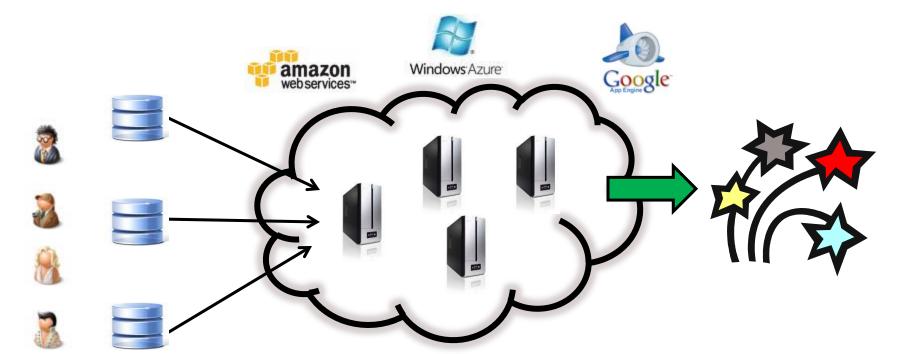
Airavat: Security and Privacy for MapReduce

Indrajit Roy, Srinath T.V. Setty, Ann Kilzer, Vitaly Shmatikov, Emmett Witchel

The University of Texas at Austin

Computing in the year 201X

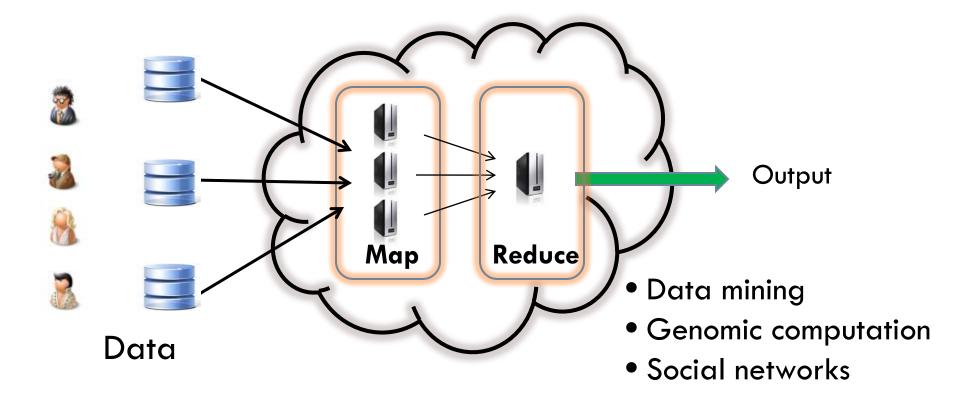


Data

Illusion of infinite resources
 Pay only for resources used
 Quickly scale up or scale down ...

Programming model in year 201X

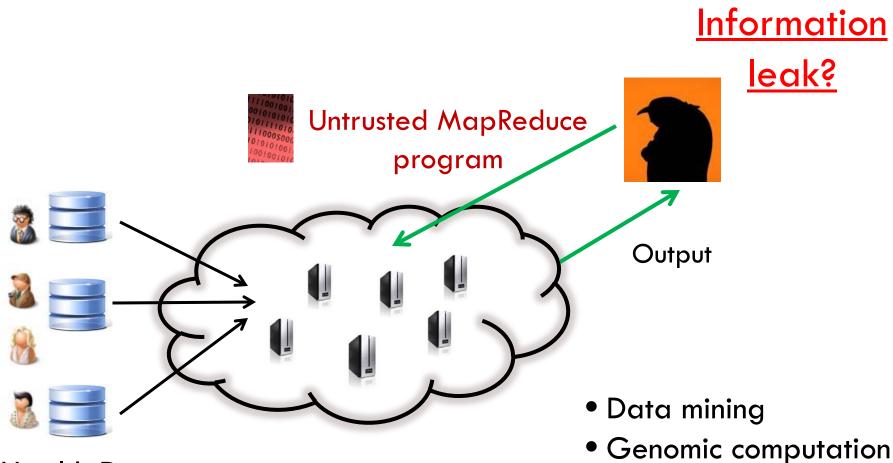
- 3
- Frameworks available to ease cloud programming
- MapReduce: Parallel processing on clusters of machines



Programming model in year 201X

- Thousands of users upload their data
 - Healthcare, shopping transactions, census, click stream
- Multiple third parties mine the data for better service
- Example: Healthcare data
- Incentive to contribute: Cheaper insurance policies, new drug research, inventory control in drugstores...
- Fear: What if someone targets my personal data?
 - Insurance company can find my illness and increase premium

Privacy in the year 201X ?



Health Data

Social networks

Use de-identification?

- Achieves 'privacy' by syntactic transformations
 - Scrubbing , k-anonymity ...
- Insecure against attackers with external information
 - Privacy fiascoes: AOL search logs, Netflix dataset

Run untrusted code on the original data?

How do we ensure privacy of the users?

Audit the untrusted code?

Audit all MapReduce programs for correctness?

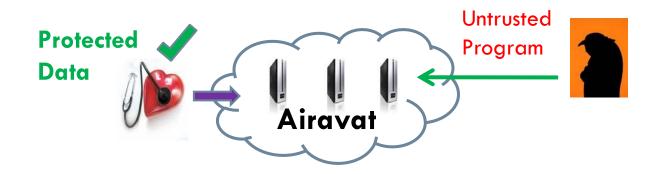
Aim: Confine the code instead of auditing

Hard to do! Enlightenment?

Also, where is the source code?

This talk: Airavat

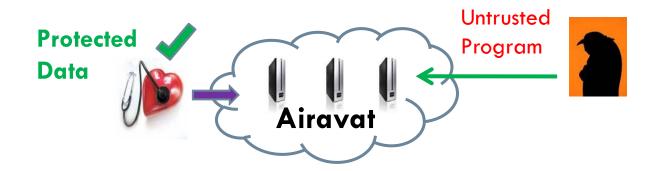
Framework for privacy-preserving MapReduce computations with untrusted code.



Airavat is the elephant of the clouds (Indian mythology).

Airavat guarantee

Bounded information leak* about any individual data after performing a MapReduce computation.



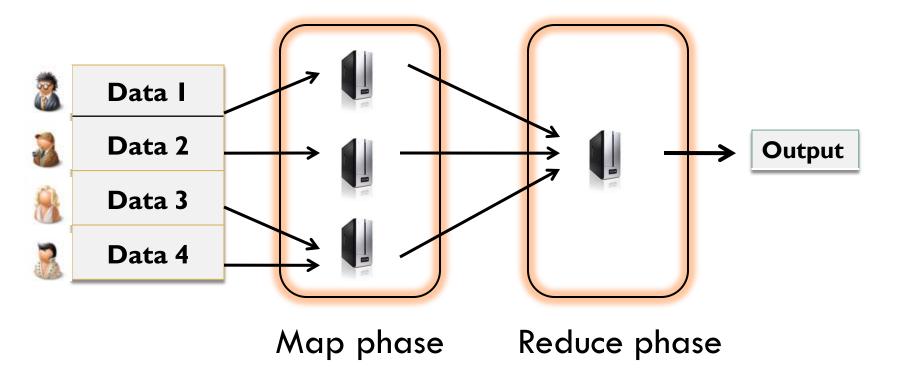
*Differential privacy

Outline

- Motivation
- □ Overview
- Enforcing privacy
- Evaluation
- Summary

Background: MapReduce

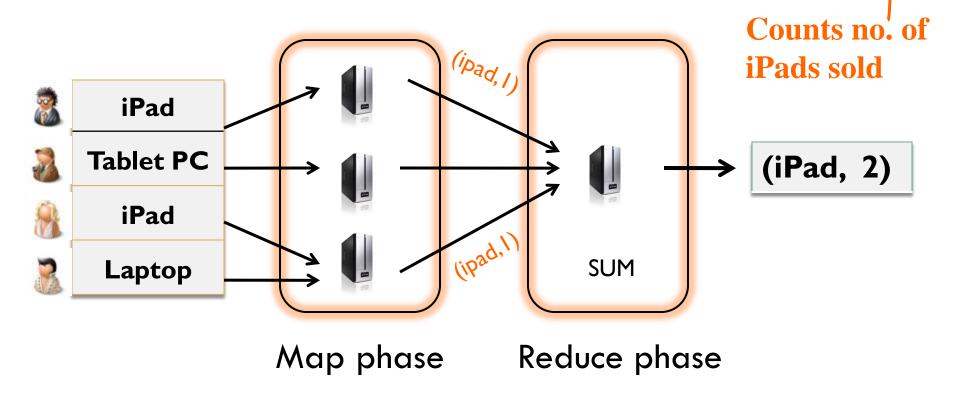




MapReduce example

12

Map(input)→{ if (input has iPad) print (iPad, I) } Reduce(key, list(v))→{ print (key + ","+ SUM(v)) }



Airavat model

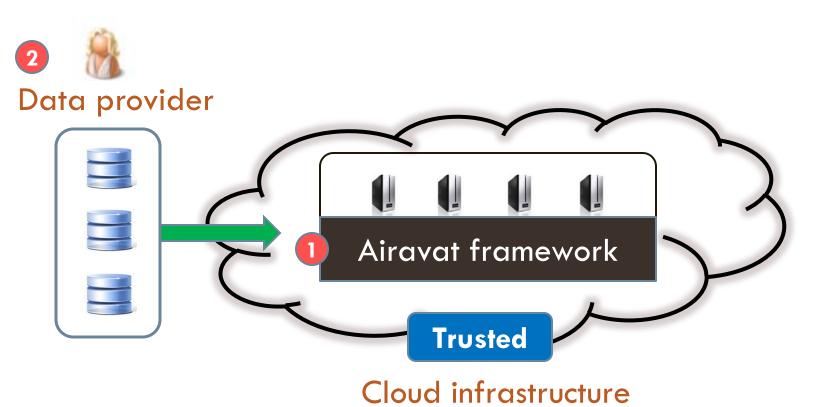
- □ Airavat framework runs on the cloud infrastructure
 - Cloud infrastructure: Hardware + VM
 - Airavat: Modified MapReduce + DFS + JVM + SELinux

Airavat model

14

Data provider uploads her data on Airavat

Sets up certain privacy parameters

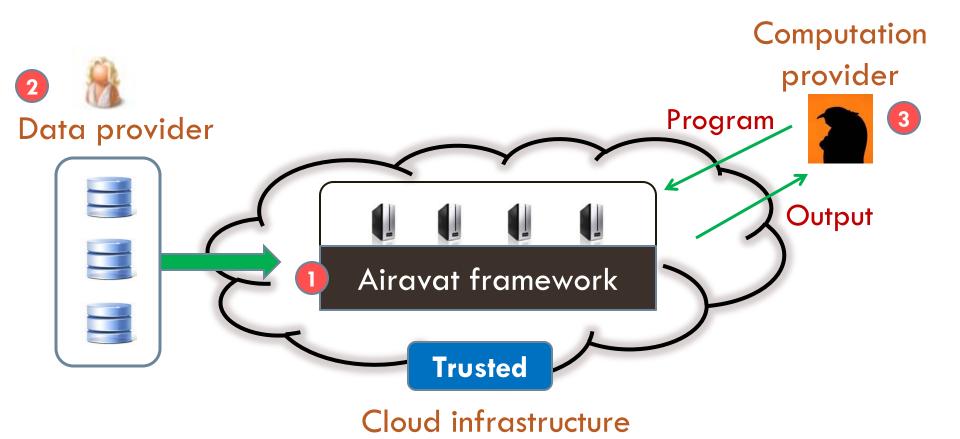


Airavat model

15

Computation provider writes data mining algorithm

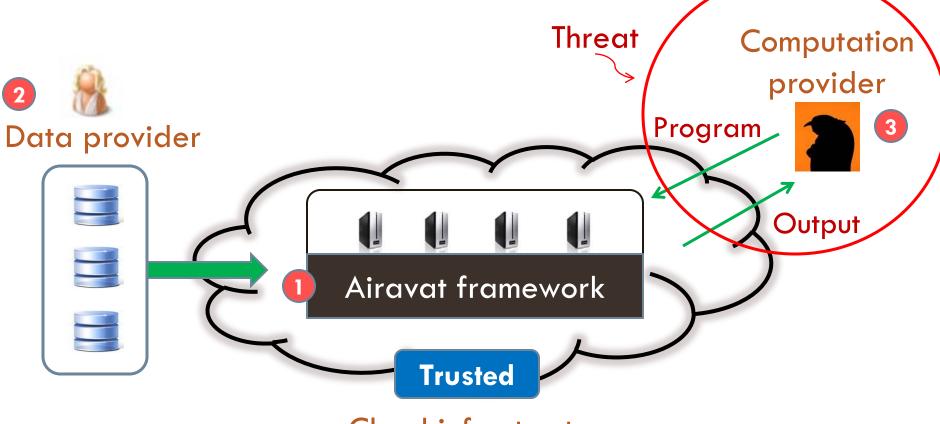
Untrusted, possibly malicious



Threat model

16

Airavat runs the computation, and still protects the privacy of the data providers



Cloud infrastructure

Roadmap

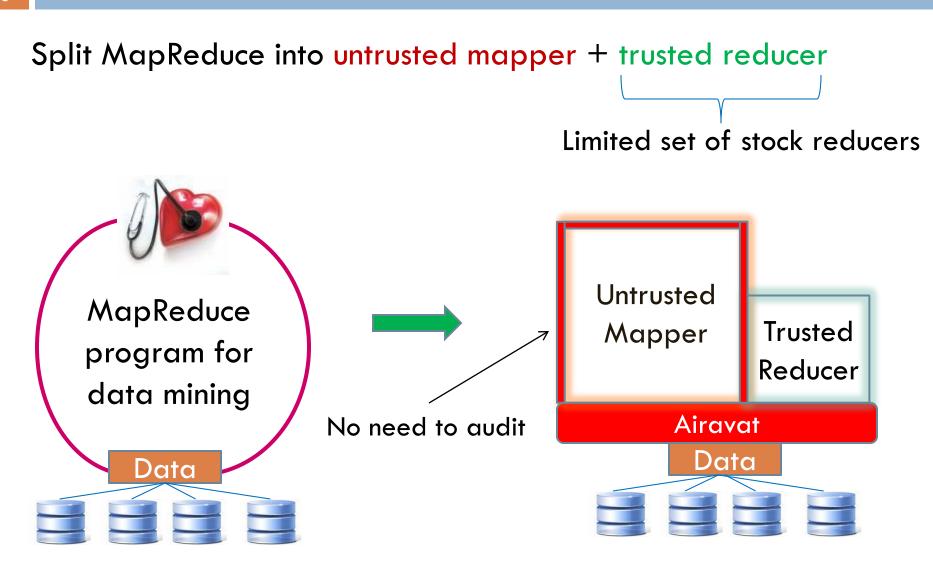
What is the programming model?

□ How do we enforce privacy?

What computations can be supported in Airavat?

Programming model

18

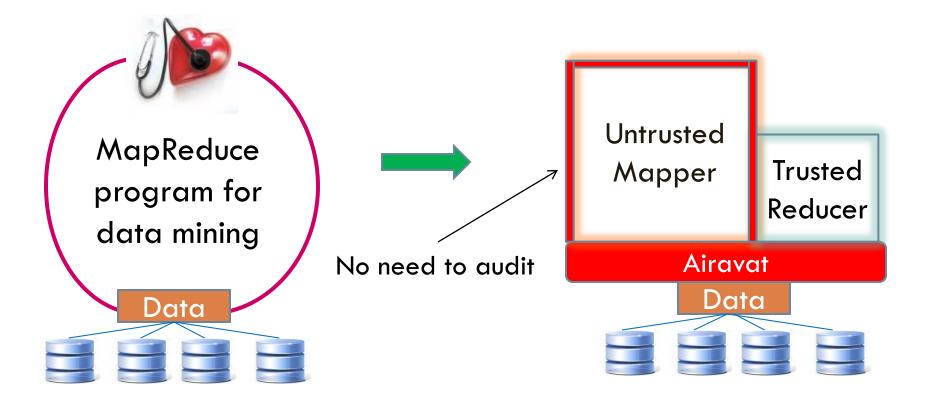


Programming model

19

Need to confine the mappers !

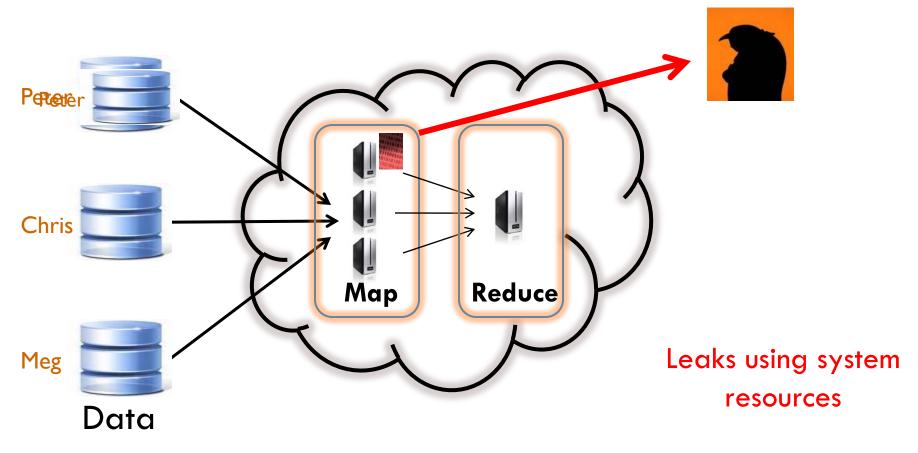
Guarantee: Protect the privacy of data providers



Challenge 1: Untrusted mapper

20

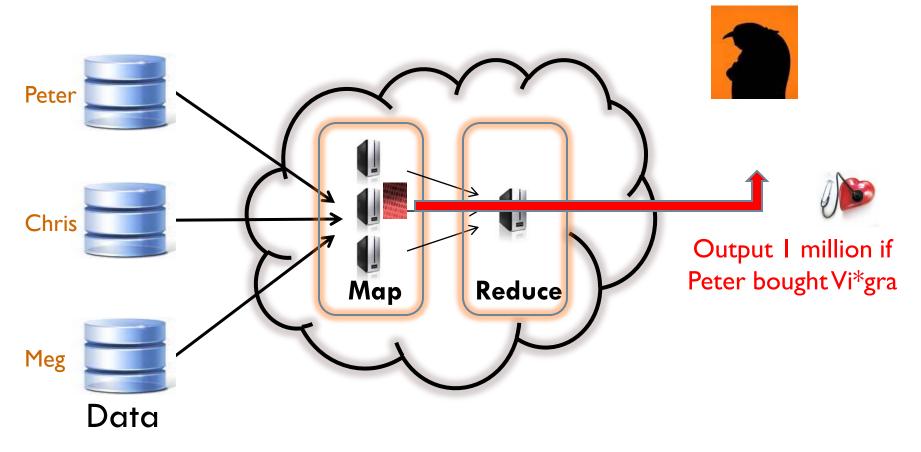
Untrusted mapper code copies data, sends it over the network



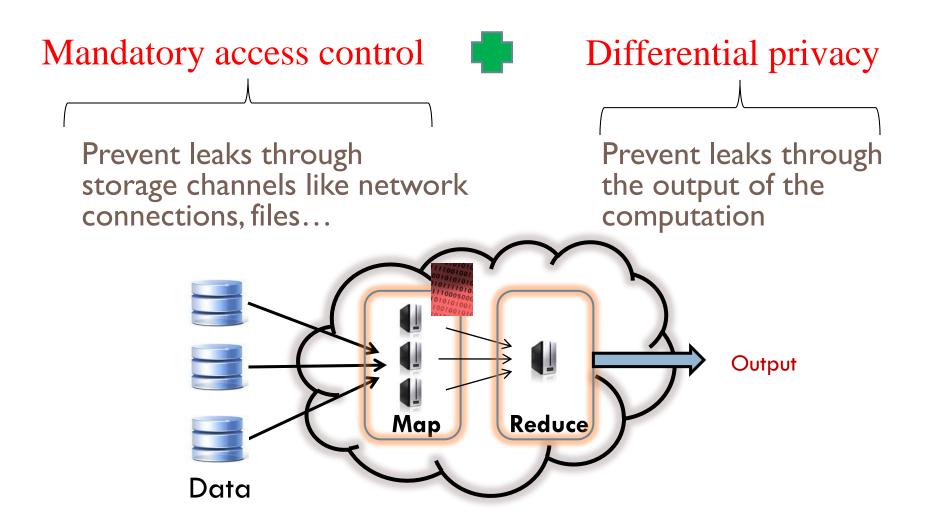
Challenge 2: Untrusted mapper

21

Output of the computation is also an information channel



Airavat mechanisms



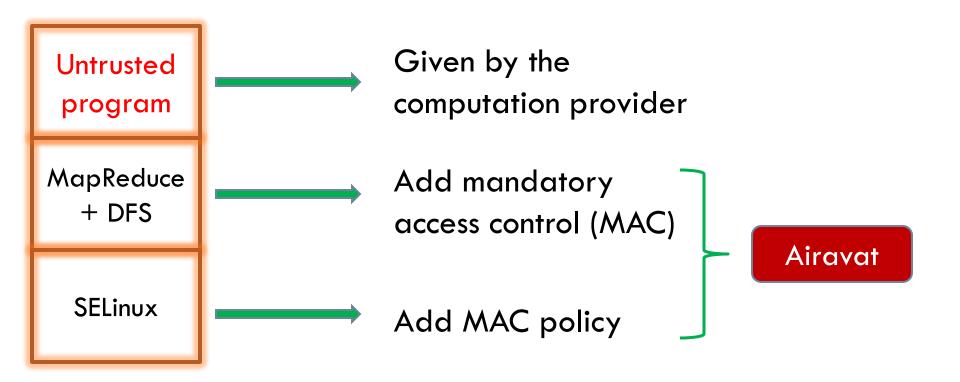
Back to the roadmap

What is the programming model?

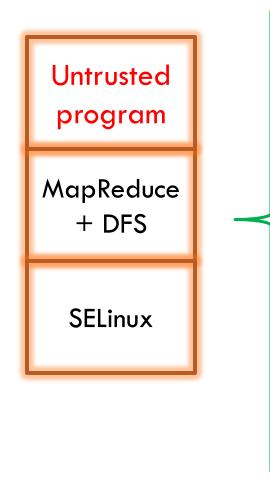
Untrusted mapper + Trusted reducer

- □ How do we enforce privacy?
 - Leaks through system resources
 - Leaks through the output
- What computations can be supported in Airavat?

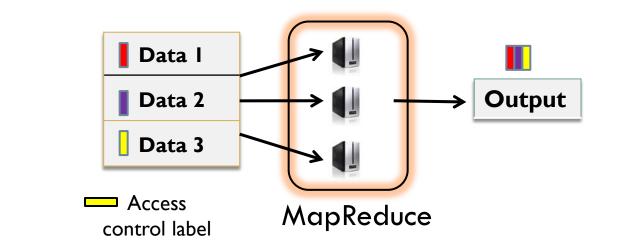
Airavat confines the untrusted code



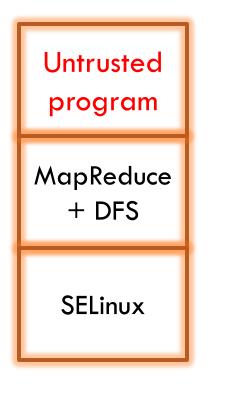
Airavat confines the untrusted code



- We add mandatory access control to the MapReduce framework
 - Label input, intermediate values, output
 - Malicious code cannot leak labeled data



Airavat confines the untrusted code

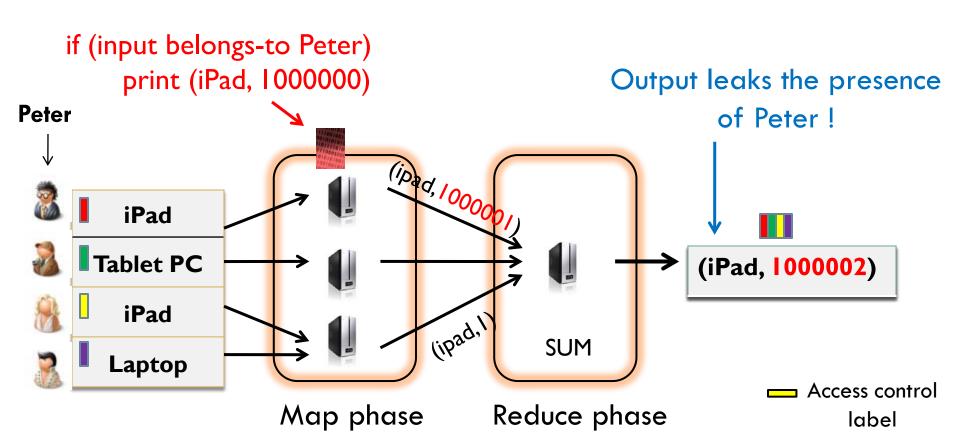


- SELinux policy to enforce MAC
 - Creates trusted and untrusted domains
 - Processes and files are labeled to restrict interaction
 - Mappers reside in untrusted domain
 - Denied network access, limited file system interaction

But access control is not enough

27

- Labels can prevent the output from been read
- When can we remove the labels?



But access control is not enough

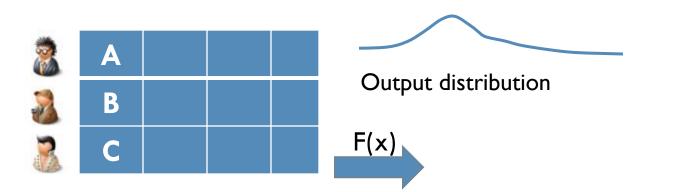
Need mechanisms to enforce that the output does not violate an individual's privacy.

Background: Differential privacy

A mechanism is differentially private if every output is produced with similar probability whether any given input is included or not

Differential privacy (intuition)

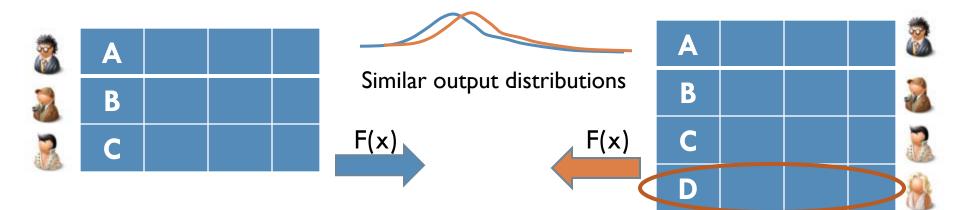
A mechanism is differentially private if every output is produced with similar probability whether any given input is included or not



Cynthia Dwork. Differential Privacy. ICALP 2006

Differential privacy (intuition)

A mechanism is differentially private if every output is produced with similar probability whether any given input is included or not

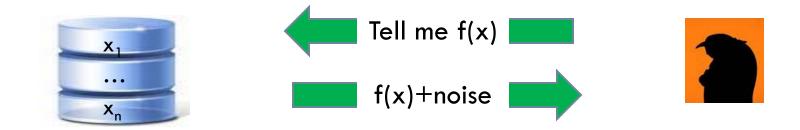


Bounded risk for D if she includes her data!

Cynthia Dwork. Differential Privacy. ICALP 2006

32

A simple differentially private mechanism



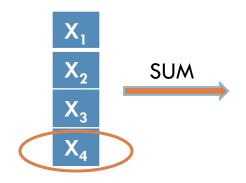
□ How much noise should one add?

- Function sensitivity (intuition): Maximum effect of any single input on the output
 - Aim: Need to conceal this effect to preserve privacy

- Example: Computing the average height of the people in this room has low sensitivity
 - Any single person's height does not affect the final average by too much
 - Calculating the maximum height has high sensitivity

Function sensitivity (intuition): Maximum effect of any single input on the output
 Aim: Need to conceal this effect to preserve privacy

Example: SUM over input elements drawn from [0, M]

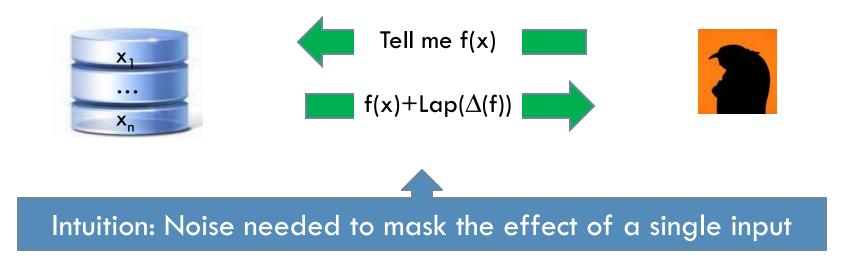


Sensitivity
$$= M$$

Max. effect of any input element is M

35

A simple differentially private mechanism



 $\Delta(f) = sensitivity$

Lap = Laplace distribution

Back to the roadmap

What is the programming model?

Untrusted mapper + Trusted reducer

- □ How do we enforce privacy?
 - Leaks through system resources
 - Leaks through the output

MAC

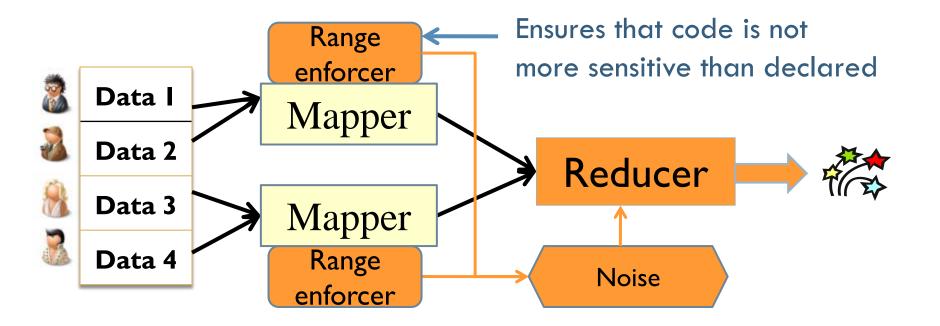
What computations can be supported in Airavat?

Enforcing differential privacy

- Mapper can be any piece of Java code ("black box") but...
- Range of mapper outputs must be declared in advance
 - Used to estimate "sensitivity" (how much does a single input influence the output?)
 - Determines how much noise is added to outputs to ensure differential privacy
- Example: Consider mapper range [0, M]
 - SUM has the estimated sensitivity of M

Enforcing differential privacy

- Malicious mappers may output values outside the range
- If a mapper produces a value outside the range, it is replaced by a value inside the range
 - User <u>not</u> notified... otherwise possible information leak



Enforcing sensitivity

All mapper invocations must be independent

- Mapper may not store an input and use it later when processing another input
 - Otherwise, range-based sensitivity estimates may be incorrect
- □ We modify JVM to enforce mapper independence
 - Each object is assigned an invocation number
 - JVM instrumentation prevents reuse of objects from previous invocation

Roadmap. One last time

40

What is the programming model?

Untrusted mapper + Trusted reducer

- How do we enforce privacy?
 - Leaks through system resources
 - Leaks through the output

What computations can be supported in Airavat?

What can we compute?

41

- Reducers are responsible for enforcing privacy
 - Add an appropriate amount of random noise to the outputs
- Reducers must be trusted
 - Sample reducers: SUM, COUNT, THRESHOLD
 - Sufficient to perform data mining algorithms, search log processing, recommender system etc.
- With trusted mappers, more general computations are possible
 - Use exact sensitivity instead of range based estimates

Sample computations

42

- Many queries can be done with untrusted mappers
 - How many iPads were sold today?
 - What is the average score of male students at UT?

 ... others require trusted mapper code
 List all items and their quantity sold
 Malicious mapper can encode information in item names

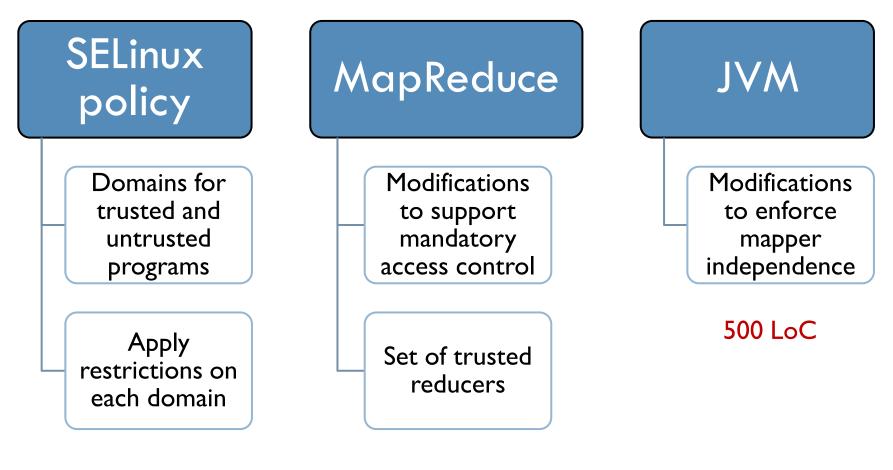
Revisiting Airavat guarantees

- Allows differentially private MapReduce computations
 - Even when the code is untrusted
- Differential privacy => mathematical bound on information leak
- What is a safe bound on information leak ?
 Depends on the context, dataset
 Not our problem

Outline

- Motivation
- □ Overview
- Enforcing privacy
- Evaluation
- Summary

Implementation details



450 LoC

5000 LoC

LoC = Lines of Code

Evaluation : Our benchmarks

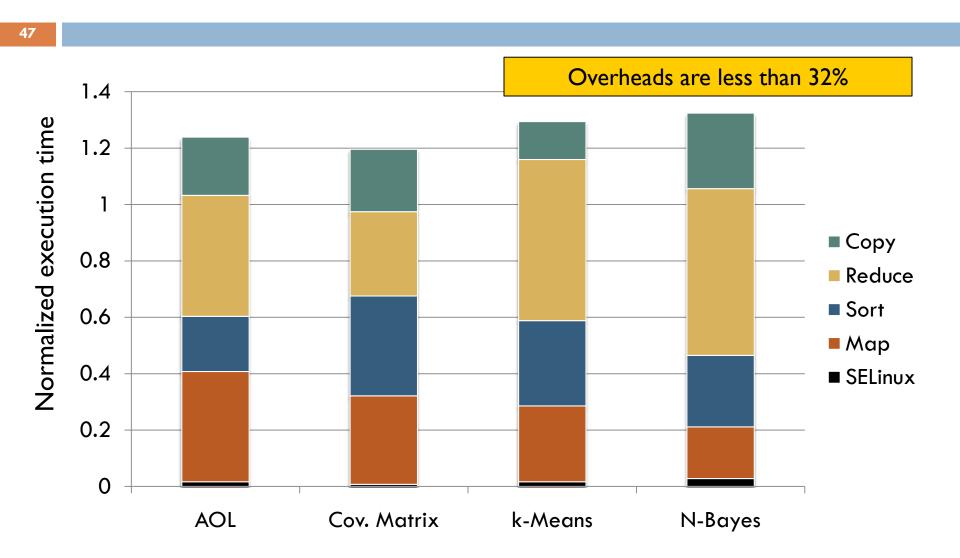
46

Experiments on 100 Amazon EC2 instances

1.2 GHz, 7.5 GB RAM running Fedora 8

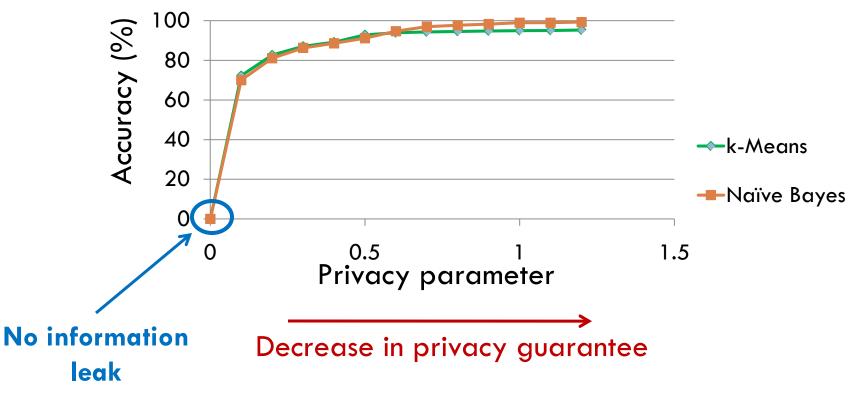
Benchmark	Privacy grouping	Reducer primitive	MapReduce operations	Accuracy metric
AOL queries	Users	THRESHOLD, SUM	Multiple	% queries released
kNN recommender	Individual rating	COUNT, SUM	Multiple	RMSE
K-Means	Individual points	COUNT, SUM	Multiple, till convergence	Intra-cluster variance
Naïve Bayes	Individual articles	SUM	Multiple	Misclassification rate

Performance overhead



Evaluation: accuracy

- □ Accuracy increases with decrease in privacy guarantee
- □ Reducer : COUNT, SUM



*Refer to the paper for remaining benchmark results

Related work: PINQ

- Set of trusted LINQ primitives
- Airavat confines untrusted code and ensures that its outputs preserve privacy
 - PINQ requires rewriting code with trusted primitives
- Airavat provides end-to-end guarantee across the software stack
 - PINQ guarantees are language level

Airavat in brief

- Airavat is a framework for privacy preserving MapReduce computations
- Confines untrusted code
- First to integrate mandatory access control with differential privacy for end-to-end enforcement

