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1. INTRODUCTION

GPUs have become the platform of choice for many types of parallel general-purpose
applications from machine learning to molecular dynamics simulations [NVIDIA 1.
However, harnessing GPUs’ impressive computing capabilities in complex software
systems like network servers remains challenging: GPUs lack software abstractions to
direct the flow of data within a system, leaving the developer with only low-level con-
trol over I/O. Therefore, certain classes of applications that could benefit from GPU’s
computational density require unacceptable development costs to realize their full per-
formance potential.

While GPU hardware architecture has matured to support general-purpose parallel
workloads, the GPU software stack has hardly evolved beyond bare-metal interfaces
(e.g., memory transfer via direct memory access (DMA)). Without core I/O abstrac-
tions like sockets available to GPU code, GPU programs that access the network must
coordinate low-level, machine-specific details among a CPU, GPU and a NIC, for exam-
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ple, managing buffers in weakly consistent GPU memory, or optimizing NIC-to-GPU
transfers via peer-to-peer DMAs.

This paper introduces GPUnet, a native GPU networking layer that provides a
socket abstraction and high-level networking APIs to GPU programs. GPUnet enables
individual threads in one GPU to communicate with threads in other GPUs or CPUs
via standard and familiar socket interfaces, regardless of whether they are in the same
or different machines. Native GPU networking cuts the CPU out of GPU-NIC interac-
tions, simplifying code and increasing performance. It also unifies application com-
pute and I/0O logic within the GPU program, providing a simpler programming model.
GPUnet uses advanced NIC and GPU hardware capabilities and applies sophisticated
code optimizations that yield high application performance equal to or exceeding hand-
tuned traditional implementations.

GPUnet is designed to foster GPU adoption in two broad classes of high-throughput
data center applications: network servers for back end data processing, e.g., media fil-
tering or face recognition, and scale-out distributed computing systems like MapRe-
duce. The requirements of high compute density, throughput and power efficiency
in such systems motivates using discrete high-end GPUs as the target platform for
GPUnet. Discrete GPUs are mounted on an expansion card with dedicated hardware
resources like memory. While discrete GPUs are broadly used in supercomputing sys-
tems, their deployment in data centers has been limited. We blame the added design
and implementation complexity of integrating GPUs into complex software systems;
consequently, GPUnet’s goal is to facilitate such integration.

Three essential characteristics make developing efficient network abstractions for
discrete GPUs challenging — massive parallelism, slow access to CPU memory, and
low single-thread performance. GPUnet accommodates parallelism at the API level by
providing coalesced calls invoked by multiple GPU threads at the same point in data-
parallel code. For instance, a GPU program computing a vector sum may receive input
arrays from the network by calling recv() in thousands of GPU threads. These calls
will be coalesced into a single receive request to reduce the processing overhead of the
networking stack. GPUnet uses recent hardware support for network transmission
directly into/from GPU memory to minimize slow accesses from the GPU to system
memory. It provides a reliable stream abstraction with GPU-managed flow control.
Finally, GPUnet minimizes control-intensive sequential execution on performance-
critical paths by offloading message dispatching to the NIC via remote direct memory
access (RDMA) hardware support. The GPUnet prototype supports sockets for network
communications over InfiniBand RDMA, and supports inter-process communication on
a local machine (often called UNIX-domain sockets).

We build a face verification server using the GPUnet prototype that matches im-
ages and interacts with memcached directly from GPU code, processing 53K client re-
quests/second on a single NVIDIA K20Xm GPU, exceeding the throughput of a 6-
core Intel CPU and a CUDA-based server by 1.5x and 2.3x respectively, while main-
taining 3x lower latency than the CPU and requiring half as much code than other
versions. We also implement a distributed in-GPU-memory MapReduce framework,
where GPUs fully control all of the I/O: they read and write files (via GPUfs [Silber-
stein et al. 2014a]), and communicate over Infiniband with other GPUs. This architec-
ture demonstrates the ability of GPUnet to support complex communication patterns
across GPUs, and for word count and K-means workloads it scales to four GPUs (over
a 40Gb Infiniband QDR network) providing speedups of 2.9-3.5x over one GPU.

This paper begins with the motivation for building GPUnet (5§2), a review of the GPU
and network hardware architecture (§3), and high-level design considerations(54). It
then makes the following contributions:
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— It presents for the first time a socket abstraction, API, and semantics suitable for
use with general purpose GPU programs (§5).

— It presents several novel optimizations for enabling discrete GPUs to control net-
work traffic (§6).

— It develops three substantial GPU-native network applications: a matrix product
server, in-GPU-memory MapReduce, and a face verification server (§7).

— It evaluates GPUnet primitives and entire applications including multiple work-
loads for each of the three application types (§8).

2. MOTIVATION

GPUs are widely used for accelerating parallel tasks in high-performance comput-
ing, and their architecture has been evolving to enable efficient execution of com-
plex, general-purpose workloads. However the use of GPUs in network servers or dis-
tributed systems poses significant challenges. The list of 200 popular general-purpose
GPU applications recently published by NVIDIA [NVIDIA ] has no mention of GPU-
accelerated network services. Using GPUs in software routers and SSL protocols [Jang
et al. 2011; Han et al. 2010; Sun and Ricci 2013], as well as in distributed appli-
cations [Coates et al. 2013] results in impressive speedups but requires significant
development efforts. Recent work shows that GPUs can boost power efficiency and
performance for web servers [Agrawal et al. 2014], but the GPU prototype lacked an
actual network implementation because GPU-native networking support does not yet
exist. We believe that enabling GPUs to access network hardware and the network-
ing software stack directly, via familiar network abstractions like sockets, will hasten
GPU integration in modern network systems.

GPUs currently require application developers to build complicated CPU-side code
to manage access to the host’s network. If an input to a GPU task is transferred over
the network, for example, the CPU-side code handles system-level I/O issues, such as
how to overlap data access with GPU execution and how to manage the size of memory
transfers. The GPU application programmer has to deal with bare-metal hardware is-
sues like setting up peer-to-peer (P2P) DMA over the PCle bus. P2P DMA lets the NIC
directly transfer data to and from high-bandwidth graphics double data rate (GDDR)
GPU local memory. Direct transfers between the NIC and GPU eliminate redundant
PClIe transfers and data copies to system memory, improving data transfer throughput
and reducing latency (§8.1). Enjoying the benefits of P2P DMA, however, requires inti-
mate knowledge of hardware-specific APIs and characteristics, such as the underlying
PClIe topology.

These issues dramatically complicate the design and implementation of GPU-
accelerated networking applications, turning their development into a low-level sys-
tem programming task. Modern CPU operating systems provide high-level I/O ab-
stractions like sockets, which eliminate or hide this type of programming complexity
from ordinary application developers. GPUnet is intended to do the same for GPU
programmers.

Consider an internal data center network service for on-demand face-in-a-crowd
photo labeling. The algorithm detects faces in the input image, creates face descrip-
tors, fetches the name label for each descriptor from a remote database, and returns
the location and the name of each recognized face in the image. This task is a perfect
candidate for GPU acceleration because some face recognition algorithms are an order
of magnitude faster on GPUs than on a single CPU core [Gupta 2013] and by connect-
ing multiple GPUs, server compute density can be increased even further. Designing
such a GPU-based service presents several system-level challenges.

No GPU network control. A GPU cannot initiate network I/O from within a GPU
kernel. Using P2P DMA, the NIC can place network packets directly in local GPU
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memory, but only CPU applications control the NIC and perform send and receive. In
the traditional GPU-as-coprocessor programming model, a CPU cannot retrieve partial
results from GPU memory while a kernel producing them is still running. Therefore, a
programmer needs to wait until all GPU threads terminate in order to request a CPU
to invoke network I/0O calls. This awkward model effectively forces I/O to occur only on
GPU kernel invocation boundaries. In our face recognition example, a CPU program
would query the database soon after detecting even a single face, in order to pipeline
continued facial processing with database queries. Current GPU programming models
make it difficult to achieve this kind of pipelining because GPU kernels must complete
before they perform I/O. Thus, all the database queries will be delayed until after the
GPU face detection kernel terminates, leading to increased response time.

Complex multi-stage pipelining. Unlike in CPUs, where operating systems use
threads and device interrupts to overlap data processing and I/0, GPU code tradition-
ally requires all input to be transferred in full to local GPU memory before process-
ing starts. To overlap data transfers and computations, optimized GPU designs use
pipelining: they split inputs and outputs into smaller chunks, and asynchronously in-
voke the kernel on one chunk, while simultaneously transferring the next input chunk
to the GPU, and the prior output chunk from the GPU. While effective for GPU-CPU
interaction, pipelines can quickly grow into a complex multi-stage data flow involving
GPU-CPU data transfers, GPU invocations and processing of network events. In addi-
tion to the associated implementation complexity, achieving high performance requires
tedious tuning of buffer sizes which depend on a particular generation of hardware.

Complex network buffer management. If P2P DMA functionality is available,
CPU code must set up the GPU-NIC DMA channel by pre-allocating dedicated GPU
memory buffers and registering them with the NIC. Unfortunately, these GPU buffers
are hard to manage because the network transfers are controlled by a CPU. For ex-
ample, if the image data exceeds the allocated buffer size, the CPU must allocate and
register another GPU buffer (which is slow and may exhaust NIC or GPU hardware
resources), or the buffer must be freed by copying the old contents to another GPU
memory area. GPU code must be modified to cope with input stored in multiple buffers.
While on a CPUj, the networking API hides system buffer management details and lets
the application determine the buffer size according to its internal logic rather than
GPU and NIC hardware constraints.

GPUnet aims to address these challenges. It exposes a single networking abstraction
across all processors in the system and provides a standard, familiar API, thereby
simplifying GPU development and facilitating the integration of GPU programs into
complex software systems.

3. HARDWARE ARCHITECTURE OVERVIEW

We provide an overview of the GPU software/hardware model, RDMA networking and
peer-to-peer (P2P) DMA concepts. We use NVIDIA CUDA terminology because we
implement GPUnet on NVIDIA GPUs, but most other GPUs that support the cross-
platform OpenCL standard [Group ] share the same concepts.

3.1. GPU software/hardware model

GPUs are parallel processors that expose programmers to hierarchically structured
hardware parallelism (for full details see [Kirk and Wen-mei 2010]). They comprise
several big cores, Streaming Multiprocessors (SMs), each having multiple hardware
contexts and several Single Instruction, Multiple Data (SIMD) units. All the SMs ac-
cess global GPU memory and share an address space.

The programming model associates a GPU thread with a single element of a SIMD
unit. Threads are grouped into threadblocks and all the threads in a threadblock are
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Fig. 1. Receiving network messages into a GPU. Without P2P DMA, the CPU must use a GPU DMA engine
to transfer data from the CPU bounce buffer.

executed on the same SM. The threads within a threadblock may communicate and
share state via on-die shared memory and synchronize efficiently. Synchronization
across threadblocks is possible but it is much slower and limited to atomic operations.
Therefore, most GPU workloads comprise multiple loosely-coupled tasks each running
in a single threadblock. Each task in a threadblock is parallelized for tightly-coupled
parallel execution by the threads of the threadblock. Once a threadblock has been dis-
patched to an SM, the scheduled threadblock cannot be preempted and occupies that
SM until all of the threadblock’s threads terminate !.

The primary focus of this work is on discrete GPUs, which are peripheral devices
connected to the host system via a standard PCI Express (PCle) bus. Discrete GPUs
feature their own physical memory on the device, with a separate address space that
cannot be referenced directly by CPU programs. Moving data in and out of GPU mem-
ory efficiently requires DMA.2 The CPU prepares the data in GPU memory, invokes a
GPU kernel, and retrieves the results after the kernel terminates.

Interaction with I/0 devices. P2P DMA refers to the ability of peripheral devices
to exchange data on a bus without sending data to a CPU or system memory. Mod-
ern discrete GPUs support P2P DMA between GPUs themselves, and between GPUs
and other peripheral devices on a PCle bus, e.g., NICs. For example, the Mellanox
Connect-IB network card (HCA) is capable of transferring data directly to/from the
GPU memory of NVIDIA K20 GPUs (see Figure 1). P2P DMA improves the through-
put and latency of GPU interaction with other peripherals because it eliminates an
extra copy to/from bounce buffers in CPU memory, and reduces load on system mem-
ory [Potluri et al. 2013b; Potluri et al. 2013a].

RDMA and Infiniband. Remote Direct Memory Access (RDMA) allows remote peers
to read from and write directly into application buffers over the network. Multiple
RDMA-capable transports exist, such as Internet Wide Area RDMA Protocol (WARP),
Infiniband and RDMA over Converged Ethernet (RoCE). As network data transfer
rates grow, RDMA-capable technologies have been increasingly adopted for in-data
center networks, enabling high-throughput and low-latency networking, surpassing
legacy Ethernet performance and cost efficiency [analysts 2012]. For example, the
state-of-the-art fourteen data rate (FDR) Infiniband provides 56Gbps throughput and
sub-microsecond latency, with the 40Gbps quad data rate (QDR) technology widely
deployed since 2009. Infiniband is broadly used in supercomputing systems and enter-
prise data centers, and analysts anticipate significant growth in the coming years.

1Recent NVIDIA GPUs enable a threadblock to invoke another GPU kernel, which under the hood might
result in preempting the running threadblock to free hardware resources for the new kernel. However, there
is no API that allows preemption directly.

2NVIDIA CUDA 6.0 provides CPU-GPU software shared memory for automatic data management, but the
data transfer costs remain.
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An Infiniband NIC is called a Host Channel Adapter (HCA) and like other RDMA
networking hardware, it performs full network packet processing in hardware, enables
zero-copy network transmission to/from application buffers, and bypasses the OS ker-
nel for network API calls.

The HCA efficiently dispatches thousands [Association 2007] of network buffers, reg-
istered by multiple applications. In combination with P2P DMA, the HCA may access
application buffers in GPU memory. RDMA functionality is exposed via a low-level
VERB interface which is not easy to use. Instead, system software uses VERBs to im-
plement higher-level data transfer abstractions. For example, the rsockets [Sean Hefty
2012] library provides a familiar socket API in user-space for the RDMA transport.
Rsockets are a drop-in replacement for sockets (via LD_PRELOAD), providing a sim-
ple path for networking over RDMA.

4. DESIGN CONSIDERATIONS

There are many alternative designs for GPU networking; this section discuses impor-
tant high-level trade-offs.

4.1. Sockets and alternatives

The GPUnet interface uses sockets; we believe sockets are appropriate for a GPU-
centric communication abstraction because they are standard, general, familiar, and
convenient to use.

Sockets are a versatile abstraction and they are currently used by a diverse set of ap-
plications. Since their inception in 4.2 BSD (1989), sockets have been the API of choice
for various types of communication [Stevens 1993; Stevens et al. 2004]. The socket API
remains valuable for a variety of communication tasks as evidenced by the number of
address families supported by the socket interface. Linux has added support for more
socket address families over time, from 13 in kernel version 2.0.40 (released in June
1996), 35 in version 2.6.35 (in August 2011), to 39 in version 4.0 (in April 2015). Each
address family represents a particular way applications use the socket interface, e.g.,
UNIX domain sockets allow local processes to communicate (AF_UNIX), Internet sockets
support wide-area communication (AF_INET, AF_INET6), and some sockets provide wire-
less communication (AF_BLUETOOTH, AF_IRDA) or communication for security features
like key management (AF_KEY). Address families added between Linux kernel 2.6.35
and 4.0 show new types of applications embracing the socket interface, for example
Infiniband (AF_IB), near-field communication (AF_NFC), virtualization stack (AF_VSOCK),
and the cryptographic API used in dm-crypt and OpenSSL (AF_ALG).

We also considered several alternatives to sockets. For example, remote direct mem-
ory access (RDMA) is usually performed via the VERBs API, but this API is notoriously
difficult to use [Trivedi et al. 2013]. Message Passing Interface (MPI) [Network-Based
Computing Laboratory 2015] provides a high-level message passing API widely used
in high-performance computing systems for building parallel applications, but it is
quite uncommon in other networking applications such as network servers. GPUnet
aims to support a broad range of server-side network services, striking the balance
between the simplicity and generality by providing the high-level reliable streaming
abstraction and the low-level versatile socket APL.

While recent efforts to improve the network performance in modern multi-core com-
puters proposed several changes to the socket design and implementation [Han et al.
2012; Shalev et al. 2010], sockets are currently the most commonly used standard
interface for networking, and serve as a reasonable first step toward providing net-
working capabilities in GPU programs.
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Fig. 2. The architecture of a network server on a CPU, using a GPU as a co-processor, and with GPUnet
(daemon architecture).

4.2. Discrete GPUs

We develop GPUnet for discrete GPUs, which can fulfill the high performance require-
ments of data center server systems. GPUs integrated on Aybrid CPU-GPU processors
and system-on-chip designs are also gaining market share in low-end computer de-
vices (e.g., Intel graphics, AMD APUs, NVIDIA Tegra, and Qualcomm Snapdragon.)
Compared to discrete GPUs, these hybrid GPUs are more tightly integrated with the
CPU and therefore embody different tradeoffs between power consumption, production
costs and system performance. As a result, some of the GPUnet design choices suitable
for discrete GPUs, like the use of the network adapter for transport layer processing,
might require revision in order to fit hybrid systems which have enhanced low-latency
CPU-GPU communication.

We believe, however, that discrete and hybrid GPUs will continue to co-exist for
years to come. The aggressive, throughput-optimized hardware designs of discrete
GPUs rely heavily on a multi-billion transistor budget, tight integration with special-
ized high-throughput memory, and increased thermal design power (TDP). Therefore,
discrete GPUs outperform hybrid GPUs by an order of magnitude in compute capacity
and memory bandwidth, making them attractive for the data center, and therefore a
reasonable choice for prototyping GPU networking support.

4.3. Network server organization

Figure 2 depicts different organizations for a multithreaded network server. In a
CPU server (left), a daemon thread accepts connections and transfers the socket to
worker threads. In a traditional GPU-accelerated network server (middle) the worker
threads invoke computations on a GPU. GPUs are treated as bulk-synchronous high-
performance accelerators, so all of the inputs are read on the CPU first and transferred
to the GPU across a PCle bus. This design requires large batches of work to amortize
CPU-GPU communications and invocation overheads, which otherwise dominate the
execution time. For example, SSLShader [Jang et al. 2011] needs 1,024 independent
network flows on a GTX580 GPU to surpass the performance of 128-bit AES-CBC en-
cryption of a single AES-NI enabled CPU. Batching complicates the implementation,
and leads to increased response latency, because GPU code does not communicate with
clients directly.
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Fig. 3. The logical stages for a task processed on a GPU-accelerated CPU server (top) and GPU-native
network server(bottom). Highlighted stages are eliminated by the GPU networking support.

GPUnet makes it possible for GPU servers to handle multiple independent requests
without having to batch them first (far right in Figure 2), much like multitasking in
multi-core CPUs. We call this organization the daemon architecture. It is also possi-
ble to have a GPUnet server where each threadblock acts as an independent server,
accepting, computing, and responding to requests. We call this the independent archi-
tecture. We measure both in §8.

GPUnet changes the tradeoffs a designer must consider for a networked service be-
cause GPUnet removes the need to batch work so heavily, thereby greatly simplifying
the programming model. We hope this model will make the computational power of
GPUs more easily accessible to networked services, but it will require the development
of native GPU programs 2.

4.4. In-GPU networking performance benefits

A native GPU networking layer can provide significant performance benefits for build-
ing low-latency servers on modern GPUs, because it eliminates the overheads associ-
ated with the standard programming model of using GPUs as accelerators.

Figure 3 illustrates the flow of a server request on a traditional GPU-accelerated
server (top), and compares it to the flow on a server using GPU-native networking
support. In-GPU networking eliminates the overheads of CPU-GPU data transfer and
kernel invocation, which penalize short requests. For example, computing the matrix
product of two 64x64 matrices on a TESLA K20c GPU requires about 14usec of com-
putation. In comparison, we measure GPU kernel invocation requiring an average of
25usec and CPU-GPU-CPU data transfers for this size input average 160usecs.

In-GPU networking may eliminate the kernel invocation entirely, and provides a
convenient interface to network buffers in GPU memory. One potential caveat, how-
ever, is that I/O activity on a GPU reduces the GPU’s computing capacity, because
unlike in CPUs, GPU I/O calls do not relinquish the GPU’s resources, as we discuss
in Section 8. Future hardware support for coarse-grain preemption mechanisms may
alleviate this limitation [L. Zeno, M. Silberstein 2016].

5. GPUNET DESIGN

Figure 4 shows the high-level architecture of GPUnet. GPU programs can access the
network via standard socket abstractions provided by the GPUnet library, linked into
the application’s GPU code. CPU applications may use standard sockets to connect to

3Unlike traditional GPU-accelerated programs where computations are offloaded to a GPU from the main
CPU process that runs the bulk of the program logic, native GPU programs are self-sufficient, contain no
CPU code and run almost entirely on a GPU.
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Fig. 4. GPUnet high-level design.

remote GPU sockets. GPUnet stores network buffers in GPU memory, keeps track of

active connections, and manages control flow for the network streams associated with

the sockets. The GPUnet library works with the host OS on the CPU via a GPUnet I/O

proxy to coordinate GPU access to the NIC and to the system’s network port names-

pace.
Our goals for GPUnet include the following:

(1) Simplicity. Enable common network programming practices and provide a stan-
dard socket API and an in-order reliable stream abstraction to simplify program-
ming and leverage existing programmer expertise.

(2) Compatibility with GPU programming. Support common GPU programming
idioms like threadblock-based task parallelism and using on-chip scratchpad mem-
ory for application buffers.

(3) Compatibility with CPU endpoints. A GPUnet network endpoint has identical
capabilities as a CPU network endpoint, ensuring compatibility between networked
services on CPUs and GPUs.

(4) NIC sharing. Enable all GPUs and CPUs in a host to share the NIC hardware,
allowing concurrent use of a NIC by both CPU and GPU programs.

(5) Namespace sharing. Share a single network namespace (ports, IP addresses,
UNIX domain socket names) among CPUs and GPUs in the same machine to ensure
backward compatibility and interoperability of CPU- and GPU-based networking
code.

5.1. GPU networking API

Socket abstraction. GPUnet sockets are similar to CPU sockets. As in a CPU, a GPU
thread may open and use multiple sockets concurrently and GPU sockets are shared
across all GPU threads. GPUnet supports the main calls in the standard network API,
including connect, bind, listen, accept, send, recv, sendto, recvfrom, shutdown, and
close and their non-blocking versions. In the paper and in the actual implementation
we add a “g” prefix to emphasize that the code executes on a GPU. These calls work
similarly to sockets on the CPUs, though we introduce coalesced multithreaded API
calls as we now explain.

Coalesced API calls. A traditional CPU network API is single-threaded, i.e., each
thread can make independent API calls and receive independent results. GPU threads,
however, behave differently from CPU threads. They are orders of magnitude slower,
and the hardware is designed to run groups of threads (e.g. 32 in an NVIDIA warp or
64 in an AMD wavefront) in lock-step, performing poorly if these threads execute diver-
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increment by one_server(int csoc)

{
//buffer shared by all threadblock threads
_ shared__ float buf[NUM THREADS];
size_t len=NUM THREADS*sizeof(float);
//collaborative recv into buf
grecv(csoc, buf, len);
//data parallel code per thread
//thread_id provided by GPU hardware
buf[thread id]++;
//collaborative send from buf
gsend(csoc, buf, len);

»

Fig.5. A GPU network server that receives an array, increments every element by one, and sends the result
back. The kernel is invoked with NUM_THREADS per threadblock.

gent control paths. GPU hardware facilitates collaborative processing inside a thread-
block by providing efficient sharing and synchronization primitives for the threads in
the same threadblock. GPU programs, therefore, are designed with hierarchical paral-
lelism in mind: they exploit coarse-grain task parallelism across multiple threadblocks,
and process a single task using all the threads in a threadblock jointly, rather than in
each thread separately. Performing data-parallel API calls in such code is more natural
than the traditional per-thread API used in CPU programs. Furthermore, networking
primitives tend to be control-flow heavy and often involve large copies between system
and user memory buffers (e.g., recv and send), making per-threadblock calls superior
to per-thread granularity.

GPUnet requires applications to invoke its API at the granularity of a single thread-
block. All threads in a threadblock must invoke the same GPUnet call together in a
coalesced manner: with the same arguments, at the same point in application code
(similar to vectorized I/O calls [Vasudevan et al. 2012]). These collaborative calls to-
gether comprise one logical GPUnet operation. This idea was inspired by a similar
design for the GPU file system API [Silberstein et al. 2013].

We illustrate coalesced calls in Figure 5. It shows a simple GPU server which in-
crements each received character by one and sends the results back. All GPU threads
invoke the same code, but each threadblock executes it independently from others. The
threads in a threadblock collaboratively invoke the GPUnet functions to receive/send
the data to/from a shared buffer, but perform computations independently in a data-
parallel manner. The GPUnet functions are logically executed in lockstep.

Currently, GPUnet sockets cannot be migrated to processes running on other GPUs
or CPUs in the same host. Socket migration might be desirable, however, for cases
where program logic or data is distributed across multiple processors, e.g. in a pro-
cessing pipeline or in case of data sharding between GPUs and CPUs. We leave the
implementation of inter-processor socket migration for future work.

5.2. GPU-NIC interaction

Building a high-performance GPU network stack requires offloading non-trivial packet
processing to NIC hardware.

The majority of existing GPU networking projects (with the notable exception of
the GASPP packet processing framework [Vasiliadis et al. 2014]) employ the CPU OS
network stack with network buffers in CPU memory, and the application explicitly
moving data to and from the GPU. Accelerated network applications, like SSL protocol
offloading [Jang et al. 2011], cannot operate on raw packets and first require transport-
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level processing by a CPU. However, the CPU-GPU memory transfers inherent in the
CPU-side processing approach are detrimental to application performance, as we show
in our evaluation.

P2P DMA allows network buffers to reside in GPU memory. However, forwarding
all network traffic to a GPU would render the NIC unusable for processes running on
a CPU and on other GPUs in the system. Further, having a GPU receive and process
raw network packets makes it difficult to provide a reliable in-order socket abstraction
without porting major parts of the CPU network stack to the GPU. Efficiently process-
ing raw packets on a GPU would require thousands of packets to be batched in order to
hide the overheads of the control-heavy and memory intensive code inherent to packet
processing [Vasiliadis et al. 2014].

To bypass CPU memory, eliminate packet processing, and enable NIC shar-
ing across different processors in the system, we leverage RDMA-capable, high-
performance NICs. The NIC performs all low-level packet management tasks, assem-
bles application-level messages and stores the messages directly in application mem-
ory, ready to be delivered to an application memory buffer without additional process-
ing. The NIC can concurrently dispatch messages to multiple buffers and multiple ap-
plications, while placing source and destination buffers in both CPU and GPU memory.
As a result, multiple CPU and GPU applications share the NIC without coordinating
their access to the hardware for every data transfer.

GPUnet uses both a CPU and a GPU to interact with the NIC. It stores network
buffers for GPU applications in GPU memory, and leaves the buffer memory manage-
ment to the GPU socket layer. The per-connection receive and send queues are also
managed by the GPU. On the other hand, the CPU controls the NIC via a standard
host driver, keeping the NIC available to all system processors. In particular, GPUnet
uses the standard CPU interface to initialize the GPU network buffers and to register
GPU memory with the NIC’s DMA hardware.

5.3. Socket layer

The GPU socket layer implements the reliable in-order stream abstraction over low-
level network buffers and reliable RDMA message delivery. We adopt an RDMA term
channel to refer to the RDMA connection. The CPU processes all channel creation re-
lated requests (e.g., bind), allowing GPU network applications to share the OS network
namespace with CPU applications. Once the channel has been established, however,
the CPU steps out of the way, allowing the GPU socket to manage the network buffers
as it sees fit. Using the CPU for channel creation allows GPU network applications to
share the OS network namespace with CPU applications.

Mapping streams to channels. GPUnet maps streams one-to-one onto RDMA chan-
nels. A channel is a low-level message-oriented RDMA connection which provides
reliable in-order message delivery into application memory buffers. To implement a
streaming abstraction on top of it, GPUnet must provide flow control described in Sec-
tion 6.1%. The socket keeps track of the amount of available space in the receiver’s
receive buffer. If there is no free space left the send call blocks. The receiver side noti-
fies when the received data is consumed by an application, allowing the blocked send
to proceed.

By associating each socket with a channel and its private, fixed-sized send and re-
ceive buffers, there is no sharing between streams and hence no costly synchronization.
Per-stream channels allow GPUnet to offload message dispatch to the highly scalable

“While the Infiniband transport layer has its own flow control for each message, our mechanism enables
end-to-end flow control for each data stream.
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Fig. 6. GPUnet network stack.

NIC hardware. The NIC is capable of maintaining a large number of channels associ-
ated with one or more memory buffers.?

We considered multiplexing several streams over a single channel, similar to
SST [Ford 2007], which could improve network buffer utilization and increase PCle
throughput due to the increased granularity of memory transfers. We dismissed this
design because handling multiple streams over the same channel would require syn-
chronization of concurrent accesses to the same network buffer, which is slow and
complicates the implementation. The buffer sharing may also require an extra mem-
ory copy of stream contents into a private per-stream temporary buffer, for example,
if the data is not consumed by all the streams at once, thereby potentially reducing
system performance. Finally, this design is not compatible with existing CPU socket
libraries like rsockets for performing streaming over RDMA.

Naming and address resolution. GPUnet relies on the CPU standard name resolu-
tion mechanisms for RDMA transports (CMA) which provide IP-based addressing for
RDMA services to initiate the connection. Therefore unmodified clients may identify
GPUnet hosts using domain names and IP addresses as usual.

Wire protocol and congestion control. GPUnet uses reliable RDMA transport services
provided by the NIC hardware and therefore relies on the underlying transport packet
management and congestion control.

6. IMPLEMENTATION

We implement GPUnet for NVIDIA GPUs and use Mellanox Infiniband Host Channel
Adaptors (HCA) for inter-GPU networking [Silberstein et al. 2014b].

The stream sockets of GPUnet follow a layered design as shown in Figure 6. The
lowest layer exposes a reliable channel abstraction to upper layers and its implemen-
tation depends on the underlying transport. We currently support RDMA, UNIX do-
main sockets and TCP/IP. There are components that run on both CPU and GPU. The
middle socket layer implements a reliable, in-order, connection-based stream abstrac-
tion on top of each channel. It manages flow control for the network buffers associated
with each connection. Finally, the top layer implements the blocking and non-blocking
versions of standard socket API for the GPU.

SMillions for Mellanox Connect-IB, according to Mellanox Solution Brief http:/www.mellanox.com/
related-docs/applications/SB_Connect-IB.pdf
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6.1. Socket layer

GPUnet’s socket interface is compatible with and builds upon the open-source rsock-
ets [Sean Hefty 2012] library for a socket-compatible interface over RDMA for CPUs.
Rsockets is a drop-in replacement for sockets (via LD_PRELOAD) which provides a
simple way to use RDMA over Infiniband. GPUnet extends the library to use network
buffers in GPU memory and integrates a GPU-based flow control mechanisms.

GPUnet maintains a private socket table in GPU memory. Each active socket is asso-
ciated with a single reliable transport channel and holds the flow-control metadata for
its receive and send buffers. The primary task of the socket layer is to implement the
reliable stream abstraction, which requires flow control management as we describe
next.

Flow control. Flow control allows the sender to block if the receiver’s network buffer
is full. Therefore, an implementation requires the receiver to update the sender upon
buffer consumption. Performing this notification efficiently requires careful coordina-
tion of GPU, CPU, and HCA.

Certain limitations of the existing software and hardware force us to deviate from
the original design in which the HCA is controlled entirely from the GPU, and instead
fall back to using the CPU to assist with send/receive operations. Specifically, the HCA
driver does not support placing its work and completion queues in GPU memory. These
queues are frequently accessed by the application to enqueue each send/receive re-
quests and retrieve completion notifications, and currently can be stored only in CPU
memory. GPUs may map CPU memory into their address space, but the latency of
accessing that memory from the GPU is too high, and when accessed frequently as
in the case of the HCA queues, it might significantly degrade the network through-
put and increase latency. Another problem is that the NVIDIA driver does not allow
accessing the HCA’s “door-bell” hardware registers to trigger a send operation. The
door-bell registers are accessed via memory mapped I/O, and GPUs cannot map that
memory. These limitations are expected to be resolved in future generations of soft-
ware and hardware ¢, however currently a CPU is necessary to assist every GPU send
and receive operation.

Using a CPU to handle completion notifications introduces an interesting challenge
for the flow control implementation. The flow control counters must be shared between
a CPU and a GPU, since they are updated by a CPU as a part of the completion no-
tification handler, and by a GPU for every gsend/grecv call. To guarantee consistent
concurrent updates, these writes have to be performed atomically, but the updates are
performed via a PCle bus which does not support atomic operations. The solution is
to treat the updates as two independent instances of producer-consumer coordination:
between a GPU and an HCA (which produces the received data in the GPU network
buffer), and between a GPU and a remote host (which consumes the sent data from
the GPU network buffer). In both cases, a CPU serves as a mediator for updating the
counters in GPU-accessible memory on behalf of the HCA or remote host. Assuming
only one consumer and producer, each instance of a producer-consumer coordination
can be implemented using a ring buffer data structure shared between a CPU and a
GPU.

Figure 7 shows the ring buffer processing a receive call. The GPU receives the data
into the local buffer via direct RDMA memory copy from the remote host (1). The
CPU gets notified by the HCA that the data was received (2) and updates the ring
buffer as a producer on behalf of the remote host (3). Later, the GPU calls grecv() (4),

6Specifically, memory mapped I/O from GPU kernels is expected to be possible with the future release of the
GPUdirect Async technology [CUD ]
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Fig. 7. Ring buffer updates for GPU flow control mechanism in grecv() call.

recognizes the received data through the ring buffer, reads the data and updates the
ring buffer that the data has been consumed (5). This update triggers the CPU (6) to
send a notification (7) to the remote host (8).

This design decouples the GPU API calls and the CPU I/O transfer operations, al-
lowing the CPU to handle GPU I/O request asynchronously. As a result, the GPU I/O
call returns faster, without waiting for the GPU I/O request to propagate through the
high-latency PCle bus, and data transfers and GPU computations are overlapped. This
feature is essential to achieve high performance for bulk transfers.

6.2. Channel layer

The channel layer mediates the GPU’s access to the underlying network transport
and runs on both CPU and GPU. On the GPU side, the channel layer manages the
network buffers in GPU memory, while the CPU-side logic ensures that the buffers
are delivered to and from the transport mechanism.

Memory management. GPUnet allocates a large contiguous region of GPU memory
which it uses for network buffers. To enable RDMA hardware transport, CPU code
registers GPU memory to the Infiniband HCA with the help of CUDA’s GPUDirec-
tRDMA mechanism. The maximum total amount of HCA registered memory is limited
to 234MB in NVIDIA TESLA K20c GPUs due to the Base Address Register (BAR) size
constraints of the current hardware. We allocate the memory statically during GPUnet
initialization because the memory registration is expensive (details in Section 6.4), and
because the GPU memory allocation may be blocked indefinitely when the GPU kernel
is running. GPUnet uses registered memory as a pool for allocating receive and send
buffers for each channel.

Bounce buffers and support for non-RDMA transports. If P2P DMA functionality
is not available, the underlying transport mechanism has no direct access to GPU
network buffers. Therefore, network data must be explicitly staged to and from bounce
buffers in CPU memory.

Using bounce buffers incurs higher latency because of the extra memory copy to and
from CPU memory. Bounce buffers also increase PCle occupancy, because the HCA
and CPU are connected via PCle. In order to better hide PCIe latency GPUnet socket
send/receive buffers are configured to be larger than the buffers used with direct GPU-
NIC memory transfers.

Bounce buffers are useful to enable GPUnet on hardware which lacks RDMA, or
on chipsets that experience low bandwidth of P2P DMA. For example, we encounter
15x bandwidth degradation when storing send buffers in GPU memory; using bounce
buffers helped achieve close-to-maximum bandwidth in this case. Similarly, P2P DMA
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is only possible for certain PCle topologies, so for our dual socket configuration only
one of the three PCle attached GPUs can perform P2P DMA with the Infiniband HCA.
Until the software and hardware support stabilizes, bounce buffers are an interim so-
lution that hides the implementation complexity of CPU-GPU-NIC coordination mech-
anisms.

6.3. GPUnet CPU proxy

GPUnet encapsulates all CPU-related functionality in a GPUnet proxy module. The
module is invoked in a new user-level CPU thread when the application using GPUnet
is initialized. The thread runs in the application’s address space, therefore it can easily
access the state of the GPU application. The proxy is implemented as an event-driven
server which exposes a simple Remote Procedure Call (RPC) interface and enables
GPU programs to invoke certain I/O-related operations on a CPU. Along with handling
RPCs, the GPUnet proxy polls the send ring buffer and updates the receive ring buffer
when a data receive is notified.

6.4. Performance optimizations.

Single threadblock 1/0. While developing GPUnet applications we found it con-
venient to dedicate some threadblocks to performing network operations, while us-
ing others only for computation, like the receiving threadblock in MapReduce (§7.2),
or a daemon threadblock in the matrix product server (§7.1). In such a design, the
performance-limiting factor for send operations is the latency of two steps performed
in the gsend () call: memory copy between the system and user buffers in GPU, and the
update of the flow control ring buffer metadata. Therefore, an important optimization
goal has been to maximize the I/O throughput of a single threadblock.

Unfortunately, a single threadblock is allocated only a small fraction of the total
GPU compute and memory bandwidth resources, e.g. up to 7% of the total GPU mem-
ory bandwidth according to our measurements. Improving the memory throughput of
a single threadblock requires issuing many memory requests per thread in order to
enable memory-level parallelism [Vasily Volkov 2010]. We resorted to PTX, NVIDIA
GPU’s low-level assembly, in order to implement 128-bit/thread vector accesses to
global memory which bypass the L2 and L1 caches. Cache bypassing is required to
ensure a consistent buffer state when RDMA operations access GPU memory. This op-
timization improves memory copy throughput almost 3, from 2.5GB/s to 6.9GB/s for
a threadblock with only 256 threads.

Ring buffer updates. Ring buffer updates were slow initially because the ring buffer
head pointers are shared between the CPU and GPU, and we placed them in “zero-
copy” memory, which physically resides on a CPU. Therefore, reading this memory
from the GPU incurs a significant penalty of about 1-2usec. Updating the ring buffer
requires multiple accesses to the head pointers, and the latency accumulates to tens of
jiSec.

We improved the performance of ring buffer updates by converting reads from re-
mote memory into remote writes into local memory. For example, the head location of
a ring buffer, which is updated by a producer, should reside in the consumer’s memory
in order to enable the consumer to read the head quickly. To implement this opti-
mization, however, we must map GPU memory into the CPU’s address space. NVIDIA
CUDA does not natively provide an API for mapping GPU memory, and we implement
a kernel driver that leverages GPUDirect to mmap the GPU BAR memory into the CPU
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user address space ’. This optimization reduces the latency of ring buffer updates to
2.5usec.

Additional overhead is caused by memory fences that are necessary to guarantee
consistent ordering of writes into shared memory between CPU and GPU. For example,
we use __threadfence system() on the GPU to ensure that the ring buffer head pointer
updates are ordered strictly after the network buffer updates. We found that each
_threadfence_system() call adds about 2 i sec to each gsend() call and affects the
data transfer performance significantly. Therefore we minimize the use of memory
fences on GPUs. For example, adding a memory fence after every metadata update of
the ring buffer results in simpler implementation, but can be eliminated to reduce the
latency of critical processing paths.

Memory registration cache. An HCA performs virtual-to-physical address transla-
tion to enable zero-copy access to the user memory. An application needs to initialize
the translation table, a process called memory registration.

GPUnet uses GPU memory for network buffers, therefore GPU memory buffers need
to be registered in the HCA. A naive implementation might register network buffers
every time a new connection is established and unregister when the socket is closed.
However, we found that GPU memory registration is extremely slow, e.g., 5 msec for a
256KB GPU buffer (which is about 80x slower than registering the same-sized CPU
buffer). In order to eliminate this overhead, GPUnet allocates and registers all network
buffers during initialization, following a common idiom called registration cache [Liu
et al. 2004]. This technique reduces the latency of connection establishment from 23
msec (two 256KB buffers at both endpoints) to 30usec with 256 KB buffers.

6.5. Limitations

Many NVIDIA GPUs only expose limited memory for peer-to-peer DMA due to the
PCIe BAR memory size [NVIDIA 2015]. The K20c GPUs used for our experiments
have a modest memory budget (234 MB) for the BAR area. Recent high-end NVIDIA
GPUs like NVIDIA K80 and M40 support larger memory sizes, up to 16GB. Limited
memory for P2P DMA memory restricts the number of connections that a single GPU
can support with a given system buffer size.

A large GPU BAR area would allow all of GPU memory to be registered to an HCA,
eliminating the need to register smaller buffers and suffer the memory registration
overhead. However, our current implementation of GPUnet does not support large
BAR areas because none of our GPUs support it.

GPUnet does not provide a mechanism for socket migration between a GPU and a
CPU, which might be convenient for load balancing.

Perhaps the most significant limitation of the prototype is that it relies on the abil-
ity of a GPU to guarantee consistent reads from its memory when it is concurrently
accessed by a running kernel and the NIC RDMA hardware. Specifically, dependent
writes to GPU memory performed by the NIC via PCle must be observed in the same
order by the GPU kernel NVIDIA GPUs provide such consistency guarantees only if
the reads are performed from a kernel invoked after the writes have been completed,
but do not guarantee consistent reads from the kernels executing concurrently with
the writes.

In practice, however, we do not observe consistency violations in GPUnet. To validate
our current implementation, we implement a 32-bit cyclic redundancy check (CRC) for
the GPU and instrument our applications to check the data integrity of all network

A similar approach is also used in the recent gdrcopy library from NVIDIA.
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messages with 4KB granularity. We detect no data integrity violations for experiments
reported in the paper (though this experiment surfaced a small bug in GPUnet itself).

We hope that, perhaps encouraged by GPUnet itself, GPU vendors will provide such
consistency guarantees in the near future (e.g., in NVIDIA CUDA async [CUD ]). Fur-
thermore, the necessary CPU-GPU memory consistency will be a part of the future
releases of OpenCL 2.0-compliant GPU platforms, thereby supporting our expectation
that it will become the standard guarantee of future systems.

7. APPLICATIONS

We now describe the design and implementation of three GPU server applications
which use GPUnet for network communications. These are native GPU applications
with all their logic encapsulated in GPU code, without any CPU code.

7.1. Matrix product server

The matrix product server is implemented using both the daemon and independent
architectures (§4.3). In the daemon architecture the daemon threadblock (one or more)
accepts a client connection, reads the input matrices, and enqueues a multiplication
kernel. The multiplication kernel gets pointers to the input matrices and the socket
for writing the results. The number of threads — a critical parameter defining how
many GPU computational resources a kernel should use — is derived from the matrix
dimensions as in the standard GPU implementation. When the execution completes,
the threadblock which finalizes the computation sends the data back to the client and
closes the connection.

In the independent architecture each threadblock receives the input, runs the com-
putations, and sends the results back.

Implementation details. The daemon server cannot invoke the multiplication kernel
using dynamic parallelism (which is the ability to execute a GPU kernel from within an
executing kernel, present since NVIDIA Kepler GPUs). Current dynamic parallelism
support in NVIDIA GPUs lacks a parent-child concurrency guarantee, and in practice
the parent threadblock blocks to ensure the child starts its execution. Our daemon
threadblock must remain active to accept new connections and handle incoming data,
so we do not use NVIDIA’s dynamic parallelism and instead invoke new GPU kernels
via the CPU using a custom mechanism. See Section 8.2 for performance measure-
ments.

Parallel-1/0 design. We also tried an alternative design where the daemon thread-
block invokes the multiply kernel which then is responsible for receiving the matrix
data through grecv(). While providing better performance for a single client, it re-
sulted in all compute threadblocks being idle waiting for the I/O completion, wasting
GPU computing resources and reducing multi-client throughput substantially.

7.2. MapReduce design

We design an in-GPU-memory distributed MapReduce framework that keeps inter-
mediate results of map operations in GPU memory, while input and output are read
from disk using GPUfs [Silberstein et al. 2013]. We call the system GimMR for GPU in
memory Map Reduce. Its design is presented in Figure 8. The number of GPUs in our
system is small, so all of them are used to execute both mappers and reducers. Shuf-
fling (i.e., the exchange of intermediate data produced by mappers between different
hosts) is done by mappers, and reducers only start once all mappers and data transfer
have completed. Our mappers push data, while in traditional MapReduce, the reduc-
ers pull [Dean and Ghemawat 2004]. Each GPU runs multiple mappers and reducers,
each of which is executed by multiple GPU threads.
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Fig. 8. GimMR Design. Mappers push their outputs to the Receiverthreadblock in the GPU that will run
the respective Reducer.

At the start of the Map phase a mapper reads its part of the input via GPUfs. The
input is split across all threadblocks, so they can execute in parallel. A GPU may
run tens of mappers, each invoked in one threadblock and executed by hundreds of its
threads. Mappers generate intermediate <key,value> pairs that they assign to buckets
using consistent hashing or a predefined key range. Buckets contain pointers to data
chunks. A mapper accumulates intermediate keys and data into local chunks. When
a chunk size exceeds a threshold, the mapper sends the chunk to the GPU which will
run the reducer for the keys in that bucket, thereby overlapping mapper execution
with the shuffle phase, similar to ThemisMR [Rasmussen et al. 2012].

In addition to many mapper threadblocks, each GPU runs one or more receiver
threadblocks which receive buckets from remote GPUs. Each receiver threadblock
is assigned a fixed number of connections from a remote GPU. The receivers receive
data by making non-blocking calls to grecv() on the mappers’ sockets in round-robin
order (implementing po11() on the GPU is left as future work). A mapper thread-
block connects to its receiver threadblock when it starts executing. For example, con-
sider a GimMR system with total of five GPUs each running 12 mappers and 12 re-
ceiver threadblocks. Then each GPU will have a total of 48 incoming connections, one
per mapper from every other GPU. Each of its 12 receiver threadblocks will handle
four incoming connections. Local mappers update local buckets without sending them
through the network.

GPU mappers are coordinated by a CPU-side centralized mapper master, accessed
over the network. The master assigns jobs, balancing load across the mappers. The
master tells each mapper the offset and size of the data to read from its input file.

Similar to Map, each Reduce function is also invoked in a single threadblock. Each
reducer identifies the set of buckets it must process, (optionally) performs parallel
sort of all the key-value pairs in each bucket separately, and finally invokes the user-
provided Reduce function. As a result, the GPU exploits the standard coarse-grain data
parallelism of independent input keys, but also enables the finer-grain parallelism of
a function processing different values from the same key, e.g., by parallel sorting or re-
duction. Enabling each reducer to sort the key/values independently of other reducers
is important in order to avoid a GPU-wide synchronization phase at the end of sorting.

GimMR takes advantage of the dynamic communication capabilities of GPUnet for
ease and efficiency of implementation. Without GPUnet, enabling overlapped com-
munications and computations would require significant development effort involving
fine-tuned pipelining among CPU sends, CPU-GPU data transfers, and GPU kernel
invocations.
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7.2.1. GimMR workloads. We implement word count and K-means. In word count, the
mapper parses free-form input text and generates <word, 1> pairs, which are reduced
by summing up their values. CUDA does not provide text processing functions, so we
implement our own parser. We pre-sample the input text and determine the range of
keys being reduced by each reducer.

The mappers in K-means calculate the distance of each point to the cluster centroids,
and then re-cluster the point to its nearest centroid. Intermediate data is pairs of
<centroid number, point>. The reducer sums the coordinates of all points in a centroid.
K-means is an iterative algorithm, and our framework supports iterative MapReduce.
A CPU process receives the new centroids produced by the reducers, and sends them
to all the GPUs for the next round. We preprocess the input file to piecewise transpose
the input points, thereby enabling coalesced memory accesses for mapper threads.

7.3. Face verification

A client sends a photo of a face, along with a text label identifying the face, to a veri-
fication service. The server responds positively if the label matches the photo (i.e., the
server has the same face in its database with the proffered label), and negatively oth-
erwise. The server uses a well-known local binary patterns (LBP) algorithm for face
verification [Ahonen et al. 2006]. LBP represents images by a histogram of their visual
features. The server stores all LBP histograms in a memcached database. In our testbed,
we have three machines, one for clients, one for the verification server and one for the
memcached database.

We believe our organization is a reasonable choice, as opposed to alternatives such as
having the client perform the LBP and send a histogram to the server. Face verification
algorithms are constantly evolving, and placing them on the server makes upgrading
the algorithm easy for the service provider. Also, sending actual pictures to the server
provides a useful human-checkable log of activity.

Client. The client uses multiple threads, each running on its own CPU, and maintain-

ing multiple persistent non-blocking connections with the server. Clients use rsockets

for network communications with the server. For each connection, the client performs

the following steps and repeats them forever:

(1) Read a (random) 136x136 grayscale image from a (cached) file.

(2) Choose a (random) face label.

(3) Send verification request to server.

(4) Receive response from server — 0 (mismatch) or 1 (match).

Server. We implement three versions of the server: a CPU version, a CUDA version,

and a GPUnet version. Each server performs the following steps repeatedly (in differ-

ent ways).

(1) Receive request from client.

(2) Fetch LBP histogram for client-provided name from the remote memcached
database.

(3) Calculate LBP histogram of the image in the request.

(4) Calculate Euclidean distance between the histograms.

(5) Report a match if the distance is below a threshold.

(6) Send integer response.

The CPU server consists of multiple independent threads, one per CPU core. Each
thread manages multiple, persistent, non-blocking connections with the client.

The CUDA server is the same as the CPU server, but the face verification algorithm
executes on the GPU by launching a kernel. (see Figure 2, middle picture).

The GPUnet server is a native GPU-only application using GPUnet for network op-
erations. It uses the independent architecture (§4.3), and consists of multiple thread-
blocks running forever, with each acting as an independent server. Each threadblock

ACM Transactions on Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2016.



0:20 M. Silberstiein et al.

Table |. Hardware and software configuration. The DMA column indicates the presence of a DMA perfor-
mance asymmetry (§6.2).
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manages persistent connections with the client and memcached server. This design is ap-
propriate since the processing time per image is low and there is enough parallelism
per request.

Implementation details. We use a standard benchmarking face recognition dataset?,
resized to 136x136 and reformatted as raw grayscale images. We implement a GPU
memcached client library. memcached uses the Infiniband RDMA transport provided by
the rsockets library. We modified a single line of memcached to work with rsockets by
disabling the use of accept4, which is not supported by rsockets.

8. EVALUATION

Hardware. We run our experiments on a cluster with four nodes (Table I) connected
by a QDR 40Gbps Infiniband interconnect, using Mellanox HCA cards with MT4099
and MT26428 chipsets.

All machines use CUDA 5.5. We disable ECC on GPUs, hyper-threading, SpeedStep,
and Turbo mode on all machines for reproducible performance. Nodes A and B feature
a newer chipset with a PLX 8747 PCIe switch which enables full bandwidth P2P DMA
between the HCA and the GPU. Nodes C and D provide full bandwidth for DMA writes
from HCA to GPU (grecv()), but perform poorly with only 10% of the bandwidth for
DMA reads from GPU (gsend ()) due to chipset limitation. We are not the first to observe
such asymmetry [Potluri et al. 2013b].

GPUnet delegates connection establishment and tear-down to a CPU. Our bench-
marks exclude connection establishment from the performance measurement to mea-
sure the steady-state behavior of persistent connections. Using persistent connections
is a common optimization technique for data center applications [Benson et al. 2010].

8.1. Microbenchmarks

We run microbenchmarks with two complementary goals: to understand the perfor-
mance consequences of GPUnet design decisions, and to separate the essential bottle-
necks from the ephemeral issues due to current hardware. We run them between nodes
A and B with 256 threads per threadblock. All results are the average of 10 iterations,
with the standard deviation within 1.1% of the mean.

Single stream performance. Single stream performance is important to applications
with a dedicated networking threadblock like GimMR, as discussed in Section 7.2.

We implement the CPU version of the benchmark using the unmodified rsockets
library. Figure 9 shows the round trip time (RTT) for messages with different sizes. The
latency of GPU transfers using RDMA is significantly higher than the baseline CPU-
to-CPU latency. Yet bounce buffers (marked BB in the legend) significantly worsen the
latency almost two-fold.

Shttp:/www.itL.nist.gov/iad/humanid/feret/feret_master.htm
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Fig. 9. Single stream round trip time with different message sizes. CPU uses rsockets.
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Fig. 10. Single threadblock throughput with different socket buffer sizes.

Figure 10 shows the single stream bandwidth with different socket buffer sizes. The
maximum performance is reached when full I/O pipelining is achieved with sufficiently
large buffers. The GPU reaches about 98% of the peak performance of CPU-based
rsockets. Since the bounce buffer case results in almost twice the latency of RDMA,
the socket buffers need to be twice as large in order to reach the peak throughput.

The graph shows an unexpected discrepancy between the send and receive through-
put for CPU-GPU transfers with buffers smaller than 256KB. For example, with 64KB
buffers the throughput from the GPU to the CPU is twice as high as the through-
put in the opposite direction. The penalty is due to higher management overheads on
the GPU. Specifically, for the case with a GPU sender and a CPU receiver, the GPU
sender produces data slower than the CPU receiver consumes it, so no flow control
logic is actively involved. However, in the opposite direction, a GPU receiver does not
keep up with a CPU sender. Therefore the flow control prevents further sends, which
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Table Il. Latency breakdown for a GPU gsend () request with a
64KB message with peer-to-peer RDMA.

Latency

Steps (usec)

Ty GPU ring buffer 1.4
Ts GPU copies buffer 15.7
T3 GPU requests to CPU 3.8
Ty CPU reads GPU request 2.5
Ts CPU RDMA write time to completion 22.2
Total one-way latency 45.6

in turn lowers the throughput substantially. The throughput asymmetry disappears
with larger buffers.

We present the latency of individual steps in gsend () call sending 64KB (Table II). We
measure T3, Ty, T3 on the GPU by instrumenting the GPU code using clock64(), the
GPU intrinsic that reads the hardware cycle counter. 75 is effectively the latency of the
send() call performed from the CPU, but transferring data between memories of two
GPUs. For this data size, the overhead of GPU-related processing is about 50%. The
user-to-system buffer copy, 15, is the primary bottleneck. Accessing CPU-GPU shared
data structures (7%, T3) and the latency of the update propagation through the PCle
bus (T}) account for 20% of the total latency, but these are constant factors.

We believe that 7> and T will improve in future hardware generations. Specifically,
T, can be reduced by enabling a GPU to access the HCA doorbell registers directly,
without CPU mediation. We believe that T3 can be optimized by exposing the already
existing GPU DMA engine for performing internal GPU DMAs, similar to the Intel
I/OAT DMA engine. Alternatively, a zero-copy API may help eliminate 75 in software.

Multistream bandwidth. We measure the aggregate bandwidth of sending over mul-
tiple sockets from one GPU. We run 26 threadblocks (2 threadblocks per GPU SM core)
each having multiple non-blocking sockets. Each send is 32KB. We test up to 416 ac-
tive connections — the maximum number of sockets that GPUnet may concurrently
maintain given 256KB send buffers, which provide the highest single-stream perfor-
mance. As we explained in §6, the maximum number of sockets is constrained by the
total amount of RDMA-registered memory available for network buffers, which in our
hardware is limited to 220MB.

We run the experiment between two GPUs. Starting from 2 connections, GPUnet
achieves throughput of 3.4GB/s, and gradually falls to 3.2GB/s at 416 connections,
primarily due to the increased load on the CPU-side proxy having to handle more
requests. Using bounce buffers shows slightly better throughput, 3.5GB/s with two
connections, and 3.3GB/s with 208 connections.

8.2. Matrix product server

We implement three versions of the matrix product server to examine the performance
of different GPU server organizations.

The CUDA server runs the I/0 logic on the CPU and offloads matrix product compu-
tations to the GPU using standard CUDA. It executes a single CPU thread and invokes
one GPU kernel per request. We use matrixMul, the matrix product kernel distributed
with the NVIDIA SDK.

The daemon server uses GPUnet and follows the daemon architecture (§4.3), listen-
ing on a network socket, receiving the input and launches a GPU kernel with thread-
blocks computing the matrix product. GPU resources are partitioned between daemon
threadblocks and computing threadblocks. The number of daemon threadblocks is an
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Fig. 11. Relative throughput of the matrix multiplication server with different numbers of I/O threadblocks
normalized by the server throughput using one I/O threadblock.

important server configuration parameter as we discuss below. Both the CUDA server
and the daemon server invoke the matrix product kernel via the CPU, however the
latter receives/sends data directly to/from GPU memory.

The independent server also employs GPUnet, but the GPU is not statically parti-
tioned between daemon and compute threadblocks. Instead, all the threadblocks han-
dle I/0O and perform computations, and no additional GPU kernels are launched.

The CUDA, daemon and independent server versions are 894, 391 and 220 LOC for
their core functionality.

Resource allocation in the daemon server. The performance of the daemon server
is particularly sensitive to the way GPU resources are partitioned between I/O and
compute tasks performed by the server. The GPU non-preemptive scheduling model
implies that GPU resources allocated to I/0O tasks cannot execute computations even
while I/O tasks are idle waiting for the input data. Therefore, if the server is config-
ured to run too many daemon threadblocks, the compute kernels will get fewer GPU
resources and computations will execute slowly. On the other hand, too few daemon
threadblocks may fail to feed the execution units with data fast enough, thereby de-
creasing the server throughput. In our current implementation, the number of daemon
threadblocks is configured at server invocation time and does not change during exe-
cution.

The optimal number of I/O threadblocks depends on the compute-to-I/O ratio of
the workload. Figure 11 shows how different numbers of I/O threadblocks affect the
throughput of the server. The experiment runs with 64 active clients, and uses 256
threads in a threadblock. Each value is relative to the single threadblock case. Work-
loads with smaller matrices have lower compute-to-I/O ratio, and our measurement
shows that grecv() dominates the processing time for each matrix computation task.
For such I/0-bound jobs, increasing the number of I/O threadblocks significantly en-
hances the performance, by a factor of 14 with 64 x 64 matrices and 16 I/O threadblocks,
compared to the computation with a single I/O threadblock. However, workloads with
larger matrices are compute-bound and increasing the number of I/O threadblocks
negatively affects the server performance. For medium-sized matrices and many I/O
threadblocks (e.g., 16 threadblocks for 128x128 matrices), the asynchronous kernel
invocation, instead of computation, becomes the dominant overhead that reduces the
throughput.

ACM Transactions on Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2016.



0:24 M. Silberstiein et al.

Table Ill. Optimal configurations for matrix multiplication
workloads.
Workload Optimal daemon  Threads per daemon
threadblocks daemon threadblock
64 x64 16 64-256 threads
128x128 8 256-512 threads
256 x256 4 128-512 threads
512x512 1 128-1024 threads
1024 x1024 1 not sensitive

Table IV. The cost of misconfiguration: the throughput in a given configuration relative to the
maximum throughput using the best configuration for that workload.

Workload
Configuration 64x64 128x128 256x256 512x512 1024x1024
Optimal for 64x64 100% 95% 80% 76% 76%
Optimal for 128 x128 68% 95% 91% 87% 85%
Optimal for 256 x256 36% 60% 100% 96% 94%
Optimal for 512x512 8.5% 19% 43% 100% 95%
Optimal for 1024x1024  8.6% 19% 40% 94% 100%

To find the best configuration that maximizes the server throughput we search
across several combinations of the number of I/O threadblocks and the number of
threads in each I/O threadblock and record the throughput of each configuration on
each workload. Table III shows the optimal configurations found by the search °. Ta-
ble IV shows the relative throughput of each workload under different configurations,
normalized by the throughput of the best configuration. We observe significant, up to
10-fold, degradation in server performance when compared to its performance under
the best configuration. Finding the best server configuration and dynamically adjust-
ing it to suit the workload is left for future work.

Performance comparison of server designs. We compare the throughput of different
server designs while changing the number of concurrent clients. We use the 256 x 256
matrices for input, and configure the daemon server to have the number of daemon
threadblocks that maximizes its throughput for this workload. The results are shown
in Figure 12.

With multiple clients, both GPUnet-based implementations consistently outperform
the traditional CUDA server across all the workloads and are competitive with each
other.

As expected, the performance of the independent design is sensitive to the number
of clients. Our implementation assigns one connection per threadblock, so the number
of clients equals the number of server threadblocks. Configurations where the num-
ber of clients is divisible by the number of GPU SMs (13 in our case) have the best
performance. Other cases suffer from load imbalance. The performance of the inde-
pendent design is particularly low for one client because the server runs with a single
threadblock using a single SM, leading to severe underutilization of GPU resources.

The performance of the independent design is 8x to 20x higher than a single-
threaded CPU-only server that uses the highly-optimized BLAS library (not shown
in the figure).

9A result within 1% of the peak performance is considered optimal
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Fig. 12. Throughput comparison for different matrix product servers.

Table V. The throughput of GPUnet-based matrix product servers under
different workload types.

Server Light Medium Heavy
design workload  workload workload
Daemon (GFLOPS) 11 137 201

Independent (GFLOPS) 37 (3.4x) 151 (1.1x) 207 (1.01x)

Table VI. Single-node GimMR vs. other MapReduce systems.

Workload 8-core 1-Node 1-GPU
Phoenix++ Hadoop GimMR

K-means 12.2 sec 71.0 sec 5.6 sec

Wordcount  6.23 sec 211.0 sec 29.6 sec

Table V shows the throughput of the GPUnet servers serving different workload
types. We fixed the number of active connections to 26 to allow the independent server
to reach its full performance potential.

The independent server achieves higher throughput for all of the workload types,
but its advantages are most profound for light tasks (with low compute-to-I/O ratios).
The independent server does not incur the overhead of GPU kernel invocations, which
dominate the execution time for shorter tasks in the daemon server. This performance
advantage makes the independent design particularly suitable for our face verification
server which also runs tasks with low compute-to-I/O ratio as we describe below (§ 8.4).

8.3. Map reduce

We evaluate the standard word count and K-means tasks on our GimMR MapReduce.
Table VI compares the performance of the single-GPU GimMR with the single-node
Hadoop and Phoenix++ [Talbot et al. 2011] on an 8-core CPU. We use a RAM disk
when evaluating K-Means on Hadoop. For both wordcount and K-means on Hadoop,
we run 8 map jobs and 16 reduce jobs per node.
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Fig. 13. Face verification latency CDF for different servers.

Word count. The word count serves as a feasibility proof for distributed GPU-only

MapReduce, but the workload characteristics make it inefficient on GPUs.
The benchmark counts words in a 600MB corpus of English-language Wikipedia in

XML format. A single GPU GimMR outperforms the single-node 8-core Hadoop by a
factor of 7.1, but is 4.7 x slower than Phoenix++ [Talbot et al. 2011] running on 8 CPU

cores. GimMR word count spends a lot of time sorting strings, which is expensive on
GPUs because comparing variable length strings creates divergent, irregular compu-
tations. In the future we will adopt the optimization done by ThemisMR [Rasmussen
et al. 2012] which uses the hash of the strings as the intermediate keys, in order to

sort quickly.

Scalability. When invoked on the same input on four network-connected GPUs,
GimMR performance increases by 2.9x. The scalability is affected by three factors:
(1) the amount of computation is too low to fully hide the intermediate data transfer
overheads, (2) reducers experience imbalance due to the input data skew, (3) Only two

machines enable GPU-NIC RDMA, the other two use bounce buffers.

K-means. We chose K-means to evaluate GimMR under a computationally-intensive
workload. We compute 500 clusters on a randomly generated 500MB input with 64K
vectors each with hundreds of floating-point elements.

Table VI compares the performance of GimMR with single-node Hadoop and
Phoenix++ using 200 dimension vectors. GimMR on a single GPU outperforms

Phoenix++ on 8 CPU cores by up to 2.2x, and Hadoop by 12.7 x.
Scalability. When invoked on the same input on four network-connected GPUs,
GimMR performance increases by 2.9x. With 100 dimension vectors, the 4-GPU

GimMR achieves up to 3.5x speedup over a single GPU.

8.4. Face verification
We evaluate the face verification server on a different cluster with three nodes, each

with Mellanox Connect-IB HCA, 2x Intel E5-2620 6-core CPU, and connected via a
Mellanox Switch-X bridge. The server executes on NVIDIA K20Xm GPUs. The appli-

cation’s client, server and memcached server run on their own dedicated machines. We
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verified that both the CPU and GPU algorithm implementations produce the same
results, and also manually inspected the output using the standard FERET dataset
and hand-modified images. All the reported results have variance below 0.1% of their
mean.

Lower latency, higher throughput. Figure 13 shows the CDF of the request latency
for different server implementations and some of their combinations. The legend for
each server specifies the effective server throughput observed during the latency mea-
surements. GPUnet and CUDA are invoked with 28 threadblocks, 1024 threads per
threadblock, which we found to provide the best tradeoff between latency and through-
put. Other configurations result in higher throughput but sacrifice latency, or slightly
lower latency but much lower throughput.

The GPUnet server has the lowest average response time of 524+41 usec per request
while handling 53 KRequests/sec, which is about 3x faster per request, and 50% more
requests than the CPU server running on a single 6-core CPU. The native CUDA ver-
sion and GPUnet with bounce buffers suffer from 2x and 3 x higher response time, and
2.3x and 3x lower throughput respectively. They both perform extra memory copies,
and the CUDA server is further penalized for invoking a kernel per request. Dynamic
kernel invocation accounts for the greater variability in the response time of the CUDA
server. The combination of CPU and GPUnet achieves the highest throughput, and im-
proves the server response time for all requests, not only for those served on a GPU.

Maximum throughput and multi-GPU scalability. The throughput-optimized config-
uration for the GPUnet server differs from its latency-optimized version, with 4 x more
threadblocks, each with 4x fewer threads (112 threadblocks, each with 256 threads).
While the total number of threads remains the same, this configuration serves 4x
more concurrent requests. With 4x fewer threads processing each request, the pro-
cessing time grows only by about 3x. Therefore this configuration achieves about 30%
higher throughput as shown in Table VII, which is within 3% of the performance of
two 2x6-core CPUs.

Adding another GPU to the system almost doubles the server throughput. Achieving
linear scalability, however, requires adding a second Infiniband card. The PCle topol-
ogy on the server allows only one of the two GPUs to use P2P DMA with the same
HCA, and the second GPU has to fall back to using bounce buffers, which has infe-
rior performance in this case. To work around the problem, we added a second HCA to
enable P2P DMA for the second GPU.

Finally, invoking both the CPU and GPUnet servers together results in the highest
throughput. Because each GPU in GPUnet requires one CPU core to run, the CPU
server gets two fewer cores than the standalone CPU version, and the final throughput
is lower than the sum of the individual throughputs. The total server throughput is
about 172% higher than the throughput of a 6x2-core CPU-only server.

The GPUnet-based server I/O rate with a single GPU reaches nearly 1.1GB/s. I/O
activity accounts for about 40% of the server runtime. GPUnet enables high perfor-
mance with a relatively modest development complexity compared to other servers.
The CUDA server has 596 LOC, CPU - 506, and GPUnet— only 245 lines of code.

9. RELATED WORK

GPUnet is the first system to provide native networking abstractions for GPUs. This
work emerges from a broader trend to integrate GPUs more cleanly with operat-
ing system services, as exemplified by recent work on a file system layer for GPUs
(GPUfs) [Silberstein et al. 2013] and virtual memory management (RSVM [dJi et al.
2013]).
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Table VII. Face verification throughput for different servers.
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OS services for GPU applications. GPU applications operate outside of the resource
management scope of the operating system, often to the detriment of system per-
formance. PTask [Rossbach et al. 2011] proposes a data flow programming model
for GPUs that enables the OS to provide fairness and performance isolation. Time-
Graph [Kato et al. 2011] allows a device driver to schedule GPU processors to support
real-time workloads.

OSes for heterogeneous architecture. Barrelfish [Baumann et al. 2009] proposes mul-
tikernels for heterogeneous systems based on memory decoupled message passing. A
multikernel approach suggests the possibility of providing OS services to GPUs, and
similar approaches to GPUnet can be used as a low-level substrate to aid communi-
cation between processors. K2 [Lin et al. 2014] shows the effectiveness of tailoring a
mature OS to the details of a heterogeneous architecture. GPUnet demonstrates how
to bring system services to a heterogeneous system.

GPUs for network acceleration. There have been several projects targeting accel-
eration of network applications on GPUs. For example, PacketShader [Han et al.
2010] and Snap [Sun and Ricci 2013] use GPUs to accelerate packet routing at wire
speed, while SSLShader [Jang et al. 2011] offloads SSL computations. Numerous high-
performance computing applications (e.g., Deep Neural Network learning [Coates et al.
2013]) use GPUs to achieve high per-node performance in distributed applications.
These works use GPUs as co-processors, and do not provide networking support for
GPUs. GASPP [Vasiliadis et al. 2014] accelerates stateful packet processing on GPUs,
but it is not suitable for building client/server applications.

Peer-to-peer DMA. P2P DMA is an emerging technology, and published results com-
port with the performance problems GPUnet has on all but the very latest hard-
ware. Potluri et. al. [Potluri et al. 2013b; Potluri et al. 2013a] use P2P DMA for
NVIDIA GPUs and Intel MICs in an MPI library, and report much less bandwidth
with P2P DMA than communication through CPU. They suggest an optimization that
uses CPU as a relay, similar to our bounce buffers. Kato et. al [Kato et al. 2013]
and APEnet+ [Ammendola et al. 2012] also propose low-latency networking systems
with GPUDirect RDMA, but report hardware limitations to their achieved bandwidth.
Trivedi et al. [Trivedi et al. 2013] point out the limitation of RDMA with its compli-
cated interaction with various hardware components and the effect of architectural
limits on RDMA.

Network stack on accelerators.. Intel Xeon Phi is a co-processor akin to a GPU, but
featuring x86 compatible cores and running embedded Linux. Xeon Phi enables direct
access to the HCA from the co-processor and runs a complete network stack [Woodruf
2013]. GPUnet provides a similar functionality for GPUs, and naturally shares some
design concepts, like the CPU-side proxy service. However, GPUs and Xeon Phi have
fundamental differences, e.g. GPUs have a fine-grain data parallel programming model
and lack hardware support for an operating system. These differences warrant differ-
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ent approaches to key design components such as the coalesced API and CPU-GPU
coordination.

Scalability on heterogeneous architecture. Dandelion [Rossbach et al. 2013] is a lan-
guage and system support for data-parallel applications on heterogeneous architec-
tures. It provides a familiar language interface to programmers, insulating them from
the heterogeneity.

GPMR [Stuart and Owens 2011] is a distributed MapReduce system for GPUs, which
uses MPI over Infiniband for networking. However, it uses both CPUs and GPUs de-
pending on the characteristics of the steps of the MapReduce.

Network server design. Scalable network server design has been heavily researched
as processor and networking architecture advance [Welsh et al. 2001; Von Behren et al.
2003; Krohn et al. 2007; Han et al. 2012; Shalev et al. 2010; Beckmann et al. 2014],
but most of this work is specific to CPUs.

Rhythm [Agrawal et al. 2014] is one of the few GPU-based server architectures that
use GPUs to run PHP web services. It promises throughput and energy efficiency that
can exceed CPU-based servers, but its current prototype lacks the in-GPU networking
that GPUnet provides.

Low-latency networking. More networked applications are demanding low-latency
networking. RAMCloud [Ousterhout et al. 2010] notes the high latency of conventional
Ethernet as a major source of latency for a RAM-based server, and discusses RDMA as
an alternative that is difficult to use directly.

10. FUTURE WORK

Recent developments in the GPU hardware and software stack may help boost GPUnet
performance and broaden its capabilities, motivating us to revisit certain design and
implementation decisions in the future. First, new NVIDIA GPUs, e.g., the Tesla K80,
introduce support for large BAR sizes (up to 16GB), thus alleviating the memory pres-
sure that prevents us from scaling the number of active connections on older GPUs.
Further, recent work [Daoud et al. 2016] shows the feasibility of controlling a network
device from the GPU without CPU involvement. This control mechanism can eliminate
the CPU control bottleneck in GPUnet. Finally, the new CUDA async technology [CUD
]I may potentially resolve the GPUnet data consistency problem, paving the way toward
GPUnet deployment in production systems.

These system enhancements continue the trend toward more flexible, versatile and
efficient GPU-accelerated systems where GPUs have more control over their I/O op-
erations; underscoring the importance of the GPU-native high-level OS abstractions
presented in this paper for future GPUs.
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