
OPERATING SYSTEM TRANSACTIONS

Donald E. Porter, Owen S. Hofmann,
Christopher J. Rossbach, Alexander Benn,

and Emmett Witchel

The University of Texas at Austin

OS APIs don’t handle concurrency
2

 OS is weak link in concurrent programming model
 Can’t make consistent updates to system resources

across multiple system calls
 Race conditions for resources such as the file system
 No simple work-around

 Applications can’t express consistency requirements
 OS can’t infer requirements

System transactions
3

 System transactions ensure consistent updates by
concurrent applications
 Prototype called TxOS

 Solve problems
 System level race conditions (TOCTTOU)

 Build better applications
 LDAP directory server
 Software installation

System-level races

if(access(“foo”)) {

fd = open(“foo”);
write(fd,…);
…

}

(root)

4

foo == /etc/passwd

Time-of-check-to-time-of-use (TOCTTOU) race condition

TOCTTOU race eliminated

sys_xbegin();
if(access(“foo”)) {

fd = open(“foo”);
write(fd,…);
…

}
sys_xend();

(root)

5

 How to make consistent updates to stable storage?

Database

rename()

Sys Tx

Example 1: better application design
6

Application Technique

Editor

User directory
service (LDAP)

Enterprise
data storage

????

Simple

Complex

Ex 2: transactional software install

sys_xbegin();

apt-get upgrade

sys_xend();

 A failed install is automatically rolled back
 Concurrent, unrelated operations are unaffected

 System crash: reboot to entire upgrade or none

7

System transactions

 Simple API: sys_xbegin, sys_xend, sys_xabort
 Transaction wraps group of system calls

 Results isolated from other threads until commit

 Transactions execute concurrently for performance
 Conflicting transactions must serialize for safety

 Conflict most often read & write of same datum
 Too much serialization hurts performance

8

Related work
9

 Developers changing syscall API for concurrency
 Ad hoc, partial solutions: openat(), etc.

 System transactions have been proposed and built
 QuickSilver [SOSP ‘91], LOCUS [SOSP ’85]

 Key contribution: new design and implementation
 Uphold strong guarantees and good performance

 System transactions != transactional memory
 TxOS runs on commodity hardware

Outline

 Example uses of system transactions
 TxOS design and implementation
 Evaluation

10

Building a transactional system
11

 Version management
 Private copies instead of undo log

 Detect conflicts
 Minimize performance impact of true conflicts
 Eliminate false conflicts

 Resolve conflicts
 Non-transactional code must respect transactional code

TxOS in action
12

CPU 0 (low priority)
sys_xbegin();
chmod(“f”, 0x755);
sys_xend();

CPU 1 (high priority)
sys_xbegin();
chown(“f”, 1001);
sys_xend();

0x700
1000

Inode “f”
Header

Private Copies Private Copies

0x755
1000

Inode “f”
Data

0x700
1001

Conflicting
Annotation

Contention Mgr.

Abort CPU 0
(lower prio)

Inode “f”
Data

System comparison
13

Previous Systems TxOS
Speculative write
location
Isolation
mechanism
Rollback
mechanism
Commit
mechanism

Deadlock prone

Can cause priority
inversion

Shared data
structures

Two-phase
locking
Undo log

Discard undo log,
release locks

Private copies of
data structures
Private copies +
annotations

Discard private
copies
Publish private
copy by ptr swap

R Add/De
l

Add/Del+R

R

Add/Del

Add/Del+R

R W

R

W

Minimizing false conflicts
14

sys_xbegin();
create(“/tmp/foo”);
sys_xend();

sys_xbegin();
create(“/tmp/bar”);
sys_xend();

 Insight: object semantics allow more permissive conflict
definition and therefore more concurrency

 TxOS supports precise conflict definitions per object
type

 Increases concurrency without relaxing isolation

R Add/Del

R

Add/Del

OK if different
files created,
Dir not read

Serializing transactions and non-
transactions (strong isolation)

15

 TxOS mixes transactional and non-tx code
 In database, everything is transaction
 Semantically murky in historical systems

 Critical to correctness
 Allows incremental adoption of transactions
 TOCTTOU attacker will not use a transaction

 Problem: can’t roll back non-transactional syscall
 Always aborting transaction undermines fairness

Strong isolation in TxOS
16

CPU 0

symlink(“/etc/passwd”,
“/tmp/foo”);

CPU 1
sys_xbegin();
if(access(“/tmp/foo”))

open(“/tmp/foo”);
sys_xend();

Dentry “/tmp/foo”
Header

Dentry “/tmp/foo”
Data

Conflicting
Annotation

 Options:
 Abort CPU1
 Deschedule CPU0

Contention
Manager

Transactions for application state
17

 System transactions only manage system state
 Applications can select their approach

 Copy-on-write paging
 Hardware or Software Transactional Memory (TM)
 Application-specific compensation code

Transactions: a core OS abstraction
18

 Easy to make kernel subsystems transactional
 Transactional filesystems in TxOS

 Transactions implemented in VFS or higher
 FS responsible for atomic updates to stable store

 Journal + TxOS = Transactional Filesystem
 1 developer-month transactional ext3 prototype

Evaluation
19

 Example uses of system transactions
 TxOS design and implementation
 Evaluation

 What is the cost of using transactions?
 What overheads are imposed on non-transactional

applications?

TxOS Prototype
20

 Extend Linux 2.6.22 to support system transactions
 Add 8,600 LOC to Linux
 Minor modifications to 14,000 LOC

 Runs on commodity hardware
 Transactional semantics for a range of resources:

 File system, signals, processes, pipes

Hardware and benchmarks
21

 Quadcore 2.66 GHz Intel Core 2 CPU, 4 GB RAM

Benchmark Description

install install of svn 1.4.4

make Compile nano 2.06 inside a tx

dpkg dpkg install OpenSSH 4.6

LFS large/small Wrap each phase in a tx

RAB Reimplemeted Andrew Benchmark
Each phase in a tx

Transactional software install

 A failed install is automatically rolled back
 Concurrent, unrelated operations are unaffected

 System crash: reboot to entire upgrade or none

22

sys_xbegin();
dpkg –i openssh;
sys_xend();

10% overhead

sys_xbegin();
install svn;
sys_xend();

70% overhead

Transaction overheads
23

0 0.5 1 1.5 2 2.5 3

LFS Large Read Rnd

LFS Small Read

LFS Small Delete

make

dpkg

install

Execution Time Normalized to Linux

Memory overheads on LFS large:
13% high, 5% low (kernel)

Write speedups
24

0 2 4 6 8 10 12 14 16 18 20

LFS S Create

LFS L Write Seq

LFS L Write Rand

RAB mkdir

RAB cp

Speedup over Linux

 Better I/O scheduling – not luck
 Tx boundaries provide I/O scheduling hint to OS

Lightweight DB alternative
25

 OpenLDAP directory server
 Replace BDB backend with transactions + flat files

 2-4.2x speedup on write-intensive workloads
 Comparable performance on read-only workloads

 Primarily serviced from memory cache

rename() DatabasesSys Tx

Non-transactional overheads
26

 Non-transactional Linux compile: <2% on TxOS
 Transactions are “pay-to-play”

 Single system call: 42% geometric mean
 With additional optimizations: 14% geomean
 Optimizations approximated by eliding checks

What is practical?
27

1

1.05

1.1

1.15

1.2

22
08/07

23 24 25 26 27 28 29 30 31
09/09

Mean Linux Syscall Overhead, Normalized to 2.6.22

 Feature creep over 2 years costs 16%
 Developers are willing to give up performance for

useful features
 Transactions are in same range (14%), more powerful

OSes should support transactions

 Practical implementation techniques for modern OS
 Transactions solve long-standing problems

 Replace ad hoc solutions

 Transactions enable better concurrent programs

http://www.cs.utexas.edu/~porterde/txos
porterde@cs.utexas.edu

28

Backup Slides
29

Windows kernel transaction manager
30

 Framework for 2-Phase Commit
 Coordinate transactional file system, registry

 Transactional FS and registry
 Completely different implementation
 FS updates in place, Registry uses private copies
 Little opportunity for code reuse across subsystems

 Explicitly transacted code
 More conservative, limited design choice
 TxOS allows implicit transactions, application wrappers

Distributed transactions
31

 User/language-level transactions
 Cannot isolate OS managed resources

 TABS [SOSP ‘85], Argus [SOSP ‘87], Sinfonia [SOSP
’07]

 TABS – transactional windows manager
 Grayed out aborted dialog

 Argus – similar strategies for limiting false conflicts

Transactional file systems
32

 Good idea, difficult to implement
 Challenging to implement below VFS layer
 Valor [FAST ‘09] introduces OS support in page cache

 Lack simple abstractions
 Users must understand implementation details
 Deadlock detection (Transactional NTFS)
 Logging and locking mechanism (Valor)

 Lack support for other OS resources in transactions
 Windows KTM supports transactional registry

Speculator
33

 Goal: hide latency of operations
 NFS client requests, synchronous writes, etc.

 Similar implementation at points
 Different goals, not sufficient to provide

transactional semantics
 Isolation vs. dependences

xCalls [EuroSys ’09]
34

 User-level techniques for transactional system calls
 Within a single application only

 Works for many common cases (buffering writes)
 Edge cases difficult without system support
 E.g., close() or munmap() can implicitly delete a file

	Operating System Transactions
	OS APIs don’t handle concurrency
	System transactions
	System-level races
	TOCTTOU race eliminated
	Example 1: better application design
	Ex 2: transactional software install
	System transactions
	Related work
	Outline
	Building a transactional system
	TxOS in action
	System comparison
	Minimizing false conflicts
	Serializing transactions and non-transactions (strong isolation)
	Strong isolation in TxOS
	Transactions for application state
	Transactions: a core OS abstraction
	Evaluation
	TxOS Prototype
	Hardware and benchmarks
	Transactional software install
	Transaction overheads
	Write speedups
	Lightweight DB alternative
	Non-transactional overheads
	What is practical?
	OSes should support transactions
	Backup Slides
	Windows kernel transaction manager
	Distributed transactions
	Transactional file systems
	Speculator
	xCalls [EuroSys ’09]

