
Christopher J. Rossbach,
Owen S. Hofmann,

Emmett Witchel
University of Texas at Austin, USA

Transactional Memory:
Motivation Mantra

 We need better parallel programming tools
 (Concurrent programming == programming w/locks)
 Locks are difficult
 CMP ubiquity  urgency

 Transactional memory is “promising”:
 No deadlock, livelock, etc.
 Optimistic  likely more scalable

 Conclusion:
 Transactional Memory is easier than locks
 Corollary: All TM papers should be published

Is TM really easier than locks?
 Programmers still must write critical sections
 Realizable TM will have new issues

 HTM overflow
 STM performance
 Trading one set of difficult issues for another?

 Ease-of-use is a critical motivator for TM research

It’s important to know the answer to this question

How can we answer this question?

Step 2: have them write the same
program with TM and locks

Step 4: Evaluate their code
Step 3: Ask them how it went

Step 1: Get some programmers
(preferrably inexperienced)This talk:

• TM vs. locks user study
• UT Austin OS undergrads
• same program using

• locks (fine/coarse)
• monitors
• transactional memory

Outline
Motivation
Programming Problem
User Study Methodology
Results
Conclusion

The programming problem
sync-gallery: a rogue’s gallery of synchronization
 Metaphor  shooting gallery (welcome to Texas)
 Rogues  shoot paint-balls in lanes (1 red, 1 blue)
 Cleaners  change targets back to white

Unshot
lane

Shot by
blue rogue

Shot by red
rogue

Sync-gallery invariants
• Only one shooter per lane (Uh, hello, dangerous?!)

• Don’t shoot colored lanes (no fun)

• Clean only when all lanes shot (be lazy)

• Only one cleaner at a time

Shot by
both
rogues

Sync-gallery Implementations
• Program specification variations

• Single-lane
• Two-lane
• Cleaner (condition vars + additional thread)

• Synchronization primitive variations
• Coarse: single global lock
• Fine: per lane locks
• Transactional Memory

Variation 1: “single-lane rogue”
Rogue() {

while(true) {
Lane lane = randomLane();
if(lane.getColor() == WHITE)

lane.shoot();
if(allLanesShot())

clean();
}

}

Invariants:
• One shooter per lane
• Don’t shoot colored lanes
• One cleaner thread
• Clean only when all lanes shot

globalLock.lock()

globalLock.unlock()

lane.lock()

lane.unlock()

lockAllLanes() ???

beginTransaction()

endTransaction()

Coarse-grain lockingFine-grain lockingTransactions

Variation 2: “two-lane rogue”
Rogue() {

while(true) {
Lane a = randomLane();
Lane b = randomLane();
if(a.getColor() == WHITE &&

b.getColor() == WHITE) {
a.shoot();
b.shoot();

}
if(allLanesShot())

clean();
}}

Invariants:
• One shooter per lane
• Don’t shoot colored lanes
• One cleaner thread
• Clean only when all lanes shot

globalLock.lock()

globalLock.unlock()

Coarse-grain lockingFine-grain locking

a.lock();
b.lock(); Requires lock-ordering!

lockAllLanes() ???

Variation 3: “cleaner rogues”
Rogue() {

while(true)
Lane lane = randomLane();
if(lane.getColor() == WHITE)

lane.shoot();
} }

Cleaner() {
while(true) {

if(allLanesShot())
clean();

} }

Invariants:
• One shooter per lane
• Don’t shoot colored lanes
• One cleaner thread
• Clean only when all lanes shot

if(allLanesShot())
lanesFull.signal();

while(!allLanesShot()
lanesFull.await()

(still need other locks!)

Synchronization Cross-product

Coarse Fine TM

Single-lane Coarse Fine TM

Two-lane Coarse2 Fine2 TM2

Cleaner CoarseCleaner FineCleaner TMCleaner

9 different Rogue implementations

Outline
Motivation
Programming Problem
User Study Methodology
 TM Support
 Survey details

Results
Conclusion

TM Support
Year 1: DSTM2 [Herlihy 06]

Year 2+3: JDASTM [Ramadan 09]

Library, not language support
 No atomic blocks
 Read/write barriers encapsulated in lib calls
 Different concrete syntax matters

DSTM2 concrete syntax
Callable c = new Callable<Void> {

public Void call() {
GalleryLane l = randomLane();
if(l.color() == WHITE))

l.shoot(myColor);
return null;

}
}
Thread.doIt(c); //  transaction here

JDASTM concrete syntax
Transaction tx = new Transaction(id);
boolean done = false;
while(!done) {

try {
tx.BeginTransaction();
GalleryLane l = randomLane();
if(l.TM_color() == WHITE))

l.TM_shoot(myColor);
done = tx.CommitTransaction();

} catch(AbortException e) {
tx.AbortTransaction();
done = false;

}}

Undergrads: the ideal TM user-base
TM added to undergrad OS curriculum
Survey accompanies sync-gallery project
Analyze programming mistakes
TM’s benchmark for success
Easier to use than fine grain locks or

conditions

Survey
 Measure previous exposure
 Used locks/TM before, etc

 Track design/code/debug time
 Rank primitives according along several axes:
 Ease of reasoning about
 Ease of coding/debugging
 Ease of understanding others’ code

http://www.cs.utexas.edu/~witchel/tx/sync-gallery-
survey.html

Data collection
Surveyed 5 sections of OS students
 2 sections x 2 semesters + 1 section x 1 semester
 237 students
 1323 rogue implementations

Defect Analysis
 Automated testing using condor
 Examined all implementations

Outline
Motivation
Programming Problem
User Study Methodology
Results
Conclusion

Development Effort: year 2

0
0.5

1
1.5

2
2.5

3
3.5

4
c

o
a

rs
e

fi
n

e

tm

c
o

a
rs

e

fi
n

e

tm

c
o

a
rs

e

fi
n

e

tm

single-lane two-lane cleaner

debug
code
design

0
0.5

1
1.5

2
2.5

3
3.5

4
c

o
a

rs
e

fi
n

e

tm

c
o

a
rs

e

fi
n

e

tm

c
o

a
rs

e

fi
n

e

tm

single-lane two-lane cleaner

debug
code
design

Development Effort: year 2
Implementation order:

Coarse

rand&2?

Fine TM

Development Effort: year 2

0
0.5

1
1.5

2
2.5

3
3.5

4
c

o
a

rs
e

fi
n

e

tm

c
o

a
rs

e

fi
n

e

tm

c
o

a
rs

e

fi
n

e

tm

single-lane two-lane cleaner

debug
code
design

Development Effort: year 2

0
0.5

1
1.5

2
2.5

3
3.5

4
c

o
a

rs
e

fi
n

e

tm

c
o

a
rs

e

fi
n

e

tm

c
o

a
rs

e

fi
n

e

tm

single-lane two-lane cleaner

debug
code
design

Qualitative preferences: year 2
Ranking 1 2 3 4

Coarse 62% 30% 1% 4%

Fine 6% 21% 45% 40%

TM 26% 32% 19% 21%

Conditions 6% 21% 29% 40%

Ranking 1 2 3 4

Coarse 81% 14% 1% 3%

Fine 1% 38% 30% 29%

TM 16% 32% 30% 21%

Conditions 4% 14% 40% 40%

Best Syntax

Easiest to Think about

(Year 2)

Qualitative preferences: year 2
Ranking 1 2 3 4

Coarse 62% 30% 1% 4%

Fine 6% 21% 45% 40%

TM 26% 32% 19% 21%

Conditions 6% 21% 29% 40%

Ranking 1 2 3 4

Coarse 81% 14% 1% 3%

Fine 1% 38% 30% 29%

TM 16% 32% 30% 21%

Conditions 4% 14% 40% 40%

Best Syntax

Easiest to Think about

(Year 2)

Easiest to Think about

Coarse

TMFine

Conditions

Ea
si

er

H
arder

Qualitative preferences: year 2
Ranking 1 2 3 4

Coarse 62% 30% 1% 4%

Fine 6% 21% 45% 40%

TM 26% 32% 19% 21%

Conditions 6% 21% 29% 40%

Ranking 1 2 3 4

Coarse 81% 14% 1% 3%

Fine 1% 38% 30% 29%

TM 16% 32% 30% 21%

Conditions 4% 14% 40% 40%

Best Syntax

Easiest to Think about

(Year 2)

Best Syntax

Coarse TM

Fine Conditions

Ea
si

er

H
arder

Analyzing Programming Errors
Error taxonomy: 10 classes
 Lock-ord: lock ordering
 Lock-cond: checking condition outside critsec
 Lock-forgot: forgotten Synchronization
 Lock-exotic: inscrutable lock usage
 Cv-exotic: exotic condition variable usage
 Cv-use: condition variable errors
 TM-exotic: TM primitive misuse
 TM-forgot: Forgotten TM synchronization
 TM-cond: Checking conditions outside critsec
 TM-order: Ordering in TM

Error Rates by Defect Type

0%
10%
20%
30%
40%
50%
60%
70%

Y1 Y2 Y3

cv-use: 63%

TM: 0-27%

Overall Error Rates

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Y1 Y2 Y3

Geometric Mean:
Coarse Locks: 27%
Fine Locks: 62%
TM: 10%

Locks: 58-75%

TM: 8-20%

Outline
Motivation
Programming Problem
User Study Methodology
Results
Conclusion

Conclusion
General qualitative ranking:

1. Coarse-grain locks (easiest)
2. TM
3. Fine-grain locks/conditions (hardest)

Error rates overwhelmingly in favor of TM
TM may actually be easier

Overall Error Rates: Year 2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

	Is Transactional Programming Actually Easier?
	Transactional Memory: �	Motivation Mantra
	Is TM really easier than locks?
	How can we answer this question?
	Outline
	The programming problem
	Sync-gallery invariants
	Sync-gallery Implementations
	Variation 1: “single-lane rogue”
	Variation 2: “two-lane rogue”
	Variation 3: “cleaner rogues”
	Synchronization Cross-product
	Outline
	TM Support
	DSTM2 concrete syntax
	JDASTM concrete syntax
	Undergrads: the ideal TM user-base
	Survey
	Data collection
	Outline
	Development Effort: year 2
	Development Effort: year 2
	Development Effort: year 2
	Development Effort: year 2
	Qualitative preferences: year 2
	Qualitative preferences: year 2
	Qualitative preferences: year 2
	Analyzing Programming Errors
	Error Rates by Defect Type
	Overall Error Rates
	Outline
	Conclusion
	Overall Error Rates: Year 2

