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Concurrency Conundrum

• Challenge: CMP ubiquity
• Parallel programming with 

locks and threads is difficult
– deadlock, livelock, convoys…
– lock ordering, poor composability
– performance-complexity tradeoff

• Transactional Memory (HTM)
– simpler programming model
– removes pitfalls of locking
– coarse-grain transactions can 

perform well under low-
contention

2 cores

16 cores

80 cores

(neat!)
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High contention: optimism warranted?

Locks Transactions

Read-
Sharing

Write-
Sharing

• TM performs poorly with 
write-shared data
– Increasing core counts make 

this worse
• Write sharing is common

– Statistics, reference 
counters, lists…

• Solutions complicate 
programming model 
– open-nesting, boosting, early 

release, ANTs… TM’s need not 
always serialize 

write-shared 
Transactions!

Dependence-Awareness 
can help the programmer

(transparently!)
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Outline

• Motivation
• Dependence-Aware Transactions
• Dependence-Aware Hardware
• Experimental Methodology/Evaluation
• Conclusion

4



Two threads sharing a counter
…

load count,r

inc r

store r,count

…

Schedule:
• dynamic instruction sequence
• models concurrency by interleaving instructions from multiple threads

Initially: count == 0

Result: count == 2

time

Thread B…

load count,r

inc r

store r,count

…

Thread A

count: 012
memory
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count:

TM shared counter
xbegin

load count,r

inc r

store r,count

xend

Conflict:
• both transactions access a datum, at least one is a write
• intersection between read and write sets of transactions

Initially: count == 0

time

Tx Bxbegin

load count,r

inc r

store r,count

xend

Tx A
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Conflict!

Current HTM designs cannot accept such schedules,

despite the fact that they yield the correct result!

memorymemory
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Does this really matter?
xbegin

load X,r0

inc r0

store r0,X

xend

Critsec Bxbegin

load X,r0

inc r0

store r0,X

xend

Critsec A xbegin

<lots of work>

load count,r

inc r

store r,count

xend

Critsec Bxbegin

<lots of work>

load count,r

inc r

store r,count

xend

Critsec A

DATM: use dependences to commit conflicting transactions

Common Pattern!
• Statistics
• Linked lists 
• Garbage collectors
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count:
memory

DATM shared counter
xbegin

load count,r

inc r

store r,count

xend

time

T2xbegin

load count,r

inc r

store r,count

xend

T1

012

Forward speculative data 
from T1 to satisfy T2’s load. 

• T1 must commit before T2

• If T1 aborts, T2 must also abort

• If T1 overwrites count, T2 must abort

Model these 
constraints as 
dependences

Initially: count == 0
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Conflicts become Dependences

Dependence Graph
• Transactions: nodes
• dependences: edges
• edges dictate commit order
• no cycles conflict serializable

…

write X

write Y

read Z

…

Tx B…

read X

write Y

write Z

…

Tx A

Tx A Tx B

R W

W W

W R

Read-Write: 
A commits before B

Write-Write: 
A commits before B

Write-Read: 
• forward data
• overwrite abort
• A commits before B
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Enforcing ordering using 
Dependence Graphs

xbegin

load X,r0

store r0,X

xend

xbegin

load X,r0

store r0,X

xend

Outstanding 
Dependences!

xbegin

load X,r0

store r0,X

xend

Wait for T1

T1 T2

T1 must serialize before T2

T1 T2W R
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Enforcing Consistency using 
Dependence Graphs
xbegin

load X,r0

store r0,X

xend

CYCLE! 
(lost update)

xbegin

load X, r0

store r0,X

xend

T1 T2

T1 T2R W

W W

• cycle not conflict serializable
• restart some tx to break cycle
• invoke contention manager
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Theoretical Foundation
• Serializability: results of 

concurrent interleaving equivalent 
to serial interleaving

• Conflict:
• Conflict-equivalent: same 

operations, order of conflicting 
operations same

• Conflict-serializability: conflict-
equivalent to a serial interleaving

• 2-phase locking: conservative 
implementation of CS

(LogTM, TCC, RTM, MetaTM, OneTM….)

Serializable

Conflict 
Serializable

2PL

Correctness 
and optimality 

Proof: See 
[PPoPP 09]
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Outline

• Motivation/Background
• Dependence-Aware Model
• Dependence-Aware Hardware
• Experimental Methodology/Evaluation
• Conclusion
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DATM Requirements 

Mechanisms:
• Maintain global dependence graph

– Conservative approximation
– Detect cycles, enforce ordering constraints

• Create dependences
• Forwarding/receiving 
• Buffer speculative data

Implementation: 
coherence, L1, per-core HW structures 14



Dependence-Aware 
Microarchitecture

• Order vector: 
dependence graph

• TXID, access bits: 
versioning, detection

• TXSW: transaction status 

• Frc-ND + ND bits: 
disable dependences

These are not programmer-visible! 15



Dependence-Aware 
Microarchitecture

These are not programmer-visible!

Order vector:

• dependence graph

• topological sort

• conservative approx.
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Dependence-Aware 
Microarchitecture

• Order vector: 
dependence graph

• TXID, access bits: 
versioning, detection

• TXSW: transaction status 

• Frc-ND + ND bits: 
disable dependences, no 
active dependences

These are not programmer-visible! 18



FRMSI protocol: 
forwarding and receiving 

• MSI states
• TX states (T*)
• Forwarded: (T*F)
• Received: (T*R*)
• Committing (CTM)
• Bus messages:

• TXOVW
• xABT 
• xCMT
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FRMSI protocol: 
forwarding and receiving 

• MSI states
• TxMSI states (T*)
• Forwarded: (T*F)
• Received: (T*R*)
• Committing (CTM)
• Bus messages:

• TXOVW
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FRMSI protocol: 
forwarding and receiving 

• MSI states
• TX states (T*)
• Forwarded: (T*F)
• Received: (T*R*)
• Committing (CTM)
• Bus messages:

• TXOVW
• xABT
• xCMT
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Main Memory
100cnt

Converting Conflicts to Dependences

1 xbegin
2 ld R, cnt
3 inc cnt
4 st cnt, R
…
N xend

1 xbegin
2 ld R, cnt
3 inc cnt
4 st cnt, R
5 xend
…

core 0 core 1
core_0

TXID
R

PC
core_1

TXID
R

PC

L1

cnt

OVec
S TXID data

L1

cnt

OVec
S TXID data

101
12345 12345

100

TxA
100

TxATMFTS

101 102

TMM 101

TxB

[A,B][A,B]

TRTMF TxBTMR
Outstanding 
Dependence

(stall)

xCMT(A)

CTM 102
101

23



Outline

• Motivation/Background
• Dependence-Aware Model
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Experimental Setup
• Implemented DATM by extending MetaTM

– Compared against MetaTM: [Ramadan 2007]
• Simulation environment

– Simics 3.0.30 machine simulator
– x86 ISA w/HTM instructions
– 32k 4-way tx L1 cache; 4MB 4-way L2;  1GB RAM
– 1 cycle/inst, 24 cyc/L2 hit, 350 cyc/main memory
– 8, 16 processors

• Benchmarks
– Micro-benchmarks
– STAMP [Minh ISCA 2007]
– TxLinux: Transactional OS [Rossbach SOSP 2007]
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3% 2%

22%

39%

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

pmake labyrinth vacation bayes counter

DATM speedup, 16 CPUs

15x
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0%
10%
20%
30%
40%
50%
60%
70%
80%

pmake labyrinth vacation bayes counter

restarts/tx
avg bkcyc/tx

Eliminating wasted work

16 CPUs
Lower is better

2% 3% 22% 39% 15xSpeedup:
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Dependence Aware Contention 
Management

T3

T7 T6

T1

T4

T2

Timestamp contention
management

T3

5 transactions 
must restart!

Dependence Aware
T1

Cascaded 
abort?

T2, T3, T7, T6, T4, T1Order Vector T2T2, T3, T7, T6, T4
28



Contention Management
101%

14%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

120%

bayes vacation

Polka
Eruption
Dependence-Aware
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Related Work
• HTM

– TCC [Hammond 04], LogTM[-SE] [Moore 06], VTM [Rajwar 
05], MetaTM [Ramadan 07, Rossbach 07], HASTM, PTM, 
HyTM, RTM/FlexTM [Shriraman 07,08]

• TLS 
– Hydra [Olukotun 99], Stampede [Steffan 98,00], Multiscalar 

[Sohi 95], [Garzaran 05], [Renau 05]

• TM Model extensions
– Privatization [Spear 07], early release [Skare 06], escape 

actions [Zilles 06], open/closed nesting [Moss 85, Menon 
07], Galois [Kulkarni 07], boosting [Herlihy 08], ANTs [Harris 
07]

• TM + Conflict Serializability
– Adaptive TSTM [Aydonat 08]
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Conclusion
• DATM can commit conflicting 

transactions
• Improves write-sharing performance
• Transparent to the programmer
• DATM prototype demonstrates 

performance benefits
Source code available! 

www.metatm.net 32



Broadcast and Scalability
Because each node maintains 
all deps, this design uses 
broadcast for:
• Commit
• Abort
• TXOVW (broadcast writes)
• Forward restarts 
• New Dependences

These sources of broadcast 
could be avoided in a directory 
protocol:

keep only the relevant subset of the 
dependence graph at each node

33

Yes. 
We broadcast.
But it’s less than you might 
think…



FRMSI Transient states

19 transient states: sources:
• forwarding 
• overwrite of forwarded lines (TXOVW)
• transitions from MSI T* states

Ameliorating factors
• best-effort: local evictions abort, reduces WB 
states
• T*R* states are isolated
• transitions back to MSI (abort, commit) require no 
transient states

• Signatures for forward/receive sets could 
eliminate five states.
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Why isn’t this TLS?
TLS DATM TM

Forward data between threads

Detect when reads occur too early

Discard speculative state after violations

Retire speculative 
Writes in order
Memory renaming

Multi-threaded workloads

Programmer/Compiler transparency

1. Txns can commit in arbitrary order. TLS has the daunting task of maintaining program order for epochs
2. TLS forwards values when they are the globally committed value (i.e. through memory)
3. No need to detect “early” reads (before a forwardable value is produced)
4. Notion of “violation” is different—we must roll back when CS is violated, TLS, when epoch ordering
5. Retiring writes in order: similar issue—we use CTM state, don’t need speculation write buffers. 
6. Memory renaming to avoid older threads seeing new values—we have no such issue

35
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Doesn’t this lead to cascading aborts?

YES

Rare in most workloads
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Inconsistent Reads

OS modifications:
• Page fault handler
• Signal handler

37



Increasing Concurrency

arbitrate

Lazy/Lazy 
(e.g. TCC)

Eager/Eager 
(MetaTM,LogTM)

DATM

xend

xbegin

xend

xbegin

xend

xbegin
xbegin

xend

xbegin
xbegin

xend

xend

conflict xbegin

xbegin

T1

T2

T1

T2

T1

T2

conflict
arbitrate

conflict

time

serialized

overlapped 
retry

no 
retry!

tc

(Lazy/Lazy: Updates buffered, conflict detection at commit time)(Eager/Eager: Updates in-place, conflict detection at time of reference)
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Design space highlights

• Cache granularity: 
– eliminate per word access bits

• Timestamp-based dependences: 
– eliminate Order Vector

• Dependence-Aware contention 
management
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Design Points

0

0.5

1

1.5

2

2.5

Cache-gran Timestamp-fwd DATM

 bayes  
 vacation  
 counter  
 counter-tt  
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Key Ideas:
Critical sections 
execute concurrently
Conflicts are 
detected dynamically
If conflict 
serializability is 
violated, rollback

Key Abstractions:
• Primitives

– xbegin, xend, xretry
• Conflict

• Contention Manager
– Need flexible policy

Hardware TM Primer

“Conventional Wisdom Transactionalization”:
Replace locks with transactions
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Working Set
R{}
W{}

0: xbegin
1: read A
2: read B
3: if(cpu % 2) 
4:   write C
5: else
6:   read C
7: …
8: xend

cpu 0 cpu 1

0: xbegin;
1: read A
2: read B
3: if(cpu % 2) 
4:   write C
5: else
6:   read C
7: …
8: xend

PC: 0

Working Set
R{}
W{}

PC: 0

Working Set
R{}
W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set
R{     }

W{}
A

PC: 2

Working Set
R{    }
W{}

A

PC: 3

Working Set
R{         }

W{}
A,B

PC: 3

Working Set
R{       }

W{}
A,B

PC: 6 PC: 4PC: 7

Working Set
R{            }

W{}
A,B,C

PC: 7

Working Set
R{       }
W{   }

A,B
C

CONFLICT: 

C is in the read set of 
cpu0, and in the write 
set of cpu1

Assume contention 
manager decides cpu1 
wins: 

cpu0 rolls back

cpu1 commits

PC: 0 PC: 8

Working Set
R{}
W{}

Hardware TM basics: example
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