

OS can’t infer requirements

System transactions

System transactions ensure consistent updates by
concurrent applications

Prototype called TxOS
Solve problems

System level race conditions (TOCTTOU)
Build better applications

LDAP directory server

Software installation

System-level races

§§w III‘ (root)

if(access(“F007)) { o Lol

fd = open(*“foo™);
write(fd,.);

) .

Time-of-check-to-time-of-use (TOCTTOU) race condition

TOCTTOU race eliminated

\?lll‘ (root)
sys xbegin();
1T(access(“foo”)) {
fd = open(*“foo0™);
write(fd,..);

\ .
sys xend();

Example 1: better application design

S
1 How to make consistent updates to stable storage?

Application

Enterprise
data storage

User directory
service (LDAP)

Editor

Technique

Database

~egee

rename()

?

Complex

Simple

Ex 2: transactional software install

sys xbegin();
apt-get upgrade
sys xend();

A failed install is automatically rolled back

Concurrent, unrelated operations are unaffected

System crash: reboot to entire upgrade or none

System transactions

Simple APIl: sys xbegin, sys xend, sys xabort
Transaction wraps group of system calls

Results isolated from other threads until commit
Transactions execute concurrently for performance
Conflicting transactions must serialize for safety

Conflict most often read & write of same datum

Too much serialization hurts performance

Related work

Developers changing syscall APl for concurrency
Ad hoc, partial solutions: openat(), etc.

System transactions have been proposed and built
QuickSilver [SOSP ‘91], LOCUS [SOSP '85]

Key contribution: new design and implementation
Uphold strong guarantees and good performance

System transactions != transactional memory

TxOS runs on commodity hardware

Outline
S

0 Example uses of system transactions
0 TxOS design and implementation

1 Evaluation

Building a transactional system

Version management

Private copies instead of undo log

Detect conflicts
Minimize performance impact of true conflicts

Eliminate false conflicts

Resolve conflicts

Non-transactional code must respect transactional code

TxOS in action

Abort CPU O

(lower prio)

Contention Mgr.

CP)
Sy ;
chm Ox755);

S
P —_—

Private Copies

Conflicting
Annotation

CPU 1 (high priority)
sys xbegin();
chown(**f”, 1001);
sys xend();

Privetie Cbpies

*

System comparison

SN =
Previous Systems |TxOS

Speculative write | Shared data

location structures \
Deadlock prone
Isolation Two-phase
mechanism locking
Can cause priority
Rollback Undo log . 1,
. inversion
mechanism

Commit Discard undo log, Publish private
mechanism release locks copy by ptr swap

Minimizing false conflicts

AddyDe
|

[© | %1
e % @) %
addpelir| & | W | &

Insight: object semantics allow more permissive conflict
deflnl’rlon qnd ’rherefore more concurrencgy

(;9 Ose)c_onfllc?)c/:lse"ﬁ R‘l{.}% thbé?cj) :

crea

xend SYs$ X%
reases ncurrency without CTXIng |s cl’rlon

Serializing transactions and non-
transactions (strong isolation)

TxOS mixes transactional and non-tx code
In database, everything is transaction
Semantically murky in historical systems

Critical to correctness
Allows incremental adoption of transactions

TOCTTOU attacker will not use a transaction

Problem: can’t roll back non-transactional syscall

Always aborting transaction undermines fourness

dTﬂ‘

Strong isolation in TxOS

CPU O CPU 1
sys xbegin();
symlink(“/etc/passwd”, 1T(access(“/tmp/foo’))
“/tmp/Too’™); open(““/tmp/fto0™);

sys xend();
Dentry “/tmp /foo”

Header
N :
- Contention
" N
l Manager
Options:
Abort CPUT
Dentry “/tmp /foo” Deschedule CPUO

Data

Transactions for application state

System transactions only manage system state

Applications can select their approach
Copy-on-write paging
Hardware or Software Transactional Memory (TM)

Application-specific compensation code

Transactions: a core OS abstraction

Easy to make kernel subsystems transactional

Transactional filesystems in TxOS
Transactions implemented in VFS or higher

FS responsible for atomic updates to stable store

Journal + TxOS = Transactional Filesystem

1 developer-month transactional ext3 prototype

Evaluation
B

0 Example uses of system transactions
0 TxOS design and implementation
0 Evaluation

1 What is the cost of using transactions?

2 What overheads are imposed on non-transactional
applications?

TxOS Prototype

Extend Linux 2.6.22 to support system transactions
Add 8,600 LOC to Linux
Minor modifications to 14,000 LOC

Runs on commodity hardware

Transactional semantics for a range of resources:

File system, signals, processes, pipes

Hardware and benchmarks

Quadcore 2.66 GHz Intel Core 2 CPU, 4 GB RAM

install install of svn 1.4.4
make Compile nano 2.06 inside a tx
dpkg dpkg install OpenSSH 4.6

LFS large/small Wrap each phase in a tx

RAB Reimplemeted Andrew Benchmark
Each phase in a tx

Transactional software install

sys Xbegin(); sys Xbegin();
dpkg —1 openssh; install svn;
sys xend(); sys xend();
10% overhead 70% overhead

A failed install is automatically rolled back

Concurrent, unrelated operations are unaffected

System crash: reboot to entire upgrade or none

Transaction overheads
I

Execution Time Normalized to Linux

install s s

dpkg [
make [T
LFS Small Delete |
LFS Small Read oo oo
LFS Large Read Rnd I—

o1 Memory overheads on LFS large:
2 13% high, 5% low (kernel)

Write speedups
I

Speedup over Linux

RAB cp I

RAB mkdir |

LFSLWriteRand [0
LFS L Write Seq |

LFS S Create m

0 2 4 6 8 10 12 14 16 18 20
1 Better | /O scheduling — not luck

11 Tx boundaries provide | /O scheduling hint to OS

Lightweight DB alternative

OpenlDAP directory server
Replace BDB backend with transactions + flat files

2-4.2x speedup on write-intensive workloads

Comparable performance on read-only workloads

Primarily serviced from memory cache

Non-transactional overheads

Non-transactional Linux compile: <2% on TxOS
Transactions are “pay-to-play”

Single system call: 42% geometric mean
With additional optimizations: 14% geomean

Optimizations approximated by eliding checks

What is practical?

Mean Linux Syscall Overhead, Normalized to 2.6.22

1.2
1.15
1.1
1.05

22 23 24 25 26 27 28 29 30 31
08,/07 09,/09

Feature creep over 2 years costs 16%

Developers are willing to give up performance for
useful features

Transactions are in same range (14%), more powerful

OSes should support transactions
s

o Practical implementation techniques for modern OS

o1 Transactions solve long-standing problems

Replace ad hoc solutions

o1 Transactions enable better concurrent programs

http: / /www.cs.utexas.edu/~porterde /txos

porterde@cs.utexas.edu

Backup Slides
I

Windows kernel transaction manager

Framework for 2-Phase Commit

Coordinate transactional file system, registry
Transactional FS and registry

Completely different implementation

FS updates in place, Registry uses private copies

Little opportunity for code reuse across subsystems
Explicitly transacted code

More conservative, limited design choice

TxOS allows implicit transactions, application wrappers

Distributed transactions

User/language-level transactions

Cannot isolate OS managed resources

TABS [SOSP ‘85], Argus [SOSP ‘87], Sinfonia [SOSP
'071]
TABS — transactional windows manager

Grayed out aborted dialog

Argus — similar strategies for limiting false conflicts

Transactional file systems

Good ideq, difficult to implement

Challenging to implement below VFS layer

Valor [FAST ‘09] introduces OS support in page cache
Lack simple abstractions

Users must understand implementation details
Deadlock detection (Transactional NTFS)

Logging and locking mechanism (Valor)

Lack support for other OS resources in transactions

Windows KTM supports transactional registry

Speculator

Goal: hide latency of operations

NFS client requests, synchronous writes, etc.
Similar implementation at points

Different goals, not sufficient to provide
transactional semantics

Isolation vs. dependences

xCalls [EuroSys '09]

User-level techniques for transactional system calls
Within a single application only
Works for many common cases (buffering writes)

Edge cases difficult without system support
E.g., close() or munmap () can implicitly delete a file

	Operating System Transactions
	OS APIs don’t handle concurrency
	System transactions
	System-level races
	TOCTTOU race eliminated
	Example 1: better application design
	Ex 2: transactional software install
	System transactions
	Related work
	Outline
	Building a transactional system
	TxOS in action
	System comparison
	Minimizing false conflicts
	Serializing transactions and non-transactions (strong isolation)
	Strong isolation in TxOS
	Transactions for application state
	Transactions: a core OS abstraction
	Evaluation
	TxOS Prototype
	Hardware and benchmarks
	Transactional software install
	Transaction overheads
	Write speedups
	Lightweight DB alternative
	Non-transactional overheads
	What is practical?
	OSes should support transactions
	Backup Slides
	Windows kernel transaction manager
	Distributed transactions
	Transactional file systems
	Speculator
	xCalls [EuroSys ’09]

