
The University of Texas at Austin

UNDERSTANDING TRANSACTIONAL
MEMORY PERFORMANCE

Donald E. Porter and Emmett Witchel

1

Multicore is here
2

 Only concurrent applications will perform better on
new hardware

Intel Single-chip Cloud Computer
48 cores

Tilera Tile GX
100 cores

This laptop
2 Intel cores

Presenter
Presentation Notes
Shift in industryCommodity machines already have 2-6 cores, 8 core chip due out next quarterHigh end chips with as many as 100 cores.The upshot of this…

http://www.google.com/products/catalog?q=lenovo+thinkpad&oe=&cid=12646718736017746159&sa=image�

Concurrent programming is hard
3

 Locks are the state of the art
 Correctness problems: deadlock, priority inversion, etc.
 Scaling performance requires more complexity

 Transactional memory makes correctness easy
 Trade correctness problems for performance problems
 Key challenge: performance tuning transactions

 This work:
 Develops a TM performance model and tool
 Systems integration challenges for TM

Presenter
Presentation Notes
The challenge is locks are hardTM promises to make concurrency easy.In some cases, however, tm can perform much worse than lockingEssentially trading correctness problems for performanceThis is a good tradeTuning TM performance harder than commonly appreciated.This work helps programmers by …

Simple microbenchmark
4

 Intuition:
 Transactions execute optimistically
 TM should scale at low contention threshold
 Locks always execute serially

lock();
if(rand() < threshold)

shared_var = new_value;
unlock();

xbegin();
if(rand() < threshold)

shared_var = new_value;
xend();

Presenter
Presentation Notes
On each iteration of this microbenchmark, a shared variable is updated with a configurable probability of conflict

Ideal TM performance
5

0

0.5

1

1.5

2

2.5

3
0 10 20 30 40 50 60 70 80 90 10
0

Ex
ec

ut
io

n
Ti

m
e

(s
)

Probability of Conflict (%)

Locks 32 CPUs

Ideal TM 32 CPUs

 Performance win at low
contention

 Higher contention
degrades gracefully

xbegin();
if(rand() < threshold)

shared_var = new_value;
xend();

Lower is better
Ideal, not real data

Presenter
Presentation Notes
Low contention: TM is greatEven w/modest contention, TM is a wash (performance), simpler programmingPathological at high contentionWhat are the lessons:It is important to eliminate high contentionSources of contention can be surprisingly subtle. In fact, it took a fair bit of work to produce this graph

Actual performance under contention
6

0

0.5

1

1.5

2

2.5

3
0 10 20 30 40 50 60 70 80 90 10
0

Ex
ec

ut
io

n
Ti

m
e

(s
)

Probability of Conflict (%)

Locks 32 CPUs

TM 32 CPUs

 Comparable
performance at modest
contention

 40% worse at 100%
contention

xbegin();
if(rand() < threshold)

shared_var = new_value;
xend();

Lower is better
Actual data

Presenter
Presentation Notes
Low contention: TM is greatEven w/modest contention, TM is a wash (performance), simpler programmingPathological at high contentionWhat are the lessons:It is important to eliminate high contentionSources of contention can be surprisingly subtle. In fact, it took a fair bit of work to produce this graph

First attempt at microbenchmark
7

0

0.5

1

1.5

2

2.5

3
0 10 20 30 40 50 60 70 80 90 10
0

Ex
ec

ut
io

n
Ti

m
e

(s
)

Probability of Conflict (%)

Locks 32 CPUs

TM 32 CPUs

xbegin();
if(rand() < threshold)

shared_var = new_value;
xend();

Lower is better
Approximate data

Presenter
Presentation Notes
Low contention: TM is greatEven w/modest contention, TM is a wash (performance), simpler programmingPathological at high contentionWhat are the lessons:It is important to eliminate high contentionSources of contention can be surprisingly subtle. In fact, it took a fair bit of work to produce this graph

Subtle sources of contention
8

if(a < threshold)

shared_var = new_value;

eax = shared_var;

if(edx < threshold)

eax = new_value;

shared_var = eax;

Microbenchmark code

gcc optimized code

 Compiler optimization to avoid branches
 Optimization causes 100% restart rate
 Can’t identify problem with source inspection + reason

Presenter
Presentation Notes
Gcc optimizing to eliminate a branch on a deeply pipelined processorLoads original value into reg, conditional update, writes the value backCorrect optimization, but this last line causes 100% restart rate even at low prob of contentionCLICKWhich costs more than any missed branchCLICKThe scary part is…

Developers need TM tuning tools
9

 Transactional memory can perform pathologically
 Contention
 Poor integration with system components
 HTM “best effort” not good enough

 Causes can be subtle and counterintuitive
 Syncchar: Model that predicts TM performance

 Predicts poor performance remove contention
 Predicts good performance + poor performance

system issue

This talk
10

 Motivating example
 Syncchar performance model
 Experiences with transactional memory

 Performance tuning case study
 System integration challenges

Presenter
Presentation Notes
This talk is based on several year’s experience working with transactional memory, and is structured as follows:Motivating example that outlines the talkDescribe a model of TM performance.War stories – some issues well known, some not

The Syncchar model
11

 Approximate transaction performance model
 Intuition: scalability limited by serialized length of

critical regions
 Introduce two key metrics for critical regions:

 Data Independence: Likelihood executions do not
conflict

 Conflict Density: How many threads must execute
serially to resolve a conflict

 Model inputs: samples critical region executions
 Memory accesses and execution times

Data independence (In)
12

 Expected number of non-conflicting, concurrent
executions of a critical region. Formally:

In = n - |Cn|
n =thread count

Cn = set of conflicting critical region executions
 Linear speedup when all critical regions are data

independent (In = n)
 Example: thread-private data structures

 Serialized execution when (In = 0)
 Example: concurrent updates to a shared variable

Presenter
Presentation Notes
Highly data indepentent code is great for parallelism, but can probably be captured by lockingData independence is a good high-order metric, but falls does not capture parallelism for irregular applications

Example:
13

Write a

Read a

Write a

Read a Write a

Write a

Time

 Same data independence (0)
 Different serialization

Thread 1

Thread 2

Thread 3

Presenter
Presentation Notes
We need a second metric to capture this

 Intuition: Low density High density

 How many threads must be serialized to eliminate a
conflict?

 Similar to dependence density introduced by von Praun
et al. [PPoPP ‘07]

Conflict density (Dn)
14

Write a

Read a

Write a

Read a Write a

Write a

Time

Thread 1

Thread 2

Thread 3

Presenter
Presentation Notes
We need a second metric to capture this

Syncchar metrics in STAMP
15

0

2

4

6

8

10

12

8 16 32 8 16 32 8 16 32 8 16 32

Pr
oj

ec
te

d
Sp

ee
du

p
ov

er
 L

oc
ki

ng

Conflict Density

Data Independence

intruder kmeans bayes ssca2

Higher is better

Presenter
Presentation Notes
We’ll cover the details of the prediction in the next slidePoint: examples of both metrics contributing to speedup: ssca2 highly data indepenent, whereas bayes is highly irregular and all speedup comes from low density conflicts, and intruder/kmeans in the middle

Predicting execution time
16

 Speedup limited by conflict density
 Amdahl’s law: Transaction speedup limited to time

executing transactions concurrently

cs_cycles = time executing a critical region
other = remaining execution time

Dn = Conflict density

other
D

ncyclescsTimeExecution
n

+

÷=

)1,max(
__

Syncchar tool
17

 Implemented as Simics machine simulator module
 Samples lock-based application behavior
 Predicts TM performance
 Features:

 Identifies contention “hot spot” addresses
 Sorts by time spent in critical region
 Identifies potential asymmetric conflicts between

transactions and non-transactional threads

Syncchar validation: microbenchmark
18

0
0.5

1
1.5

2
2.5

3

0 10 20 30 40 50 60 70 80 90 100

Ex
ec

ut
io

n
Ti

m
e

(s
)

Probability of Conflict (%)

Locks 8 CPUs
TM 8 CPUs
Syncchar

 Tracks trends, does not model pathologies
 Balances accuracy with generality

Lower is better

Presenter
Presentation Notes
Avoids baking details into model. For example, linear vs. exponential backoff in htm

Syncchar validation: STAMP
19

0 0.5 1 1.5 2

ssca2 32CPU

ssca2 16CPU

ssca2 8CPU

intruder 32CPU

intruder 16CPU

intruder 8CPU

Execution Time (s)

Predicted
Measured

 Coarse predictions track scaling trend
 Mean error 25%

 Additional benchmarks in paper

Syncchar summary
20

 Model: data independence and conflict density
 Both contribute to transactional speedup

 Syncchar tool predicts scaling trends
 Predicts poor performance remove contention
 Predicts good performance + poor performance

system issue

 Distinguishing high contention from system issues is
key step in performance tuning

This talk
21

 Motivating example
 Syncchar performance model
 Experiences with transactional memory

 Performance tuning case study
 System integration challenges

Presenter
Presentation Notes
So for all of the hackers in the audience, we’re in the fun part of the talk: experiences with TM. 2 categories: performance tuning and system integration

TxLinux case study
22

 TxLinux – modifies Linux synchronization primitives
to use hardware transactions [SOSP 2007]

0

2

4

6

8

10

12

14

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

pmake bonnie++ mab find config dpunish

%
 K

er
ne

l T
im

e
Sp

en
t S

yn
ch

ro
ni

zi
ng

aborts
spins

16 CPUs – graph taken from SOSP talk
Lower is better

Presenter
Presentation Notes
Graph from SOSP talkGeneral trend – transactions lower sync time in the kernelExcept for pathological backoff in bonnie++We couldn’t resolve before the conference

Bonnie++ pathology
23

 Simple execution profiling indicated ext3 file system
journaling code was the culprit

 Code inspection yielded no clear culprit
 What information missing?

 What variable causing the contention
 What other code is contending with the transaction

 Syncchar tool showed:
 Contended variable
 High probability (88-92%) of asymmetric conflict

Presenter
Presentation Notes
Given the size of the linux code base, this is a lot of manual analysis

Bonnie++ pathology, explained
24

 False asymmetric conflicts for unrelated bits
 Tuned by moving state lock to dedicated cache line

lock(buffer->state);
...
xbegin();
...
assert(locked(buffer->state));
...
xend();

...
unlock(buffer->state);

struct
bufferhead
{

…
bit state;
bit dirty;
bit free;
…

};

Tx R

W

Presenter
Presentation Notes
DON’T BOG DOWN!

Tuned performance – 16 CPUs
25

0

0.2

0.4

0.6

0.8

1

1.2

bonnie++ MAB pmake radix

Ex
ec

ut
io

n
Ti

m
e

(s
) TxLinux

TxLinux Tuned

>10 s

 Tuned performance strictly dominates TxLinux
Lower is better

This talk
26

 Motivating example
 Syncchar performance model
 Experiences with transactional memory

 Performance tuning case study
 System integration challenges
 Compiler (motivation)
 Architecture
Operating system

Presenter
Presentation Notes
Mention that we’re not going to mention compiler any further

HTM designs must handle TLB misses
27

 Some best effort HTM designs cannot handle TLB misses
 Sun Rock

 What percent of STAMP txns would abort for TLB
misses?
 2% for kmeans
 50-100%

 How many times will these transactions restart?
 3 (ssca2)
 908 (bayes)

 Practical HTM designs must handle TLB misses

Presenter
Presentation Notes
Best effort that doesn’t handle TLB misses isn’t good enough

Input size
28

 Simulation studies need scaled inputs
 Simulating 1 second takes hours to weeks

 STAMP comes with parameters for real and
simulated environments

Presenter
Presentation Notes
We’ve all learned from H&P that you get inaccurate results from inputs that are too small

Input size
29

0

5

10

15

20

25

30

8 16 32 8 16 32 8 16 32

Sp
ee

du
p

Speedup normalized to 1 CPU – Higher is better

Big

Sim

genome ssca2 yada

 Simulator inputs too small to amortize costs of
scheduling threads

Presenter
Presentation Notes
Unfortunately, the STAMP simulator inputs have this problem.We are only measuring parallel phaseWhat is happening here is that…Natural segue to the final challenge area – OS integrationWe aren’t the only ones who’ve had this problem - our “big” inputs have resolved performance issues other researchers were having

System calls – memory allocation
30

xbegin();
malloc();
xend();

Thread 1

Common case behavior:
Rollback of transaction rolls back heap bookkeeping

Heap

Pages: 2

Allocated Free

Legend

System calls – memory allocation
31

xbegin();
malloc();
xend();

Thread 1

Heap

Uncommon case behavior:
Allocator adds pages to heap
Rolls back bookkeeping, leaking pages

Pages: 2Pages: 3

Pathological memory leaks in STAMP genome and
labyrinth benchmark

Allocated Free

Legend

Presenter
Presentation Notes
This was a relatively simple example. Lest you think this is trivial, there are substantially more complex issues mentioned in the paper, such as the use of futexes in the allocator leading to application deadlock.

System integration issues
32

 Developers need tools to identify these subtle issues
 Indicated by poor performance despite good

predictions from Syncchar

 Pain for early adopters, important for designers
 System call support evolving in OS community

 xCalls [Volos et al. – Eurosys 2009]
 Userspace compensation built on transactional pause

 TxOS [Porter et al. – SOSP 2009]
 Kernel support for transactional system calls

Related work
33

 TM performance models
 von Praun et al. [PPoPP ’07] – Dependence density
 Heindl and Pokam [Computer Networks 2009] –

analytic model of STM performance

 HTM conflict behavior
 Bobba et al. [ISCA 2007]
 Ramadan et al. [MICRO 2008]
 Pant and Byrd [ICS 2009]
 Shriraman and Dwarkadas [ICS 2009]

Presenter
Presentation Notes
We are the first to close the loop between a simple model and concrete predictions and application inside a toolConflict behavior work – in context of improving HTM design – a laudable, complimentary goal to our work, which is about helping programmers in an imperfect world

Conclusion

 Developers need tools for tuning TM performance
 Syncchar provides practical techniques
 Identified system integration challenges for TM

Code available at:
http://syncchar.code.csres.utexas.edu

porterde@cs.utexas.edu

34

Backup slides
35

	Slide Number 1
	Multicore is here
	Concurrent programming is hard
	Simple microbenchmark
	Ideal TM performance
	Actual performance under contention
	First attempt at microbenchmark
	Subtle sources of contention
	Developers need TM tuning tools
	This talk
	The Syncchar model
	Data independence (In)
	Example:
	Conflict density (Dn)
	Syncchar metrics in STAMP
	Predicting execution time
	Syncchar tool
	Syncchar validation: microbenchmark
	Syncchar validation: STAMP
	Syncchar summary
	This talk
	TxLinux case study
	Bonnie++ pathology
	Bonnie++ pathology, explained
	Tuned performance – 16 CPUs
	This talk
	HTM designs must handle TLB misses
	Input size
	Input size
	System calls – memory allocation
	System calls – memory allocation
	System integration issues
	Related work
	Conclusion
	Backup slides

