
Dependence-Aware
Transactional Memory for
Increased Concurrency

Hany E. Ramadan,
Christopher J. Rossbach,

Emmett Witchel
University of Texas, Austin

Concurrency Conundrum

• Challenge: CMP ubiquity
• Parallel programming with

locks and threads is difficult
– deadlock, livelock, convoys…
– lock ordering, poor composability
– performance-complexity tradeoff

• Transactional Memory (HTM)
– simpler programming model
– removes pitfalls of locking
– coarse-grain transactions can

perform well under low-
contention

2 cores

16 cores

80 cores

(neat!)

2

http://en.wikipedia.org/wiki/Image:Athlon64x2-6400plus.jpg

High contention: optimism warranted?

Locks Transactions

Read-
Sharing

Write-
Sharing

• TM performs poorly with
write-shared data
– Increasing core counts make

this worse
• Write sharing is common

– Statistics, reference
counters, lists…

• Solutions complicate
programming model
– open-nesting, boosting, early

release, ANTs… TM’s need not
always serialize

write-shared
Transactions!

Dependence-Awareness
can help the programmer

(transparently!)
3

Outline

• Motivation
• Dependence-Aware Transactions
• Dependence-Aware Hardware
• Experimental Methodology/Evaluation
• Conclusion

4

Two threads sharing a counter
…

load count,r

inc r

store r,count

…

Schedule:
• dynamic instruction sequence
• models concurrency by interleaving instructions from multiple threads

Initially: count == 0

Result: count == 2

time

Thread B…

load count,r

inc r

store r,count

…

Thread A

count: 012
memory

5

count:

TM shared counter
xbegin

load count,r

inc r

store r,count

xend

Conflict:
• both transactions access a datum, at least one is a write
• intersection between read and write sets of transactions

Initially: count == 0

time

Tx Bxbegin

load count,r

inc r

store r,count

xend

Tx A

01

Conflict!

Current HTM designs cannot accept such schedules,

despite the fact that they yield the correct result!

memorymemory

6

Does this really matter?
xbegin

load X,r0

inc r0

store r0,X

xend

Critsec Bxbegin

load X,r0

inc r0

store r0,X

xend

Critsec A xbegin

<lots of work>

load count,r

inc r

store r,count

xend

Critsec Bxbegin

<lots of work>

load count,r

inc r

store r,count

xend

Critsec A

DATM: use dependences to commit conflicting transactions

Common Pattern!
• Statistics
• Linked lists
• Garbage collectors

7

count:
memory

DATM shared counter
xbegin

load count,r

inc r

store r,count

xend

time

T2xbegin

load count,r

inc r

store r,count

xend

T1

012

Forward speculative data
from T1 to satisfy T2’s load.

• T1 must commit before T2

• If T1 aborts, T2 must also abort

• If T1 overwrites count, T2 must abort

Model these
constraints as
dependences

Initially: count == 0

8

Conflicts become Dependences

Dependence Graph
• Transactions: nodes
• dependences: edges
• edges dictate commit order
• no cycles conflict serializable

…

write X

write Y

read Z

…

Tx B…

read X

write Y

write Z

…

Tx A

Tx A Tx B

R W

W W

W R

Read-Write:
A commits before B

Write-Write:
A commits before B

Write-Read:
• forward data
• overwrite abort
• A commits before B

9

Enforcing ordering using
Dependence Graphs

xbegin

load X,r0

store r0,X

xend

xbegin

load X,r0

store r0,X

xend

Outstanding
Dependences!

xbegin

load X,r0

store r0,X

xend

Wait for T1

T1 T2

T1 must serialize before T2

T1 T2W R

10

Enforcing Consistency using
Dependence Graphs
xbegin

load X,r0

store r0,X

xend

CYCLE!
(lost update)

xbegin

load X, r0

store r0,X

xend

T1 T2

T1 T2R W

W W

• cycle not conflict serializable
• restart some tx to break cycle
• invoke contention manager

11

Theoretical Foundation
• Serializability: results of

concurrent interleaving equivalent
to serial interleaving

• Conflict:
• Conflict-equivalent: same

operations, order of conflicting
operations same

• Conflict-serializability: conflict-
equivalent to a serial interleaving

• 2-phase locking: conservative
implementation of CS

(LogTM, TCC, RTM, MetaTM, OneTM….)

Serializable

Conflict
Serializable

2PL

Correctness
and optimality

Proof: See
[PPoPP 09]

12

Outline

• Motivation/Background
• Dependence-Aware Model
• Dependence-Aware Hardware
• Experimental Methodology/Evaluation
• Conclusion

13

DATM Requirements

Mechanisms:
• Maintain global dependence graph

– Conservative approximation
– Detect cycles, enforce ordering constraints

• Create dependences
• Forwarding/receiving
• Buffer speculative data

Implementation:
coherence, L1, per-core HW structures 14

Dependence-Aware
Microarchitecture

• Order vector:
dependence graph

• TXID, access bits:
versioning, detection

• TXSW: transaction status

• Frc-ND + ND bits:
disable dependences

These are not programmer-visible! 15

Dependence-Aware
Microarchitecture

These are not programmer-visible!

Order vector:

• dependence graph

• topological sort

• conservative approx.

16

Dependence-Aware
Microarchitecture

• Order vector:
dependence graph

• TXID, access bits:
versioning, detection

• TXSW: transaction status

• Frc-ND + ND bits: disable
dependences

These are not programmer-visible! 17

Dependence-Aware
Microarchitecture

• Order vector:
dependence graph

• TXID, access bits:
versioning, detection

• TXSW: transaction status

• Frc-ND + ND bits:
disable dependences, no
active dependences

These are not programmer-visible! 18

FRMSI protocol:
forwarding and receiving

• MSI states
• TX states (T*)
• Forwarded: (T*F)
• Received: (T*R*)
• Committing (CTM)
• Bus messages:

• TXOVW
• xABT
• xCMT

19

FRMSI protocol:
forwarding and receiving

• MSI states
• TX states (T*)
• Forwarded: (T*F)
• Received: (T*R*)
• Committing (CTM)
• Bus messages:

• TXOVW
• xABT
• xCMT

20

FRMSI protocol:
forwarding and receiving

• MSI states
• TxMSI states (T*)
• Forwarded: (T*F)
• Received: (T*R*)
• Committing (CTM)
• Bus messages:

• TXOVW
• xABT
• xCMT

21

FRMSI protocol:
forwarding and receiving

• MSI states
• TX states (T*)
• Forwarded: (T*F)
• Received: (T*R*)
• Committing (CTM)
• Bus messages:

• TXOVW
• xABT
• xCMT

22

Main Memory
100cnt

Converting Conflicts to Dependences

1 xbegin
2 ld R, cnt
3 inc cnt
4 st cnt, R
…
N xend

1 xbegin
2 ld R, cnt
3 inc cnt
4 st cnt, R
5 xend
…

core 0 core 1
core_0

TXID
R

PC
core_1

TXID
R

PC

L1

cnt

OVec
S TXID data

L1

cnt

OVec
S TXID data

101
12345 12345

100

TxA
100

TxATMFTS

101 102

TMM 101

TxB

[A,B][A,B]

TRTMF TxBTMR
Outstanding
Dependence

(stall)

xCMT(A)

CTM 102
101

23

Outline

• Motivation/Background
• Dependence-Aware Model
• Dependence-Aware Hardware
• Experimental Methodology/Evaluation
• Conclusion

24

Experimental Setup
• Implemented DATM by extending MetaTM

– Compared against MetaTM: [Ramadan 2007]
• Simulation environment

– Simics 3.0.30 machine simulator
– x86 ISA w/HTM instructions
– 32k 4-way tx L1 cache; 4MB 4-way L2; 1GB RAM
– 1 cycle/inst, 24 cyc/L2 hit, 350 cyc/main memory
– 8, 16 processors

• Benchmarks
– Micro-benchmarks
– STAMP [Minh ISCA 2007]
– TxLinux: Transactional OS [Rossbach SOSP 2007]

25

3% 2%

22%

39%

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

pmake labyrinth vacation bayes counter

DATM speedup, 16 CPUs

15x

26

0%
10%
20%
30%
40%
50%
60%
70%
80%

pmake labyrinth vacation bayes counter

restarts/tx
avg bkcyc/tx

Eliminating wasted work

16 CPUs
Lower is better

2% 3% 22% 39% 15xSpeedup:
27

Dependence Aware Contention
Management

T3

T7 T6

T1

T4

T2

Timestamp contention
management

T3

5 transactions
must restart!

Dependence Aware
T1

Cascaded
abort?

T2, T3, T7, T6, T4, T1Order Vector T2T2, T3, T7, T6, T4
28

Contention Management
101%

14%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

120%

bayes vacation

Polka
Eruption
Dependence-Aware

29

Outline

• Motivation/Background
• Dependence-Aware Model
• Dependence-Aware Hardware
• Experimental Methodology/Evaluation
• Conclusion

30

Related Work
• HTM

– TCC [Hammond 04], LogTM[-SE] [Moore 06], VTM [Rajwar
05], MetaTM [Ramadan 07, Rossbach 07], HASTM, PTM,
HyTM, RTM/FlexTM [Shriraman 07,08]

• TLS
– Hydra [Olukotun 99], Stampede [Steffan 98,00], Multiscalar

[Sohi 95], [Garzaran 05], [Renau 05]

• TM Model extensions
– Privatization [Spear 07], early release [Skare 06], escape

actions [Zilles 06], open/closed nesting [Moss 85, Menon
07], Galois [Kulkarni 07], boosting [Herlihy 08], ANTs [Harris
07]

• TM + Conflict Serializability
– Adaptive TSTM [Aydonat 08]

31

Conclusion
• DATM can commit conflicting

transactions
• Improves write-sharing performance
• Transparent to the programmer
• DATM prototype demonstrates

performance benefits
Source code available!

www.metatm.net 32

Broadcast and Scalability
Because each node maintains
all deps, this design uses
broadcast for:
• Commit
• Abort
• TXOVW (broadcast writes)
• Forward restarts
• New Dependences

These sources of broadcast
could be avoided in a directory
protocol:

keep only the relevant subset of the
dependence graph at each node

33

Yes.
We broadcast.
But it’s less than you might
think…

FRMSI Transient states

19 transient states: sources:
• forwarding
• overwrite of forwarded lines (TXOVW)
• transitions from MSI T* states

Ameliorating factors
• best-effort: local evictions abort, reduces WB
states
• T*R* states are isolated
• transitions back to MSI (abort, commit) require no
transient states

• Signatures for forward/receive sets could
eliminate five states.

34

Why isn’t this TLS?
TLS DATM TM

Forward data between threads

Detect when reads occur too early

Discard speculative state after violations

Retire speculative
Writes in order
Memory renaming

Multi-threaded workloads

Programmer/Compiler transparency

1. Txns can commit in arbitrary order. TLS has the daunting task of maintaining program order for epochs
2. TLS forwards values when they are the globally committed value (i.e. through memory)
3. No need to detect “early” reads (before a forwardable value is produced)
4. Notion of “violation” is different—we must roll back when CS is violated, TLS, when epoch ordering
5. Retiring writes in order: similar issue—we use CTM state, don’t need speculation write buffers.
6. Memory renaming to avoid older threads seeing new values—we have no such issue

35

http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png
http://www.foodroots.ca/images/checkmark.png

Doesn’t this lead to cascading aborts?

YES

Rare in most workloads
36

Inconsistent Reads

OS modifications:
• Page fault handler
• Signal handler

37

Increasing Concurrency

arbitrate

Lazy/Lazy
(e.g. TCC)

Eager/Eager
(MetaTM,LogTM)

DATM

xend

xbegin

xend

xbegin

xend

xbegin
xbegin

xend

xbegin
xbegin

xend

xend

conflict xbegin

xbegin

T1

T2

T1

T2

T1

T2

conflict
arbitrate

conflict

time

serialized

overlapped
retry

no
retry!

tc

(Lazy/Lazy: Updates buffered, conflict detection at commit time)(Eager/Eager: Updates in-place, conflict detection at time of reference)
38

Design space highlights

• Cache granularity:
– eliminate per word access bits

• Timestamp-based dependences:
– eliminate Order Vector

• Dependence-Aware contention
management

39

Design Points

0

0.5

1

1.5

2

2.5

Cache-gran Timestamp-fwd DATM

 bayes
 vacation
 counter
 counter-tt

40

Key Ideas:
Critical sections
execute concurrently
Conflicts are
detected dynamically
If conflict
serializability is
violated, rollback

Key Abstractions:
• Primitives

– xbegin, xend, xretry
• Conflict

• Contention Manager
– Need flexible policy

Hardware TM Primer

“Conventional Wisdom Transactionalization”:
Replace locks with transactions

41

Working Set
R{}
W{}

0: xbegin
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

cpu 0 cpu 1

0: xbegin;
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

PC: 0

Working Set
R{}
W{}

PC: 0

Working Set
R{}
W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set
R{ }

W{}
A

PC: 2

Working Set
R{ }
W{}

A

PC: 3

Working Set
R{ }

W{}
A,B

PC: 3

Working Set
R{ }

W{}
A,B

PC: 6 PC: 4PC: 7

Working Set
R{ }

W{}
A,B,C

PC: 7

Working Set
R{ }
W{ }

A,B
C

CONFLICT:

C is in the read set of
cpu0, and in the write
set of cpu1

Assume contention
manager decides cpu1
wins:

cpu0 rolls back

cpu1 commits

PC: 0 PC: 8

Working Set
R{}
W{}

Hardware TM basics: example

42

	Dependence-Aware Transactional Memory for Increased Concurrency
	Concurrency Conundrum
	High contention: optimism warranted?
	Outline
	Two threads sharing a counter
	TM shared counter
	Does this really matter?
	DATM shared counter
	Conflicts become Dependences
	Enforcing ordering using Dependence Graphs
	Enforcing Consistency using Dependence Graphs
	Theoretical Foundation
	Outline
	DATM Requirements
	Dependence-Aware Microarchitecture
	Dependence-Aware Microarchitecture
	Dependence-Aware Microarchitecture
	Dependence-Aware Microarchitecture
	FRMSI protocol: �forwarding and receiving
	FRMSI protocol: �forwarding and receiving
	FRMSI protocol: �forwarding and receiving
	FRMSI protocol: �forwarding and receiving
	Slide Number 23
	Outline
	Experimental Setup
	DATM speedup, 16 CPUs
	Eliminating wasted work
	Dependence Aware Contention Management
	Contention Management
	Outline
	Related Work
	Conclusion
	Broadcast and Scalability
	FRMSI Transient states
	Why isn’t this TLS?
	Doesn’t this lead to cascading aborts?
	Inconsistent Reads
	Increasing Concurrency
	Design space highlights
	Design Points
	Slide Number 41
	Slide Number 42

