
Committing Conflicting Transactions in an STM

Hany E. Ramadan

University of Texas at Austin

ramadan@cs.utexas.edu

Indrajit Roy

University of Texas at Austin

indrajit@cs.utexas.edu

Maurice Herlihy

Brown University

mph@cs.brown.edu

Emmett Witchel

University of Texas at Austin

witchel@cs.utexas.edu

Abstract

Dependence-aware transactional memory (DATM) is a re-

cently proposed model for increasing concurrency of mem-

ory transactions without complicating their interface. DATM

manages dependences between conflicting, uncommitted

transactions so that they commit safely.

The contributions of this paper are twofold. First, we

provide a safety proof for the dependence-aware model.

This proof also shows that the DATM model accepts all

concurrent interleavings that are conflict-serializable.

Second, we describe the first application of dependence

tracking to software transactional memory (STM) design

and implementation. We compare our implementation with

a state of the art STM, TL2 [5]. We use benchmarks from

the STAMP [22] suite, quantifying how dependence tracking

converts certain types of transactional conflicts into success-

ful commits. On high contention workloads, DATM is able

to take advantage of dependences to speed up execution by

up to 4.8×.

Categories and Subject Descriptors C.1.4 [Processor

Architectures]: Parallel Architecture; D.1.3 [Programming

Techniques]: Concurrent Programming—Parallel program-

ming; D.4.1 [Operating Systems]: Process Management—

Concurrency; Synchronization; Threads

General Terms Algorithms, Design, Performance

Keywords transactional memory, dependence-aware, seri-

alizability, concurrency control

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’09, February 14–18, 2009, Raleigh, North Carolina, USA.
Copyright c© 2009 ACM 978-1-60558-397-6/09/02. . . $5.00

1. Introduction

Interest in programming with transactions has experienced a

renaissance with the advent of multi-core processors. Trans-

actional memory [19], whether in software (STM) [31] or

hardware (HTM) [16], replaces locks with transactions,

promising an easier programming model without compro-

mising performance.

Memory transactions provide atomicity: if a transaction

fails for any reason its effects are discarded. Transactions

provide isolation: no transaction sees the partial effects of

any other. Transactions are also linearizable meaning that

each committed transaction appears to take effect instanta-

neously at some point between when it starts and when it

finishes.

A transactional conflict occurs when one transaction

writes data that is read or written by another transaction.

When the ordering of all conflicting memory accesses is

identical to a serial execution order of all transactions,

the execution is called conflict-serializable [8]. There are

three kinds of memory conflicts, R→W, W→R, and W→W,
where R is a read, W is a write, and R→W indicates that
a memory location was first read by one transaction and

subsequently written by another.

Most transactional memory systems detect conflicts be-

tween pairs of transactions and respond by delaying or

restarting one of the transactions. The key insight behind

DATM is that this policy restricts concurrency more than is

necessary [2]. DATM manages conflicts by making trans-

actions aware of dependences and, in the case of a W→R
dependence, forwards data values from one uncommitted

transaction to another. Dependence-awareness allows two

conflicting but conflict-serializable transactions to both com-

mit safely, increasing concurrency and making better use of

concurrent hardware [27].

This paper presents a formal model for dependence-aware

transactions, proving them to be safe because transactions

remain atomic and isolated. Moreover, the paper shows that

the model allows every conflict-serializable schedule to oc-

cur.

The paper demonstrates the first application of depen-

dence-awareness to STMs. Dependence-aware software

transactional memory (DASTM) uses techniques from TL2 [5]

that are modified to support dependences and data forward-

ing. We implement DASTM in C and in Java. The C version

is word-based and the Java implementation is object-based.

We evaluate DASTM on high contention workloads—a

shared counter micro-benchmark, three programs from the

STAMP benchmark suite [23], and STMBench7 [9]. We

show that some STAMP benchmarks benefit from manag-

ing dependences and forwarding data between uncommitted

transactions.

This paper makes the following contributions:

1. It presents a formal model for dependence-aware trans-

actions and then proves its safety and its ability to accept

any interleaving that is conflict-serializable.

2. It presents the design of a dependence-aware STM sys-

tem, which we have implemented in both C and Java.

3. It presents performance data and statistics for our depen-

dence-aware STM system. DASTM shows up to a 4.8×
performance improvement on high contention bench-

marks from STAMP. The performance improvement is

directly attributable to DASTM’s ability to manage de-

pendences.

We summarize the dependence-aware model and explain

its benefits in Section 2. Section 3 presents our formal model

and proof. Section 4 describes our dependence-aware STM

implementation, and Section 5 presents performance num-

bers for the prototype implementation and compares it to

existing systems. Section 6 discusses related work and Sec-

tion 7 concludes.

2. Dependence-aware model

The dependence-aware model accepts more concurrent in-

terleavings than current transactional memory safety mech-

anisms [27]. This section summarizes the most important

parts of the model to keep the paper self-contained, and Sec-

tion 3 formalizes the model. The details of the model are

available elsewhere [27].

2.1 Safely committing conflicting transactions

In conventional TM systems, if two transactions access the

same datum and at least one of the accesses is a write, then

one transaction must either block or restart. Making trans-

actions dependence-aware removes this restriction, allow-

ing both transactions to commit safely under certain circum-

stances. Active (in-progress) transactions are coordinated by

two mechanisms: ordering and forwarding speculative data.

If transaction A reads a datum and then transaction B

writes it (R→W), both transactions can continue so long
as transaction A commits or aborts first. An implementa-

tion needs a mechanism to delay B’s commit. W→W de-
pendences require the same mechanism.

B

begin_tx
load reg1, counter
incr reg1
store reg1, counter

end_tx

W−>R
begin_tx
load reg1, counter
incr reg1

end_tx

store reg1, counter

A

Figure 1. Two transactions increment the same counter, il-

lustrating an interleaving where two conflicting transactions

can both safely commit.

If transaction A writes a datum and then transaction B

reads it (W→R), the system can forward the speculative
data from A to B and make sure that A commits first. An

implementation needs a mechanism to detect if A overwrites

the data or restarts, in which case the runtime system restarts

B.

2.2 Example: shared counter

Figure 1 shows two transactions, A andB, both of which in-

crement a shared counter.A reads the counter value, which is

initialized to 0, increments it to 1 and stores it back. B then

reads the counter value. The system establishes the W→R
dependence and forwards the value (1) from A. B incre-

ments the value to 2 and stores it. The system makes sure

that B does not commit unless and until A commits. When

both commit successfully, the final value of the counter is 2.

2.3 Dependence management

The system tracks all dependences at the level of mem-

ory bytes or objects. The dependences are tracked as they

arise during transaction execution. R→W and W→W de-
pendences restrict commit order, while W→R restrict com-
mit order and forward data from the active transaction. When

data is forwarded, the destination transaction must restart if

the source restarts or overwrites the memory location whose

value was previously forwarded.

Multiple dependences may arise if two transactions con-

flict on more than one memory cell. Dependences can form

cycles among transactions, which must be broken by the sys-

tem to avoid deadlock. Once detected, a cycle is resolved

by restarting at least one transaction. A cyclic dependence

means that the transactions have executed in a way that is

not conflict serializable (this is formalized and proved in

Section 3). The contention manager for dependence-aware

transactions can break cycles using information from the de-

pendence graph [27]. For example, it is probably advanta-

geous to restart a transaction that has not forwarded any data,

if possible.

2.4 Exceptions and stale data

Because the model forwards data between transactions,

transactions that are doomed to restart (zombies) can read

invalid or inconsistent data. Zombies will be restarted by

the runtime when their source transaction either restarts or

overwrites the incorrectly forwarded data. But before the

zombie restarts, the runtime must contain the side effects of

the zombie having read inconsistent data. The runtime effec-

tively deals with zombie transactions by restarting them in

a mode that prevents W→R dependences, thereby prevent-
ing them from reading forwarded data (“no-forward mode,”

details in Section 4.4).

2.5 Cascading aborts

Cascading aborts happen when one transaction’s abort causes

other transactions to abort. In DATM, cascading aborts arise

only from W→R dependences, where the source aborts or
overwrites forwarded data. This data sharing pattern, with

one transaction updating a variable multiple times while

other transactions read it, is not conflict serializable. Any

safe transactional system will serialize such transactions,

either by stalling or aborting.

3. Formal model

This section introduces our formal model. For the first time,

it proves that the DATMmodel is safe and that it accepts any

conflict-serializable schedule.

3.1 Intuitions

Informally, one can think of a concurrency control mecha-

nism as an automaton that accepts concurrent schedules of

events. We prove two properties of DATM. First, DATM is

an automaton that accepts only those schedules of transac-

tions that preserve serializability.

Second, DATM accepts all conflict-serializable sched-

ules. Contrast this with other TM systems that accept only

a subset of the schedules because they either explicitly use

two-phase locking or effectively have the same behavior as

two-phase locking. We prove that all schedules are accepted

by showing that DATM tracks read/write dependences and

aborts transactions only if there are cycles in the underlying

serialization graph.

The formal model is adapted from Lynch et al. [20]. The

model uses non-deterministic transitions to avoid constrain-

ing implementations. For example, when a transaction reads

a variable, it can read either that variable’s committed value

or a value written by an uncommitted transaction.

3.2 Safety

A computation is modeled as a history, that is, a sequence of

instantaneous events of the form:

• 〈T, x.read(v) 〉: T reads v from variable x.

• 〈T, x.write(v) 〉: T writes v to variable x.

• 〈T commit〉: T commits

• 〈T abort〉: T aborts

For example, here is a history in which transaction TA

reads 0 from x, writes 1 to y, and commits.

〈TA, x.read(0) 〉 · 〈TA, y.write(1) 〉 · 〈TA commit〉

A history is well-formed if no transaction both commits and

aborts, and if no transaction takes any steps after it commits

or aborts. Without loss of generality, values read to and

written from variables are unique.

A history is failure-free if all transactions commit, and it

is serial if steps of distinct transactions are not interleaved.

A serial failure-free history is legal if each value read from

a variable is the value most recently written.

A subhistory of a history h is a sub-sequence of the events

of h. If h is a history and S a set of transactions, h|S is
the sub-sequence of events labeled with transactions in S.

Two histories, h and h′, are equivalent if for every transac-

tion TA, h|TA = h′|TA. If h is a history, committed(h) is
the sub-sequence of h consisting of all events of committed

transactions, and active(h) is the set of active (not commit-
ted or aborted) transactions. If x is a variable, prior(x , h) is
the set of active transactions that have read or written x in h,

writer(x , h) is the active or committed transaction that most
recently wrote x in h, and value(x, h) is the value written.

Definition 3.1. A history h is atomic if committed(h) is
equivalent to a legal failure-free serial history.

Let serial(h) be the serial history equivalent to committed(h),
in which transactions appear in the order of their commit

events in h.

A concurrency control mechanism can be thought of as

an automaton that accepts concurrent histories. The mech-

anism is correct if those histories are atomic. We now de-

fine dependence-aware transactional memory as an automa-

ton that accepts atomic histories. The automaton keeps the

following state. The history h is the history accepted so far.

For each T , we keep track of earlier(T), the set of transac-
tions that must commit before T can commit. We also keep

track of notLater(T), the set of transactions that must com-
mit or abort before T can commit. Intuitively, earlier(T)
tracks the write-read dependence while notLater(T) tracks
all the remaining types of dependences. Transitions are given

by pre- and post-conditions, whereX ′ denotes the new state

of component X .

An active transaction can always abort:
• Pre: T ∈ active(h)
• Post: h′ = h · 〈T abort〉
This transition captures the effects of deadlock detection,

either exact or inexact (that is, timeouts).

When a transaction T reads, we track the write-read de-

pendence on the transaction whose value it read.
• Pre: T ∈ active(h)
• Post:

h′ = h · 〈T, x.read(value(x, h)) 〉
earlier ′(T) = earlier(T) ∪ {writer(x , h)}.

When a transaction writes, we track its read-write and

write-write dependences on the active transactions that read

or wrote that variable.
• Pre: T ∈ active(h)
• Post:

h′ = h′ · 〈T, x.write(v) 〉
notLater ′(T) = notLater(T) ∪ prior(x , h).

A transaction can commit only if every value it read was

written by a now-committed transaction, and every value

overwritten was previously read or written by a now-committed

or now-aborted transaction.
• Pre:

T ∈ active(h)
earlier(T) ⊂ committed(h) ∪ {T}
notLater(T) ⊂ committed(h) ∪ aborted(h) ∪ {T}

• Post: h′ = h · 〈T commit〉
The dependence-aware algorithm satisfies this simple invari-

ant: for committed transactions, serialization does not re-

order reads and writes to the same variable.

Lemma 3.1. Let w0 be a write event by T0, and e1 either a

read or write event by T1, both to a variable x in h. If w0

precedes e1 in serial(h), then w0 precedes e1 in h.

Proof. Suppose instead that e1 precedes w0 in h. Because

they were reordered, T0 and T1 were both active when w0

was appended to history h. It follows that T1 ∈ prior(x , h),
so T1 ∈ notLater(T0), implying that T1 must commit be-

fore T0, ordering e1 before w0 in serial(h), a contradic-
tion.

Lemma 3.2. Let h be a history containing w0, a write event

by T0, r1, a read event by T1 that returns the value written

by w0, and w2, a write event by T2 that follows w0 in h.

We claim that T1 ∈ notLater(T2).

Proof. Because r1 returns the value written by w0, there are

no writes between w0 and r1. Therefore w2 follows r1 in

h, and the claim is established when w2 is appended to the

history.

If r is a read event in h, let readsFrom(r , h) be the write
event whose value r returns. That is, for every read event r

in serial(h),

readsFrom(r , serial(h)) = readsFrom(r , h). (1)

The property holds vacuously in the original state. Suppose,

by way of contradiction, the property becomes violated at

some step. That step must be the commit of a transaction

T0, because the other steps leave serial(h) unchanged. Let
r0 be a read step in h|T0 that violates the property, let

w1 = readsFrom(r , h ′), and let T1 be the transaction that

executed w1.

First,w1 must be in serial(h) because T1 ∈ earlier(T0),
and a precondition for T0 to commit is that T1 be commit-

ted. Second, there can be no w2 by T2 between w0 and r1

in serial(h). If w2 comes after w1 in serial(h), then by
Lemma 3.1, w2 comes after w1 in h, so by Lemma 3.2,

T1 ∈ notLater(T2), implying that T1 could not have com-

mitted after T2.

It follows that when a transaction commits, the new serial

history is legal, because every read event returns the value

written by the most recent write event in serial(h ′).

3.3 Accepting all conflict-serializable histories

We have shown that our implementation is safe: all histo-

ries accepted are atomic. We now focus on a stronger claim,

that this automaton accepts all conflict-serializable [8] his-

tories. By contrast, most TM systems, whether hardware or

software, accept only those histories admitted by two-phase

locking, a strictly smaller set.

Some care is needed when interpreting this claim. As

noted, an active transaction can be aborted at any time,

for any reason. In practice, an implementation will abort a

transaction only if it detects, or suspects, a deadlock result-

ing from a cyclic dependence. Our automaton accepts all

conflict-serializable histories, but an actual implementation

may reject some as a result of imprecise deadlock detection

(for example, premature timeouts). Our implementation also

turns off forwarding when it appears to be ineffective, for

example, when restarting a transaction aborted by a cyclic

dependence.

Any history has an associated serialization graph. Each

node is labeled with a committed transaction, and there is a

directed edge from T0 to T1, if first T0 and then T1 apply

conflicting operations (at least one write) to the same object.

A history is conflict-serializable if and only if the associated

serialization graph is acyclic [8].

We define a directedwait-graph for a history h asG(h) =
(V,E) where V = {T : T ∈ active(h)} and E =
{(T1, T2) : T1 ∈ earlier(T2) ∪ notLater(T2) ∧ T1, T2 ∈
V }. Note that according to this wait-graph a transaction T

commits iff it has no incoming edges.

To prove that the automaton accepts all conflict-serializable

histories, we change the abort rule to reflect precise detec-

tion. A transaction is aborted if it has read a value from a

transaction that later aborted or if it is part of a cycle in the

wait-graph.
• Pre:

T ∈ active(h)
(∃T1 ∈ earlier(T)∧T1 ∈ aborted(h))

∨
(T ∈ cycle

in G(h))
• Post: h′ = h · 〈T abort〉
Observe that according to this new abort rule the first

transaction abort will occur because of a cycle in the wait-

graph. Subsequent aborts may occur due to the dependences

tracked by the set earlier(T) or other cycles in the graph.

Lemma 3.3. If an input history H is conflict-serializable

then G(H) is acyclic.

Figure 2. Key data structures in DASTM.

Proof. Let h be the earliest subhistory of H such that there

is a cycle inG(h). Let 〈T1, T2, .., Tk〉 denote the cycle. Con-
sider the nodes T1 and Tk. By definition the edge (Tk, T1)
exists because Tk ∈ earlier(T1) ∪ notLater(T1). Using
the transitive property, the chain of edges from T1 to Tk im-

ply that T1 ∈ earlier(Tk) ∪ notLater(Tk). Using the def-
initions of earlier(T) and notLater(T), there are 9 possi-
ble combinations of dependence between T1 and Tk. Each

of these combinations result in a cycle between T1 and Tk

in the serializability graph of h. This is a contradiction, be-

cause a cycle in the serializability graph of h implies H is

not conflict-serializable.

Lemma 3.4. If an input history is conflict-serializable, then

it is accepted by the automaton.

Proof. By Lemma 3.3, the wait-free graph for the input

history is acyclic. According to the abort rule, no transaction

would have aborted as the first abort is triggered by a cycle.

Hence, the given history is accepted as-is by the automaton.

4. Design

This section introduces our prototype implementation of

dependence-aware software transactional memory (DASTM).

It presents the key data structures and the basic steps transac-

tions follow. Finally, we discuss some of the more interesting

optimizations.

4.1 Data structures

Each thread maintains transaction-specific information in

thread-local storage. Each transaction has a read-set and a

write-set, implemented as linked lists with bloom filters to

reduce list searches (like TL2 [5]). There is a single shared

global-clock vector Each transaction also has a wait-vector

to manage dependences.

The primary shared data structure is a global hashtable

that contains the system metadata, shown in Figure 2. Ac-

tive transactions hash memory addresses to look up memory

metadata structures (MDs) in the hashtable. Each address re-

quires a unique MD, so hashtable collisions are resolved us-

ing a linked list of entries. DASTM uses the same addressing

interface as the STAMP TL2 implementation, where load

and store addresses are to 4-byte, aligned data units. Each

MD contains the following fields.
• lock
• ro-flag
• ro-version
• accessors, a sequence of 4-tuples, each comprised of:

[transaction-id, flags, receivedValue, writtenValue]

For efficiency, all addresses that hash to the same value

share the same lock ro-flag and ro-version. The lock is a

recursive spinlock that protects access to the MD structure.

The ro-flag and the ro-versionenable an optimization for

memory locations that are only read during a transaction (see

Section 4.3.2).

The core of the MD structure is the accessors list, an

ordered sequence of 4-tuples. Each tuple has a transaction-

id that identifies the transaction accessing this memory lo-

cation. The flags field contains four bits, Received, Writ-

ten, Forwarded, and Doomed. The first three bits indicate

whether the tuple has received, written, or forwarded a

value. The Doomed flag indicates that the transaction ac-

cessing the address will have to abort. The receivedValue

field holds the memory value retrieved from memory or the

forwarded value from another in-progress transaction. The

writtenValue field records updates to the memory location

made by the transaction.

4.2 Basic transaction execution

The following steps summarize transaction execution. Trans-

actions end either in commit or abort (where aborted trans-

actions restart).

1. Transaction initialization. Transactions begin by clear-

ing the thread-local read and write sets. As described be-

low, they obtain a transaction-id and initialize their wait-

vector to all zeros.

2. Transactional accesses. Memory reads and writes add

the address to the transaction’s thread-local read or write

set (respectively). They then look up and create, if neces-

sary, the MD structure corresponding to the memory ad-

dress in the global hashtable. The lock protecting the MD

structure is held for the duration of servicing the memory

operation. If this access is the first access to the address

by the transaction, a new 4-tuple is appended to the ac-

cessors sequence in the MD.

a Reads. If this is the first access to the memory loca-

tion, the value is read either from an active transaction

or from memory, and is then stored in the recieved-

Value field. Forwarding happens by having the trans-

action scan the accessors list backwards from the end

for previous tuples. If it finds a tuple that does not have

the Doomed flag set and has its Written flag set, the

transaction copies the writtenValue, sets the Forwarded

flag, and sets the Received flag in the receiving trans-

action’s accessor tuple. If no such tuple exists, then the

transaction initializes the receivedValue directly from

the memory. The value returned for the read operation

is the value in the receivedValue field, or, if the written

flag is set, the value in the writtenValue field.

b Writes. TheWritten flag in the MD accessor flags field

is turned on and the writtenValue field is updated with

the new value being stored. If the memory address is

previously read but not written (Written flag is not set),

then it turns on the Doomed flag of all tuples that are

later in the sequence.

3. Transaction commit.

a Resolve dependences. Wait until all dependences are

resolved, i.e., all transactions this one depends on

(earlier(T) ∪ notLater(T)) must commit or abort
(see Section 4.3.3 for details).

b Write-set locking. Acquire and hold the MD structure

locks for all addresses in the write-set. If any write-set

tuples for this transaction have the Doomed flag set,

release all the locks and abort.

c Read-set validation. Validate the read-set by ensuring

that none of the MD accessor tuples for this transaction

have the Doomed flag set. The MD structure is locked

only for the duration of the check. If the validation

fails, the transaction releases all held locks and aborts.

The read set does not need to be locked for the duration

of commit because any subsequent writer will form a

dependence and wait for this transaction to commit.

d Write-back. Write back the value of each element in

the write-set to main memory, and release the MD lock.

If the Forwarded flag of the transaction’s tuple is set,

the transaction dooms any dependent transaction that

has received a stale value for this memory address. The

transaction scans the dependents, dooming any entry

that has its Received flag set if the receivedValue is dif-

ferent from the committing transaction’s writtenValue.

This check terminates at the end of the sequence, or at a

non-doomed tuple that does not have the Received flag

set.

The start of write-back is the transaction’s linearization

point [17]—any transaction that starts write-back will

successfully commit, with any contending transaction

serializing afterwards.

4. Transaction abort. A transaction that aborts must en-

sure that all transactions dependent on it also abort. For

all addresses in the write-set with the Forwarded flag set,

the transaction sets the Doomed flag for all subsequent

accesses by transactions that have the Received flag set.

The transaction stops at the first non-doomed tuple that

has the Written flag set and the Received flag clear. Each

MD structure is locked only for the time it takes to per-

form this check.

5. Cleanup.Both Commit and Abort complete by removing

all tuples that correspond to the transaction’s read and

write set from the corresponding MD structures. The MD

structures themselves (if dynamically allocated) may be

freed if the tuple-sequence has become empty.

4.3 Design details

This section describes a few of the important optimizations

and design choices made in our prototype.

4.3.1 Resolving dependences

A transaction must wait until all transactions on which it de-

pends complete (commit or abort). After they commit, it can

proceed (past step 3a) and continue its attempt to commit.

A transaction’s dependences are implicitly encoded by its

tuple’s position in the MD accessors sequence—the trans-

actions of tuples preceding it in the sequence are the ones

it may depend on. One strategy for resolving dependences

is to iterate through each address in the working set, check-

ing if all preceding transactions in the MD accessor list that

have the Written flag set have completed. Recall that when

a transaction completes, it removes its tuple from the MD

accessor.

We implement a more efficient strategy for resolving de-

pendences that uses vector clocks. The runtime has a global-

clock (GC) that tracks the number of transactions completed

by each processor. Each transaction has a wait-vector that is

used to summarize the transactions it has to wait on. When

a transaction starts on a processor p, it reads GC[p] (the pth

entry in the vector clock) and keeps track of V = GC[p]+1.

This scalar (V) represents the value which the transaction

will write into the global-clock when it completes, and is

communicated to other processors that wish to take a depen-

dence on this transaction. This communication occurs when

a transaction accesses any memory address, it updates its

wait-vector with the V values of all transactions preceding

it in the accessor tuple. The V value is present in each tu-

ple, as the transaction-id field encodes both p and V. When a

transaction completes (whether commit or abort), it writes V

to GC[p], after dooming its write-set. Dependence resolution

is thus reduced to each transaction waiting for global-clock

to be greater-or-equal to its wait-vector.

4.3.2 Optimizing read data

Most transactions read more data than they write. Some ad-

dresses are only read during a transaction and never writ-

ten. For such transactions, the basic algorithm can impose a

heavy performance penalty in the steps required to process a

read (2a) and to validate the read-set at commit time (3c). For

data that is only read during a transaction, we would like to

avoid any MD structure locking , vector-clock management,

tuple management, and so on.

Our approach initially assumes that all data accessed by

a transaction is read-only—as indicated by the ro-flag field

in the MD. The transaction reads the desired data from main

memory, and saves the ro-version value in its read-set. The

validation phase (3c) for such memory locations consists of

ensuring that for each address the ro-version has not changed

in the MD structure, and that the ro-flag still indicates that

the address is in read-only mode.

If a transaction stores to a memory location (i.e. uses the

MD structure), the ro-flag is cleared. Any transaction that

previously read the location while the ro-flag was set will

abort during validation if it sees that the flag has been turned

off. With the flag off, reads are processed as in 2a. The run-

time can decide to transition an MD back to read-only mode

by resetting the ro-flag and increasing the ro-version. In-

creasing the ro-version ensures that any outstanding trans-

action that reads the location in read-only mode will abort

during validation. The runtime might turn on all ro-flags if

there are no active transactions, or might turn them on every

N transactions.

4.3.3 Deadlock management

Deadlock can arise in the commit protocol, steps 3a-c,

for a variety of reasons. First, cyclical dependences in the

DASTM model result in two transactions waiting for each

other to commit, and thus both stay in step 3a indefinitely.

Second, we do not impose any specific ordering on lock

acquires (exacerbated by the fact that we acquire write-

set locks before read-set), so transactions can deadlock in

steps 3b or 3c. Third, since our implementation uses a single

lock to protect multiple MD structures that hash to the same

bucket, on rare occasions false conflicts can cause deadlocks.

Deadlocks are handled using timeout, similar to TL2.

Other approaches are possible, including implementations

that avoid deadlocks (e.g. by restricting dependence creation

to guarantee acyclic dependences or imposing lock order), or

which use more sophisticated deadlock detection techniques

like Dreadlocks [13].

4.3.4 Design tradeoffs

Our STM design does not implement every feature of the

dependence-aware model. Transaction dependences are al-

ways created relative to the most recently written value of

the object. With this policy, the dependence graph is always

a chain, and new dependences are appended to the end. A

given transaction will forward only a single value, even if

the address is written multiple times. That single value can

be forwarded to multiple transactions. Preliminary data in-

dicated that these optimizations would generate little perfor-

mance and add complexity.

4.4 Containing zombies

Because W→R dependences forward uncommitted data, a
transaction can read invalid or inconsistent data (see Sec-

tion 2.4). Zombie transactions (those that will never com-

mit) can enter infinite loops, write to incorrect addresses,

read from incorrect addresses, jump to incorrect addresses,

and fail program assertions. Some STM systems allow zom-

bie transactions and have mechanisms to deal with them [6].

DASTM’s control over data forwarding makes containing

zombies easy.

With dependence-aware transactions, infinite loops are

resolved by runtime support. When transaction A enters an

infinite loop (that is not present in the original program), it

must have read inconsistent data from a transaction B that

will not successfully commit. When transaction B restarts,

the runtime restarts transaction A. If B is also in an infinite

loop because of a dependence on A, the runtime system

periodically polls for circular dependences and restarts both

transactions. In Java, the VM can propagate the restart. In C,

the runtime system sends a signal.

The runtime buffers data written during a transaction,

which prevents zombie transactions from corrupting the pro-

gram’s data structures, and from causing spurious exceptions

due to stores to incorrect addresses. Zombie transactions can

load from incorrect or invalid addresses, causing incorrect

control flow or spurious exceptions. When any transaction

that has read forwarded data throws an exception, the trans-

action is restarted in no-forward mode. Otherwise, it will be

restarted when the source of the inconsistent data restarts.

A managed runtime can detect exceptions directly, while an

unmanaged environment can use signal handlers.

Jumping to a loaded address in a transaction that has read

forwarded data causes the runtime to restart the transaction

in no-forward mode. Program assertions must be integrated

with the STM runtime. Any failed assertion in a transaction

that has read forwarded data is restarted in no-forward mode.

5. Evaluation

We conducted the experiments for DASTM on a Sun server

using the UltraSparc T1 (Niagara) processor. This proces-

sor contains eight multi-threaded cores with four contexts

per core, for a total of 32 total hardware contexts. The ma-

chine runs the 64-bit Linux 2.6.24-19 operating system. Our

Java tests (DASTM-J) are on a machine with 4 quad-core

Intel Xeon 2.93GHz processors, for a total of 16 hardware

cores. The machine runs Linux kernel version 2.6.22-14. We

use counter as a micro-benchmark to study how DASTM

performs in the presence of hot-spots. We also report the

performance results for three representative STAMP 0.9.8

benchmarks—vacation, labyrinth and ssca2. We compare

DASTM with unmodified TL2 [6] on each of these bench-

marks. We report TL2 statistics that differ from those re-

ported by Minh et al. [22] because their results are from a

simulator, while ours are from real hardware. We use the

TL2 code distributed with the STAMP suite. We ensure each

benchmark’s threads are appropriately pinned to individual

processors (using thread affinity) to avoid OS scheduling

anomalies. We report the averages of three benchmark runs.

5.1 counter

Writing shared data within a transaction generally leads to

hot-spots that result in poor performance of an STM. In

Figure 3. Speedup (higher is better) seen in DASTM and

TL2 on the counter benchmark.

Figure 5. Speedup (higher is better) achieved by DASTM

and TL2 compared to the single thread performance of TL2

on labyrinth+, a high contention variant of labyrinth

Figure 3, we study the effect of updating a shared counter for

a total of 100,000 times using a variable number of threads.

Each increment transaction also contains a fixed amount of

think time (5,000 iterations of a local loop), to simulate

work on private data. TL2 does not scale at all, revealing the

inherent lack of concurrency in two-phase locking systems.

This micro-benchmark demonstrates how DASTM, in ideal

conditions, can increase concurrency by allowing conflicting

transactions to safely commit.

5.2 STAMP

vacation Vacation models a travel reservation system. It

uses red-black trees to store data. Client tasks are performed

within transactions to provide safe access to this data. Our

experiments execute 1,000 transactions and use the param-

eters “-t 1000 -n 100 -u 50”. This particular configuration

has very high contention and more than 86% of the bench-
mark time is spent within transactions. Figure 4 depicts how

DASTM compares to TL2. DASTM outperforms TL2 by

4.86× at 16 threads.
We see that vacation performance decreases on DASTM

going from 16 to 32 threads. The abort rate doubles when

going from 16 to 32 threads with almost all of vacation’s

aborts due to timeouts waiting for dependences to be satis-

fied at commit (see Table 1 in Section 5.3 below). We in-

creased the timeout value which decreased the abort rate

and improved performance at 32 processor threads, nearly

matching 16 thread performance. With more cores, deadlock

detection that is more precise than simple timeouts (for ex-

ample, Dreadlocks [13]) are likely to become important to

sustain good performance.

labyrinth The labyrinth benchmark uses Lee’s algorithm

to find the shortest path between pairs of nodes in a maze [22].

The program reads and updates memory locations within

data structures, such as a worklist and a grid. Most of the

updates occur in long transactions. Figure 4 shows the re-

sults for a maze of size 256 × 256 × 5, using parameters “-i
random-x256-y256-z5-n256.txt”. The total number of trans-

actions is between 514 to 576 (depending on the number of

threads). With the default transaction boundaries, both TL2

and DASTM are able to scale well on this benchmark. We

therefore decided to use different transaction boundaries: the

benchmark’s primary loop creates two transactions per iter-

ation, which we merge into a single transaction. This is an-

other way to transactionalize the benchmark (producing the

same results), however contention is much higher. Figure 5

shows the results for this variant, which we call labyrinth+.

DASTM is able to improve performance by up to approxi-

mately 1.6× with additional cores, whereas TL2 is unable to
improve beyond single thread performance. Neither system

achieves any additional speedup as the number of hardware

threads is increased above 2. Like vacation, aborts due to

time out increase with more threads. In addition, overwrite

aborts (shown as A2 in Table 1) also increase with more

threads. Experiments with increased timeout thresholds do

reduce those aborts by up to 60%, but overwrite aborts re-

main unchanged and thus become the limiting factor for

performance. Even with more sophisticated deadlock de-

tection, labyrinth+ is inherently limited in the amount of

concurrency that can automatically be achieved.

ssca2 The ssca2 benchmark uses a scientific computa-

tional kernel that operates on a multi-graph to produce an

efficient graph structure representation using adjacency (and

other auxiliary) arrays [22]. We run the benchmark using the

parameters “-s17 -i1.0 -u1.0 -l3 -p3”. It creates a large num-

ber of transactions: over 1.4 million, which individually are

relatively small. The benchmark has very little contention,

so it does not benefit much from dependence management.

Figure 4 shows that on single-threaded runs, TL2 is roughly

20% faster than DASTM, due to overheads for managing

metadata. Overheads for other benchmarks depend on a va-

riety of factors including access to DASTM metadata, trans-

action contention, and the ratio of transaction computation

to data accesses. TL2 achieves a peak speedup of approxi-

mately 2.4× at 32 threads, while DASTM’s overhead causes
its peak speedup to be slightly lower at 2.25×.

Figure 4. Speedup (higher is better) achieved by DASTM and TL2 compared to the single thread performance of TL2 on (A)

vacation (B) labyrinth and (C) ssca2.

Parameter (in %) vacation labyrinth+ counter

Reduction in Exec-time 72.5 23.9 86.8

Reduction in Restarts 98.2 90.0 99.5

Abort Rate 44.3 88.8 3.3

A1:Dep. Wait Aborts 79.5 62.6 20.7

A2:Overwrite Aborts 16.2 34.0 79.3

A3:Lock Timeout Aborts 4.2 0.0 0.0

D1:Tx using R→W 3.6 3.8 0.0

D2:Tx using W→W 1.3 76.6 99.6

D3:Tx using W→R 34.0 77.4 99.6

Table 1. DASTM statistics for vacation, labyrinth+ and

counter at 8 threads.

5.3 DASTM statistics

Table 1 shows the reduction in execution time and in trans-

actional restarts moving from TL2 to DASTM at 8 threads
for the three highest contention benchmarks—vacation,

labyrinth+ and counter. We see that on all of them, the num-

ber of dynamic aborts is reduced by 90% or more. These
findings validate our observation that current STMs abort

more transactions than what is strictly necessary to remain

safe. DASTM’s reduction in aborts translates to increased

performance.

Table 1 also gives the percentage of transactions that

restart (abort rate) and a breakdown of the various types

of aborts and dependences seen in these benchmarks. The

Abort rate of the vacation benchmark shows that 44.3%
of the total transaction attempts resulted in aborts. These

aborts occur for three reasons: (1) timeouts while waiting

for dependences to be satisfied (A1), (2) aborts because a

transaction overwrote a value that it had already forwarded

(A2), and (3) timeouts while trying to acquire locks on

memory locations (A3). The values of categories A1–A3

equals 100% of aborts (nearly 100% for labyrinth+, which

has some explicit calls to abort). In a workload such as the

counter benchmark aborts are mostly due to forwarding of

values that are then overwritten, while labyrinth+ and vaca-

0 2 4 6 8 10 12 14 16
0

200

400

600

800

1000

1200

1400

#Threads

T
x
/s

e
c
.

STMBench7

Read−dominated

Read−Write

Figure 6. DASTM-J results for STMBench7 read domi-

nated and read-write workload. The benchmark uses the de-

fault parameters with long traversals disabled.

tion mostly abort due to timeout while waiting for depen-

dences to resolve.

D1,D2 and D3 give the number of transactions involved

in R→W, W→W and R→W dependences. For example,
99.6% of the transactions in counter read values forwarded
by the (W→R) dependences. The numbers in these cate-
gories do not total to 100% because a single transaction can

have multiple dependence types.

5.4 DASTM-J: an object based STM

We have also implemented DASTM-J, an object based

dependence-aware STM. DASTM-J is written in Java and

uses the same high level design as presented in Section 4.

We present the performance of DASTM-J on STMBench7

to show that our prototype has scalable performance and that

dependences are useful for large transactional workloads.

STMBench7 consists of traversals and modifications in a

graph with a million objects [9]. The authors of STMBench7

note the difficulty that every public STM has in running their

benchmark [7]. In Figure 6, we show the scalable perfor-

mance of DASTM-J for two different inputs to STMBench7,

creating a read dominated and a read-write workload. At

16 threads, DASTM-J achieves more than 1, 300 Tx/sec on
the read-dominated workload. The read-dominated work-

load does not benefit from dependences, but 2.5% of trans-
actions create dependences for the read-write workload. De-

pendences are more useful as contention increases.

6. Related work

In this section, we discuss the most relevant related work

from the literature. There have been many recent advances in

STM research [1,10,11,15,21]. We refer the reader to Larus

and Rajwar for a comprehensive reference of transactional

memory systems as of summer 2006 [19].

TM isolation Other transactional memory designs and im-

plementations have also observed that modifying the safety

conditions for transactions can allow a system to extract

more concurrency from workloads. Along with DATM [26,

27], TSTM [2] identifies that using conflict serializability as

a correctness criteria, rather than two-phase locking, bene-

fits transactional memory systems by allowing more concur-

rency. However, their model is based on timestamp order-

ing, and does not accept every conflict serializable schedule

(e.g. those that involve forwarding). The developers of CS-

STM [30] (which utilizes a new consistency criterion that the

authors call z-linearizable), also consider a variant of that

algorithm which maintains full serializability. This variant

(called S-STM) is only briefly described as using timestamps

and vector clocks and having to maintains partial precedence

graphs. The authors state that the runtime overhead of man-

aging their intricate data structures can be prohibitive, espe-

cially for smaller transactions, though performance data is

not reported.

SI-STM uses snapshot isolation, a weaker isolation level

than conflict-serializability [29]. SI-STM shares some of the

performance goals of DATM, trying to get conflicting trans-

actions to commit. It also shares some implementation tech-

niques with DATM, namely preserving multiple versions of

the same memory byte. Snapshot isolation is more difficult

for the programmer to reason about than conflict serializabil-

ity and is applicable to fewer situations than DATM.

Database systems DATM can be viewed as an efficient

implementation of a SGT-based (Serialization Graph Testing-

based) certifying concurrency-control scheduler [3]. It is de-

signed to permit recoverable schedules, a superset of ACA

(Avoid Cascading Aborts) schedules. It does not build up

the actual serialization graph, since the dependences on the

shared objects provide sufficient information to provide the

necessary constraints.

Transaction dependences also have roots in early database

research. Spheres of control [4], in the context of a static

hierarchy of abstract data types, introduced the notion of dy-

namic spheres created around actions accessing shared data.

Transaction dependences are at one level a refinement and

formalization of the general notion of spheres of control in a

way that can be implemented in the context of transactional

memory.

Time-domain addressing [28] (also called multi-version

concurrency control (MVCC)) tracks multiple versions of

objects modified concurrently, as does DATM, and thus both

systems address similar issues. However, write-shared data

are known to degrade MVCC performance, while DATM

is designed to scale in their presence. Also, the techniques

DATM employs to achieve conflict-serializability (notably,

the different types of dependences and the forwarding of

uncommitted data) are not found in MVCC systems.

Changing the STM programming model TM systems

can change the programming model to increase perfor-

mance. The programmer must deal with more complexity,

but the runtime can be more efficient.

Privatization [33], and its complement (publication) are

programming technique that allows programmers to care-

fully manage when data is shared and accessible by other

transactions, versus being private. They bridge the concep-

tual gap between per-CPU data structures and shared data

structures. Early release [32] allows a programmer to drop

transactional isolation on given memory locations. The pro-

grammer must be correct in his judgment that isolation is not

needed on those locations, or the program will no longer be

correct. Having code in an escape action access the same

data as a paused transaction can cause semantic anoma-

lies [24]. Open nesting [25] trades physical isolation for logi-

cal isolation, with the programmer guaranteeing correctness.

All of these techniques require more programmer effort than

DASTM.

Galois classes [18] and transactional boosting [14] al-

low the programmer to provide inverse operations for the

concurrent data structures. These techniques are orthogo-

nal to dependence-awareness, and can be used to comple-

ment them. They have the potential to eliminate structural

conflicts in many situations, though programmers may have

varying success providing inverses for different data struc-

tures (e.g., k-d tree inserts are not straightforward to handle),

and defining commutativity relationships between all oper-

ations. Similarly, abstract nested transactions (ANTs) [12]

attempt to reduce the performance effect of benign conflicts,

but require the programmer identify the regions of code that

are likely to be victims of such conflicts. The system then en-

sures that ANTs are re-executed appropriately if they do ex-

perience a conflict. ANTs differ from closed nesting in when

the re-executing can occur, specifically ANT re-execution

can be delayed until the top-level transaction attempts to

commit.

7. Conclusion

Dependence-aware transactions allow conflicting transac-

tions to safely commit. This paper presents a formal model

of DATM, proves its key properties, and presents the design

of the first STM implementation to use the model.

Experimental results from our prototypes (in C and Java)

confirm the potential performance benefits of dependence-

aware transactional memory as compared to traditional STM

implementations.

8. Acknowledgements

We extend thanks to Donald E. Porter and Christopher J.

Rossbach for careful reading of drafts and suggestions. This

research is supported by NSF CISE Research Infrastructure

Grant EIA-0303609, NSF Career Award 0644205, and the

DARPA computer science study group. Sun Microsystems

provided the T2000 machine via the OpenSPARC program.

Intel equipment grant 48395 provided the 4 quad-core Intel

server machine.

References

[1] Ali-Reza Adl-Tabatabai, Brian Lewis, Vijay Menon, Brian

Murphy, Bratin Saha, and Tatiana Shpeisman. Compiler and

runtime support for efficient software transactional memory.

In PLDI, Jun 2006.

[2] Utku Aydonat and Tarek Abdelrahman. Serializability of

transactions in software transactional memory. In TRANS-

ACT, Feb 2008.

[3] Philip Bernstein, Vassos Hadzilacos, and Nathan Goodman.

Concurrency Control and Recovery in Database Systems.

Addison Wesley, 1987.

[4] Charles T. Davies. Data processing spheres of control. IBM

Systems Journal, 17(2), 1978.

[5] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking

II. In DISC, Sep 2006.

[6] Dave Dice and Nir Shavit. What really makes transactions

faster? In TRANSACT, Jun 2006.

[7] Aleksandar Dragojevic, Rachid Guerraoui, and Michal Ka-

palka. Dividing Transactional Memories by Zero. In

TRANSACT, Feb 2008.

[8] Jim Gray and Andreas Reuter. Transaction Processing: Con-

cepts and Techniques. Morgan Kaufmann, 1993.

[9] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. Stm-

bench7: A benchmark for software transactional memory. In

EuroSys, Mar 2007.

[10] TimHarris and Keir Fraser. Language support for lightweight

transactions. In OOPSLA, Oct 2003.

[11] Tim Harris, Mark Plesko, Avraham Shinnar, and David

Tarditi. Optimizing memory transactions. In PLDI, Jun

2006.

[12] Tim Harris and Srdan Stipic. Abstract nested transactions. In

TRANSACT, Aug 2007.

[13] Maurice Herlihy and Eric Koskinen. Dreadlocks: Efficient

deadlock detection for stm. In TRANSACT, Feb 2008.

[14] Maurice Herlihy and Eric Koskinen. Transactional boosting:

a methodology for highly-concurrent transactional objects. In

PPoPP, Feb 2008.

[15] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexi-

ble framework for implementing software transactional mem-

ory. In OOPSLA, Oct 2006.

[16] Maurice Herlihy and J. Eliot Moss. Transactional memory:

Architectural support for lock-free data structures. In ISCA,

May 1993.

[17] Maurice Herlihy and Jeannette M. Wing. Linearizability: A

correctness condition for concurrent objects. ACM TOPLAS,

12(3):463–492, Jul 1990.

[18] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ra-

manarayanan, Kavita Bala, and L. Paul Chew. Optimistic par-

allelism requires abstractions. In PLDI, Jun 2007.

[19] Jim Larus and Ravi Rajwar. Transactional Memory. Morgan

& Claypool, 2006.

[20] Nancy A. Lynch, Michael Merritt, William E.Weihl, and Alan

Fekete. Atomic Transactions. Morgan Kaufmann, 1993.

[21] Virendra J. Marathe, Michael F. Spear, Christopher Heriot,

Athul Acharya, David Eisenstat, William N. Scherer III, and

Michael L. Scott. Lowering the overhead of nonblocking

software transactional memory. In TRANSACT, Jun 2006.

[22] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and

Kunle Olukotun. Stamp: Stanford transactional applications

for multi-processing. In IEEE International Symposium on

Workload Characterization (IISWC), Sep 2008.

[23] Chi Cao Minh, Martin Trautmann, JaeWoong Chung,

Austen McDonald, Nathan Bronson, Jared Casper, Christos

Kozyrakis, and Kunle Olukotun. An effective hybrid trans-

actional memory system with strong isolation guarantees. In

ISCA, Jun 2007.

[24] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke

Yen, Mark D. Hill, Ben Liblit, Michael M. Swift, and David A.

Wood. Supporting nested transactional memory in LogTM.

In ASPLOS, Oct 2006.

[25] J. Eliot Moss and Antony L. Hosking. Nested transactional

memory: Model and preliminary architecture sketches. In

SCOOL, Oct 2005.

[26] Hany E. Ramadan, Christopher J. Rossbach, Owen Hof-

mann, and Emmett Witchel. Dependence-aware transactional

memory. Technical Report TR-07-58, University of Texas at

Austin, Computer Sciences Department, 2007.

[27] Hany E. Ramadan, Christopher J. Rossbach, and Emmett

Witchel. Dependence-aware transactions for increased con-

currency. InMICRO, Nov 2008.

[28] David P. Reed. Implementing atomic actions on decentral-

ized data. ACM TOCS, 1(1), 1981.

[29] Torvald Riegel, Christof Fetzer, and Pascal Felber. Snapshot

isolation for software transactional memory. In TRANSACT,

Jun 2006.

[30] Torvald Riegel, Heiko Sturzrehm, Pascal Felber, and Christof

Fetzer. From causal to z-linearizable transactional memory.

Technical Report RR-I-07-02.1, Universite de Neuchatel, In-

stitut d’Informatique, February 2007.

[31] Nir Shavit and Dan Touitou. Software transactional memory.

In PODC, Aug 1995.

[32] Travis Skare and Christos Kozyrakis. Early release: Friend or

foe? In Workshop on Transactional Memory Workloads, Jun

2006.

[33] Michael Spear, Virendra Marathe, Luke Dalessandro, and

Michael Scott. Privatization techniques for software transac-

tional memory. In PODC, Aug 2007.

