Dependence-Aware
Transactional Memory for

Increased Concurrency

Hany E. Ramadan,
Christopher J. Rossbach,
Emmett Witchel
University of Texas, Austin

Concurrency Conundrum

9 2 cores

e Challenge: CMP ubiquity

e Parallel programming with
locks and threads is difficult
— deadlock, livelock, convoys...
— lock ordering, poor composability
— performance-complexity tradeoff

e Transactional Memory (HTM)
— simpler programming model
— removes pitfalls of locking

— coarse-grain transactions can
perform well under low-
contention

16 cores

»a 30 cores

(neat!)

http://en.wikipedia.org/wiki/Image:Athlon64x2-6400plus.jpg

High contention: optimism warranted?

TM performs poorly with
write-shared data Locks Transactions

— Increasing core counts make Read-)
this worse Sharing ¢ ® %Q
Write sharing iIs common

— Statistics, reference Write-
counters, lists...

. Y0 (A
_ _ Sharing
Solutions complicate i
programming model

— open-nesting, boosting, early

release, ANTS...
Dependence-Awareness

can help the programmer
(transparently!)

Outline

Motivation

Dependence-Aware Transactions
Dependence-Aware Hardware
Experimental Methodology/Evaluation
Conclusion

Two threads sharing a counter

Initially: count ==

- Thread A Thread B

load count,r

inC r
count: @

store r,count

time
load count,r

INC r

store r,count

v
Result: count ==

Schedule:
e dynamic instruction sequence
» models concurrency by interleaving instructions from multiple threads®

TM shared counter

Initially: count ==
xbegin ™A xbegin B
3¢d count,r

iINC r
count: 0

store r,comgt

time
load count,r
1 r
SCULES. S tore W count
! xend xend

CMHEAREHTM designs cannot accept such schedules,

2 eysactions access 2 dglu 3 east oneds g i
° m?grsectlon 8etween rea%l %.n write sets of transactions 6

Does this really matter?

xbeg in Critsec A

<lots of work>

inc r

xend

xbeg in Critsec B

<lots of work>

load count,r

store r,count

xend

Common Pattern!
e Statistics

e Linked lists

« Garbage collectors

DATM: use dependences to commit conflicting transactions

7

time

DATM shared counter

Initially: count ==

- xbegin T1 xbegin vz

load count® T2 depends on T1 |

inC r
count: @

store r, COU%
load count,r
Forward speculative data

inC r from T1 to satisfy T2's load.

store r,count

xend xend Model these
constraints as
* T1 must commit before T2 dependences

e If T1 aborts, T2 must also abort

e If T1 overwrites count, T2 must abort 8

Conflicts become Dependences

Write-Read:
Read-Write: s fOfW&fdtda;a =
A commits before B e overwrite = abor
TXA TxB * A commits before B
read X RSW
Write-Write:

write X|acommits before B

write Y @ W-oOW

write Y

write Z

read Z Dependence Graph

* Transactions: nodes

e dependences: edges

« edges dictate commit order

* no cycles = conflict serializable

9

Enforcing ordering using
Dependence Graphs

11§ 12

‘ xXbegin xXbegin

load X,rO

store rO0,X

B. Om=@

store rO0,X

Wait for T1

xend

xend
Outstanding
Dependences!

T1 must serialize before T2

10

Enforcing Consistency using
Dependence Graphs

) xbegin xbegin
oad X, rO
load X
store %
ore ro,X @ Rl @
xend xend
W->W

CYCLE! * cycle->not conflict serializable
(lost update) « restart some tx to break cycle
* invoke contention manager

11

Theoretical Foundation

Correctness
and optimality
Proof: See

/: results of

equivalent

[PPOPP 09]
CO Dependence | Forward | Restart
Wo —W; No [f in cycle
OpE Ro — Wi No [f in cycle
OpE Wo —R; Yes If in cycle, and 7}

must if either: a) 1o

does. b) T overwrites
CO forwm'd]e(l data witht
eC|l new value.
2-p
Im(entation of CS

(LogTM, TCC, RTM, MetaTM, OneTM.

Serializable

12

Outline

Motivation/Background
Dependence-Aware Model
Dependence-Aware Hardware
Experimental Methodology/Evaluation
Conclusion

13

DATM Requirements

Mechanisms:

« Maintain global dependence graph
— Conservative approximation
— Detect cycles, enforce ordering constraints

* Create dependences
* Forwarding/receiving
* Buffer speculative data

Implementation:
coherence, L1, per-core HW structures 14

Dependence-Aware
Microarchitecture

L1 Cache Controller
L1 Data $(Order Vector

e Order vector:
dependence graph

e TXID, access bits:
versioning, detection

e TXSW: transaction status

 Frc-ND + ND bits:
disable dependences

Tag State || TXID | A

— 1\

Data

—

Processor Core

Registers

TXSW

Fre-ND | ND

These are not programmer-visible!

15

Dependence-Aware
Microarchitecture

L1 Cache Controller

Order vector:

L1D
ata $(Order Vector

e dependence graph p—

Tag State || TXID | A Data

* topological sort

—

e conservative approx.

Processor Core

These are not programmer-visible! 16

e TXID, access bits:
versioning, detection

Dependence-Aware
Microarchitecture

L1 Cache Controller

L1D
ata $(Order Vector

Tag State || TXID | A

Data

Processor Core

These are not programmer-visible!

17

Dependence-Aware
Microarchitecture

L1 Cache Controller

L1 Data %
* G Order Vector

e TXSW: transaction status Processor Core

Registers

e Frc-ND + ND bits: S

TXSW | Fre-ND | ND

disable dependences, no /
active dependences

These are not programmer-visible!

18

FRMSI protocol:
forwarding and receiving

MSI states

TX states (T%)
Forwarded: (T*F)
Received: (T*R*)
Committing (CTM)

Bus messages:
« TXOVW

« XABT

e XCMT

FRMSI

MSI

Transactional States

Modified by TX

N
.
Received
TR TMR

TMRF

19

FRMSI protocol:

forwarding and receiving

e MSI| states

FRMSI

MSI

FRMSI protocol:
forwarding and receiving

FRMSI
Transactional States
MSI
 TXMSI states (T%)

Y

M ™

———/

o S

S N/
.

FRMSI protocol:
forwarding and receiving

FRMSI

Transactional States

MSI Modified by TX

Forwarded: (T*F) / \ CTM
Received: (T*R*) v

Committing (CTM))
Y
Bus messages: . TV
. TXOVW S
 XABT Received

e XCMT
@ TR TMR TMRF

22

Converting Conflicts to Dependences

core O core 1
pC B_ core0)1 Xbegin 1 Xbegin PC ﬂ_
2 Id R, cnt 2 Id R, cnt

R {100 3 inc cnt 3 inc cnt R|102
TXID | TXA 4 st cnt, R 4 st cnt, R TXID | TxB
5 xend

(stall) L1

N xend
Ll(DVEc [A,B]

S |TXID|data
cnt [cTM|[TxA 100

Outstanding
Dependence

x @it (A)

Main Memory
cnt 100 23

Outline

Motivation/Background
Dependence-Aware Model
Dependence-Aware Hardware
Experimental Methodology/Evaluation
Conclusion

24

Experimental Setup

* Implemented DATM by extending MetaTM
— Compared against MetaTM: [Ramadan 2007]

e Simulation environment
— Simics 3.0.30 machine simulator
— x86 ISA w/HTM instructions
— 32k 4-way tx L1 cache; 4MB 4-way L2; 1GB RAM
— 1 cyclel/inst, 24 cyc/L2 hit, 350 cyc/main memory
— 8, 16 processors

e Benchmarks

— Micro-benchmarks
— STAMP [Minh ISCA 2007]
— TxLinux: Transactional OS [Rossbach SOSP 2007]

25

50%
45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

DATM speedup, 16 CPUs

pmake labyrinth vacation bayes

counter

26

Eliminating wasted work

80%
70%
E 60% -
2 50% -
= 40% -
- 30% -
O
% 20% -
€ 10% -
(@)
Z 0% -

M restarts/tx
w avg bkcyc/tx

16 CPUs
Lower is better

pmake labyrinth vacation bayes counter
Speedup: 2% 3% 22% 39% 15x

27

Dependence Aware Contention
Management L

abort?
Tlmestamp contention

management @ -m o

5 transactions

must restart!
Order Vector | T2,T3,T7,T6, T4

Dependence Aware

28

Speedup over Timestamp policy

Contention Management

120%

101%

100%

I Polka
M Eruption
B Dependence-Aware

80%

60%

40%

=
5
>

20%

0%
-20% bayes vacation

-40%

-60% -

Outline

Motivation/Background
Dependence-Aware Model
Dependence-Aware Hardware
Experimental Methodology/Evaluation
Conclusion

30

Related Work

HTM

— TCC [Hammond 04], LogTM[-SE] [Moore 06], VTM [Rajwar
05], MetaTM [Ramadan 07, Rossbach 07], HASTM, PTM,
HyTM, RTM/FlexTM [Shriraman 07,08]

TLS
— Hydra [Olukotun 99], Stampede [Steffan 98,00], Multiscalar
[Sohi 95], [Garzaran 05], [Renau 05]

TM Model extensions

— Privatization [Spear 07], early release [Skare 06], escape
actions [Zilles 06], open/closed nesting [Moss 85, Menon
07], Galois [Kulkarni 07], boosting [Herlihy 08], ANTs [Harris
07]

TM + Conflict Serializability

— Adaptive TSTM [Aydonat 08]
31

Conclusion

e DATM can commit conflicting
transactions

e Improves write-sharing performance

e Transparent to the programmer

« DATM prototype demonstrates
performance benefits

Source code available!
www.metatm.net s,

Broadcast and Scalability

Yes.

We broadcast.
But it’s less than you might

think...

benchmark tx broadcast w| forw rest
bayes 762 1 0.4%
config(8p) 4698136 10,132 19.7%
counter 160000 0 0%
counter-tt 16000 0 0%
genome 352376 104 0%
kmeans 436986 40,723 0%
labyrinth 128 | 0%
list(8p) 78586 86 3.3%
pmake(8p) 251844 10,009 12.9%
ssca2 47304 0 0%
vacation 20000 143 0.4%

Because each node maintains
all deps, this design uses
broadcast for:

e Commit

e Abort

« TXOVW (broadcast writes)

e Forward restarts

 New Dependences

These sources of broadcast
could be avoided in a directory
protocol:

keep only the relevant subset of the
dependence graph at each node

33

FRMSI Transient states

‘Transactional States

Bus avl, write-back

/ Pending write
I L

. transmons back to }MS‘I (ab@rtw_, co

transient states Visa B
. Slgnatures for f@rwafrd/recewe sets Could """""
eliminate five states. it

Why Isn’t this TLS?

ook wnNE

Forward data between threads J
Detect when reads occur too early

Discard speculative state after violations

v

Memory renaming

Multi-threaded workloads J J

Programmer/Compiler transparency J

Retire speculative
Writes in order

Txns can commit in arbitrary order. TLS has the daunting task of maintaining program order for epochs
TLS forwards values when they are the globally committed value (i.e. through memory)

No need to detect “early” reads (before a forwardable value is produced)

Notion of “violation” is different—we must roll back when CS is violated, TLS, when epoch orderin 5g
Retiring writes in order: similar issue—we use CTM state, don’'t need speculation write buffers.
Memory renaming to avoid older threads seeing new values—we have no such issue

http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png

WR deps | RW deps | forward | cascade

restarts aborts

bayes 3.8% 8.5% 0.4% 0%
config (8p) 0.3% 0.2% 19.7% 2.3%
counter 90.0% 80.7% 0% 0%
counter-tt 99.9% 0.3% 0% 100.0%
genome 0.1% 0.1% 0% 14.2%
kmeans 8.9% 6.0% 0% 3.1%
labyrinth 32.0% 32.0% 0% 0.1%
list 14.3% 3.8% 3.3% 0.2%

pmake (8p) 0.5% 0.5% 12.9% 6.5%
ssca2 0.1% 0.1% 0% 0%
vacation 35.2% 7.9% 0.4% 3.5%

Rare in most workloads

Doesn’t this lead to cascading aborts?

36

Inconsistent Reads

incons.

reads

bayes 3
config (8p) 1
counter 0
counter-tt 0
genome 1
kimeans 0
labyrinth 1
list 0

pmake (8p) 10
ssca2 0
vacation 34

OS modifications:
e Page fault handler
» Signal handler

37

Increasing Concurrency

. t
time = >

T1E o serialized
Lazy/Lazy F g-%
v =_h|
(e.g. TCC) 2B 5] z
T1E overlapped
Eager/Eager F

JO1]JU0d
aredqie

(MetaTM,LogTM)

DATM

(Ehgey/Eager Upadideshinfisisens , comffiott disteertiom att conenaf taference)

Design space highlights

e Cache granularity:
— eliminate per word access bhits

 Timestamp-based dependences:
— eliminate Order Vector

 Dependence-Aware contention
management

39

Relative to MetaTM

Design Points

2.5

B bayes
@ vacation
@ counter

[0 counter-tt

Cache-gran Timestamp-fwd DATM

Hardware TM Primer

Key Ideas: Key Abstractions:

Critical sections e Primitives
execute concurrently

—Xbegin, xend, xretry
Conflicts are

detected dynamically + Contlict

%} Waotr N1 Rp U W,
If conflict 71 _} L b)
serializability is « Contention Manager
violated, rollback — Need flexible policy

“Conventional Wisdom Transactionalization”:

Replace locks with transactions
41

Hardware TM basics: example

PC: 0

Working Set

R{

Wi

}

O T - =

xbegin 0: xbegin;
read A 1: read A
read B 2: read B
if(cpu % 2) 3: if(cpu % 2)
write C 4: write C
else 5: else
read C 6: read C
7 ...
xend 8: xend
BSHNAE Cantention

Eanaoledideseart
cpu%', and in the write
sptiBfrofia back

cpul commits

cpul

PC: 8

Working Set

R{}
Wi

42

	Dependence-Aware Transactional Memory for Increased Concurrency
	Concurrency Conundrum
	High contention: optimism warranted?
	Outline
	Two threads sharing a counter
	TM shared counter
	Does this really matter?
	DATM shared counter
	Conflicts become Dependences
	Enforcing ordering using Dependence Graphs
	Enforcing Consistency using Dependence Graphs
	Theoretical Foundation
	Outline
	DATM Requirements
	Dependence-Aware Microarchitecture
	Dependence-Aware Microarchitecture
	Dependence-Aware Microarchitecture
	Dependence-Aware Microarchitecture
	FRMSI protocol: �forwarding and receiving
	FRMSI protocol: �forwarding and receiving
	FRMSI protocol: �forwarding and receiving
	FRMSI protocol: �forwarding and receiving
	Slide Number 23
	Outline
	Experimental Setup
	DATM speedup, 16 CPUs
	Eliminating wasted work
	Dependence Aware Contention Management
	Contention Management
	Outline
	Related Work
	Conclusion
	Broadcast and Scalability
	FRMSI Transient states
	Why isn’t this TLS?
	Doesn’t this lead to cascading aborts?
	Inconsistent Reads
	Increasing Concurrency
	Design space highlights
	Design Points
	Slide Number 41
	Slide Number 42

