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Abstract

Thespan cache is ahardware-softwaredesignfor anew
kind of energy-efficient microprocessordatacachewhich
hastwo key features.Thefirst is direct addressing which
allows software to accesscachedata without the hard-
wareperforminga cachetagcheck.Thesetag-unchecked
loadsandstoressave theenergy of performinga tagcheck
whenthe compilercanguaranteean accesswill be to the
sameline asan earlieraccess.The secondkey featureis
softwarecontrolledline size.Thisletsthecompilerspecify
how muchdatato fetchon a miss,allowing greatercache
utilization andreducingmemorybandwidthrequirements.
Two possiblehardwareimplementationsof softwarecon-
trolled line sizearesketchedanddiscussed.

1 Intr oduction

Cachingis oneof the mosteffective techniquesfor in-
creasingperformanceanddecreasingenergy consumption.
But any givenhardwareimplementationof a cachehasto
balanceout many different,oftenincompatible,usagepat-
terns.In this workshoppaper, we presentongoingwork to
developanew hardware-softwareinterfacefor datacaches
that allows softwaregreatercontrol over cacheoperation
to reduceenergy consumptionandincreaseperformance.

Onecomponentof thespancacheinterfaceis direct ad-
dressing which allows softwareto accesscachedatawith-
out thehardwareperformingacachetagcheck.Thesetag-
unchecked loads and stores save the energy of perform-
ing atagcheckwhenthecompilercanguaranteeanaccess
will be to the sameline as an earlier access. When the
compilerhasthe information,the tag checkcanbe elim-
inated. But direct addressinggracefullydegradesto con-
ventionaltag-checkedaccesseswhenthe compilercannot
eliminatethetagcheck,or in thepresenceof interruptsor
cacheinvalidations. Initial experimentswith a Java com-
piler for SPECjvm98codeshow that 13–34%of all data
cachetagcheckscanbeeliminated,saving 6-17%of cache
accessenergy and1–3.5%of total processorenergy overa
baselinelow-powerprocessordesign.With bettercompiler

analysisweexpectto improvetheseresults.
Software controlled line size lets the software specify

the cacheline size for eachaccess. Becausedirect ad-
dressingeliminatesmany tag checks,it reducesthe rel-
ative penalty of introducing a more sophisticatedcache
searchschemefor caseswheretagcheckscannotbeelim-
inated.Direct addressinghelpsenablesoftwarecontrolled
line size. Software-controlledcacheline size will allow
thecompilerto make betteruseof the cache.If thecom-
piler knowstheapplicationonly needsoneword,only one
wordis fetched,andonly thatwordandits tagresidein the
cache.In a conventionalcache,every word accessbrings
in anentireline. Greatercacheutilizationmeansincreased
hit ratesfor a givencachesize,or it canmeanmaintaining
agivenhit ratewhile reducingcachearea.

Increasinghit ratesreducespower consumptionsince
missesneedto go off chip which consumesa lot of power.
Decreasingthe cacheareahasmany beneficialeffectsin-
cluding cost reduction,and counteractingthe effects of
technologyscalingwhich limits thesizeof cachethatcan
be accessedin a fixed numberof processorclock cycles
[1]. It alsoreducescacheleakagecurrentfor a given hit
rate,andreducestotalmemoryaccessenergy.

The spancachedesigntakes into accountthe fragility
of compileranalysis,andensuresthatthehardwarecanact
asabackup.For instance,onepieceof codemayreference
an in-cachedataitem usingdirectaddressing,but another
pieceof codecanstill usea conventionalvirtual address
to find thesamedataitem in thecache.Anothernice fea-
tureis thatahardwareimplementationcanchoseto ignore
directaddressingfeaturesaltogether.

We focus on data accessessince instruction caches,
while they dissipateconsiderableenergy, have very reg-
ular accesspatternsandareonly accessedvia theprogram
counter. Hencethey are amenableto software-invisible
micro-architecturaltechniquesfor power reduction,e.g.,
[16, 17, 15].

We first review thedesignof a low-power cache.Then
we explain cachestaggedwith content-addressablemem-
ory. In section3 we discussdirect addressing,the pro-
cesswhich allows us to avoid tag checks,andwe present
a thoroughevaluationof thedesignin thenext section.In
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Figure1: Theorganizationof a set-associative RAM-tag cache.
On every access,datais readout of every way, thoughthe data
from at mostoneway is used. This extra work needlesslycon-
sumespower.

section5 we describesoftwarecontrol of cacheline size,
andsketchtwo possibleimplementationsof softwarecon-
trolled line size,oneusingjust (S)RAM, theotherusinga
content-addressablememory.

2 Curr ent cachedesign

An energy-efficient cache design needsto find the
propercacheassociativity. Standardcacheshold dataand
tag information in the RAM of a cacheline. The hard-
warefindsthedatabasedon thevirtual address,readsthe
dataandchecksthetagagainstthevaluestoredin theline.
Thetagfor avirtually indexedcache(which is commonin
energy-efficient designssincethey do not accessthe TLB
on a primary cachehit) consistsof the upperbits of the
virtual addressand an addressspaceidentifier, which is
uniqueto a process(while noneof our techniquesrely on
having a virtually indexedcache,we will assumeonefor
simplicity of exposition).An � -wayassociativecachedoes
� tag checksin parallel. It alsodoes� datareadsin par-
allel, throwing out the valueof all but oneof them. This
designis shown in Figure1. While associativity is good
for performanceandfor loweringmissrates,theredundant
work it requireshasa highenergy cost.

Direct-mappedcacheshave lower hit energy because
they only readonetag andonedataword. But they have
muchlarger missratesdueto conflicts. Sincethe energy
miss penalty is large, they have larger total memoryac-
cessenergy [21]. Way-predictingcachescanprovideasso-
ciativity at lower hit energy by only checkingoneway in
ann-waysetassociativecache,but incur energy anddelay
penaltiesto accesstheway-predictiontableonwayhitsand
additionalenergy andperformancepenaltiesif predictions
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Figure 2: The organizationof a highly-associative CAM-tag
cache.The tag bits arebroadcastto the CAM, andif thereis a
hit, the word is readout. The tag checkis a high percentageof
theenergy cost,but theoverall energy costis roughlyequivalent
to a two-way setassociative cache,andthemissrateis lower.

areincorrect[10].

Cachesare also often split into subbanks,which are
smaller, replicatedcacheswhich handlecertain address
ranges.Banknumbersaredirectmappedusingtheappro-
priatevirtual addressbits. For a 16KB cachewith 1KB
subbanks,bits eleven throughnine arethe subbanknum-
ber.

An alternative to RAM-tag caches, chosen by the
StrongARMdesigners[6] andotherenergy-consciousde-
signs[2] is to storethe tagsin content-addressablemem-
ory (CAM). Here the tag is broadcastto the cachelines,
andonly the line that matcheshasits datareadout. The
energy consumptionof a 32-way CAM-tag searchis ap-
proximatelythesameasa 2-way setassociative RAM-tag
search[21, 2]. CAM-tag cachesareoftensubbanked,and
one bank of the designis shown in Figure 2. Although
CAM-tag cachesreducemissratesandhencetotal access
energy, they expendrelatively greaterenergy in tagchecks.

The tag check for CAM-tag cachesis expensive be-
causethe tag is broadcastto the CAM in order to find
the proper line for the data. If we could shortcut that
process—ifthesoftwarecould tell thehardwarewhat line
to read, rather than providing a virtual addressas a key
to the content-addressablememory—thenwe would save
significantamountsof energy. For our HSpicesimulations
of our CAM taggedcache,the tag checkconsumed43%
of cacheenergy for stores,and54% of cacheenergy for
loads,for a 16KB cachewith 1KB subbanks.The prob-
lemis how to let softwaredirectlyaccesscachelineswith-
out compromisinginter-processprotectionandwhile pre-
servingcorrectoperationin thefaceof cachereplacements
or othercachecoherenceactions.
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3 Dir ect addressing

In orderto eliminatethetagcheckanddatasearchof a
CAM-tagcache,wewantto changetheprocessorinterface
from issuingvirtual addressesto usingsomethingthattells
thehardwareexactly whatcacheline hastheneededdata.
We believe this is bestexpressedasthecontentsof anon-
cacheregister.

In ourproposeddesign,weaugmentthecachestatewith
eightregisters,calleddirectaddress(DA) registers.We ar-
rived at the numbereight experimentally. Theseregisters
containenoughinformationto specifythebankandway in
theline usedin thataccess.Theexactwidth anddatalay-
out of the registeris implementationdependentandnever
madevisible to software. In a tag-uncheckedaccess,the
CPUspecifiesaDA registernumber, andthehardwareuses
the register’s contentswith the offset from the virtual ad-
dress.Sincethehardwareis unconstrainedin thelayoutof
theDA registers,they canbeimplementedefficientlyusing
thenaturallayoutof theintermediatebit vectorsgenerated
for regularcacheaccesses.TheDA registersarephysically
distributedaroundthecachelayoutwith eachindividualbit
field heldcloseto theportionof thecachethat requiresit.
In essence,theDA registersmemoizetheresultsof acache
lookupusinglatchesplacealongsidethevariouscachead-
dressandcontrol signals. We expectminimal additional
delayto mux in a DA signalversusa regularcacheaccess
signal.

Table 1 shows the instructionsneededby the CPU to
usetheDA registersfor directaddressingof thecache(we
show only word accesses,but half-wordandbyteaccesses
arehandledanalogously).Oneflavor of memoryoperation
doesits memoryoperationandwritesa directaddressreg-
ister, theotherdoesits memoryoperationusingthedirect
addressregister.

Thereshouldbeno performanceimpactfrom usingdi-
rect addressing.Direct addressingis an optimizationand
evenallowsanull implementationwhereall directaddress
registerinformationis simply ignored.

3.1 An exampleof dir ect cacheaddressing

As a concreteexample,considerthe codein Figure3,
commonat C functionentry, anda transformationof that
codewhich usesdirectaddressing.

The direct addressedoperationsuseda0 which is set
up by the swlda instruction. This allows the compiler
to usetheswda instructionsto eliminatecachetagchecks
on up to 7 stores(the remainderof the cacheline started
by the store)without addingadditionalinstructions. Our
compilerkeepsthestack32-bytealigned,whichallowsthis
transformation.

Old Code New Code

sub $sp, 64 sub $sp, 64

sw $ra, 60($sp) swlda $ra, 60($sp), $da0

sw $fp, 56($sp) swda $fp, 56($sp), $da0

sw $s0, 52($sp) swda $s0, 52($sp), $da0

Figure3: Codecommonat C functionentry, andthesamecode
transformedto usedirectaddressregisters.

3.1.1 Alignment assumptions

Alignment information is neededfor the compiler to use
DA registerseffectively. The compilercontrolsthe stack
pointerandso canensureit is alwaysalignedto a cache
boundary. Small automaticvariablesare never allocated
acrossline boundaries,allowing referencesto local vari-
ablesandspill codeto profit from useof theDA registers.

For heap-allocateddata,therearetwo optionsdepend-
ing on thesourcelanguage.For languagesthat featureau-
tomaticmemoryreclamation,suchasJava, we canmod-
ify the systemallocatorto follow somealignmentpolicy.
All memorycomesfrom thesystemallocator, sowe have
globalguaranteeson thealignmentof data.

For languageslike C, static compile-timeanalysisis
moredifficult andin our schemewe rely on profile infor-
mation to get predictionsof expectedalignment. Where
we expectto seedataaligned,thecompilergeneratestwo
copiesof the codeandchoosesbetweenthemwith a run-
time alignmenttest. If the test succeeds,we executean
optimizedversionthat usesthe alignmentinformation to
eliminatetagchecks.If thetestfails,weexecutethevanilla
compiledversion.

This type of optimization is most profitable in loops
whereit canbehoistedoutof theloopbodyandfoldedinto
thechecksnormallydonefor loop unrolling. Unrolling is
donefor bothperformancegain,andfor tag-accesselimi-
nation.Onedisadvantageof usingloopunrolling to obtain
alignmentinformation is that too muchunrolling can in-
creaseI-cachepressure[14].

3.2 Coherence

The DA registersmustbe kept coherentwith the state
of the cache.The coherenceactionsfor line replacement
and for external intervention (e.g., for DMA or cache-
coherencein a bus-basedsystem)are the same. On any
eviction,weperformanassociativesearchof theDA regis-
tersto seeif any arepointingto thevictim line. If so,wein-
validatetheDA register, preservingtheinclusionproperty
betweentheL1 cacheandtheDA registers.Thisallowsus
to usetheL1 cacheasa filter for snoopinginvalidationsto
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Instruction Explanation

(l|s)wlda rt, off(rs), da

Loador storeword, loaddirectaddress.Theseinstructionsactlike regu-
lar loadsandstores,but they alsosetthedirectaddressregisterda with
the location of the referencedline. We useMIPS as the basisof our
instructionencoding,so the offset for this instructionis 13 bits signed
insteadof the regular 16 bit offset sincethereare3 bits usedasa da
specifier.

(l|s)wda rt, off(rs), da

Load or store word, using direct address. Cachedata from the line
pointedto by da, usingthe line offsetbits of rs + off is transferred
to registerrt (or the contentsof rt is storedinto the line specifiedby
da). If da is invalid, the instructionactslike (l|w)wlda, accessing
memoryandsettingtheda register.

daflush mask

Flush direct addressregistersspecifiedby the bitmask(which is little
endian).This clearsthevalid bit on thespecifieddirectaddressregister.
This instructionis usedat theendof functioncallsandby theoperating
systemwhentheDA registerlifetime hasended.

Table1: A tableof instructionsfor manipulatingdirectaddressregisters

the DA registers. We only searchthe DA registersif the
snoopcausesaneviction.

Searchingthe DA registersconsumessomeadditional
energy on eachevict, but it is only a small additionto the
total costof thereplacementwhich might involve fetching
aline from DRAM. Wecanreducethecostof searchingthe
DA registersby usingaconservativeschemethatconsiders
fewer bits of the address,at the cost of someadditional
spuriousinvalidations.

3.3 Operating system maintenance of inter-
processprotection

A similar issueis how the operatingsystemmaintains
DA registersstatewhenaprocessis descheduled.Wehave
two choicesfor maintenanceof theDA registers.Thefirst
is for the OS to save and restoretheir value. We briefly
discussthereasonsfor not doingthis.

To save andrestorethe DA registers,theOScouldnot
simply save the bit patternsstoredin the registers. The
bit patternsin the registersaredirect cacheaddressesand
they point to linesin thecache.WhentheOSreschedules
theprocessthecontentsof thecacheareunknown,andun-
likely to bethesameaswhentheprocesswaslastrunning.
ThepreviousDA registerstateis thereforenotusefulto the
processandindeedmight point to linestheprocesshasno
right to access.

In order for the OS to save and restorethe DA regis-
ters,it would alsohave to recreatethe partof the stateof
the cacheexpectedby the processaboutto run. In order
to do that it needsthe virtual addressthe processusedto
setup the DA registers.This is not storedanywhere. We

don’t want it in theDA registeritself sincethatmakesthe
hardwaremorecomplicated.An awkwardsolutionwould
have thecompileroutputa tabletelling theoperatingsys-
temfor every programpoint whatDA registersarein use
with whatvirtual address.Maintenanceof this tableis too
complicatedto justify, and the instructioncost to access
it would be hundredsof timesthe costof an invalidation
basedscheme.

Thesecondoptionis for theOSto explicitly invalidate
all of theDA registersin betweenprocesscontexts. This is
theoptionwe choose.TheOSinvalidatesany DA register
beforeit usesthem(of coursetheOSis freeto usethereg-
istersfor its own code),andinvalidatesall of thembefore
the next usercontext is run. This enforcesinter-process
protectionbecausevalid entriesare never communicated
betweenprotectiondomains.

With this invalidation-basedscheme,aprocessthatwas
descheduledwhile it was using the DA registerswill be
rescheduledby the OS with all of its DA registersinval-
idated. When it tries to usea DA register, it will cause
a regular tag-checkto be performedusingthe full virtual
address,andset the DA register to a valid value. Being
descheduledonly meansthe processwill incur a full tag
checkcostoncefor eachDA register it wasusing; direct
addressinggracefullydegradesto standardtagchecking.

3.4 Separatecompilation units

Most compilersanalyzeonefunctionat a time,andDA
registersarelikehiddenparameters.It wouldrequireinter-
proceduralanalysisfor a function to know thate.g.,a DA
registerpointedto someglobally visible data. We do not

4



implementinter-proceduralanalysis,so our compiler just
invalidatesall DA registersusedin a givenfunctionat that
function’sreturn.DA registersthatareliveacrossfunction
callsarein dangerof beinginvalidated(makingtheir next
usea tag-checkedoperation),if they areusedby thecalled
function.

We have not observedthis to bea big problembecause
function calls in tight loops are rare since they are also
badfor performance.Sowe currentlynaively allocateDA
registersfrom zeroto seven. If interferencefrom function
callsbecomesanissue,it is possiblethatsomesimpleallo-
cationpolicy, likenon-leafproceduresallocatingfrom zero
to seven,andleafproceduresallocatingfrom sevento zero,
will avoid mostproblemsfrom functioncall invalidations.

4 Statusand resultsfor dir ect addressing

We have implementedthe compiler support for tag
check elimination in FLEX, a Java bytecode-to-native
compiler developedat MIT [7]. FLEX takes Java byte
codesand producesa MIPS-like assemblylanguagethat
hassupportfor direct addressing.We modifiedthe GNU
gasassemblerto acceptthis assemblylanguage,and we
generateMIPS-like binarieswhich run in our simulation
system.Thenumbersin this sectioncomefrom a standard
MIPS ISA simulatorwith cachemodel, modified to per-
form sanity checkson our direct addressinginstructions
(sothate.g.,thevirtual addresswasalwaysin theline ref-
erencedby theDA register).We arecurrentlyimplement-
ing improvedversionsof thesealgorithmsin the SUIF C
compilerfrom Stanford[8].

We analyzedusercodeto find accessesto objectsthat
dominateotheraccesses,andtransformedthesubordinate
accessesto usetag-uncheckedaccesses.AccessA domi-
natesaccessB if andonly if every executionpaththat in-
cludesB includesA as a predecessor. We modified the
heapallocatorto not split objectsover cachelines, so the
compilerknew thatif anobjectwassmallerthana line, all
referencesto it wereto thesamecacheline.

Our implementationfor userdatawaslimited. We only
includeda singledirect addressregister, andwe only al-
lowed that register to be live within a singlebasicblock.
We plana moreaggressive implementation.

Oneadvancedfeatureof the Java implementationwas
our transformationof spill code.We modifiedthestandard
MIPS calling conventionfor C to packcallee-savedregis-
terswith thereturnaddressandframepointeron thestack.
By packingthemontoa line, we canusuallyusea single
directaddressregisterfor thesaveandrestore.

Somedatafor the reductionin tag checksis shown in
Table2. All benchmarkswererun usingthemediumsized

input (size10) from the Java context structure.This size
allowsthebenchmarksto entertheirsteadystate,but limits
simulationtime.

Thesenumbersaresurprisinglyhighgiventhatweonly
usedonedirectaddressregisterwhich is only live in asin-
gle basicblock. Spill codeaccountsfor a large portion
of the savings. Our preliminary C implementationonly
transformsuserreferences,ignoring spill references,and
we areseeingaround50%tagcheckreductionusingeight
DA registerson Mediabenchapplications.

To get the reductionin cachepower, we useour model
of alow powercacheandprocessor. Ourfigurescomefrom
a SyCHOSyssimulation [13], which usesa transition-
sensitivedetailedstructuralmodel.Thetagsearchis 57pJ,
out of a total 106pJfor loads(54%),and133pJfor stores
(43%). This is a highly optimizedCAM-tag cachewith
1KB subbanks,segmentedword lines,andlow-swingbit-
lines. Saving additionalenergy over this optimizedbase-
line is difficult.

The reductionin total processorplus cacheenergy is
very sensitive to the detailsof the processordesign,and
somewhat sensitive to the benchmark. We show an es-
timate basedon the averageenergy consumptionspent
checkingthe datacachetags. This estimatecamefrom
detailed,transitionsensitive simulationsof our processor
model executingMediabenchand SPECint95[12]. The
variation from benchmarkto benchmarkwas reasonably
small,soanaggregatefigureof energy consumedby data
cachetagchecksis reasonable.[12] measuresthis average
energy consumedat10%.Our tagcheckeliminationsaves
part of that 10%. The control logic for direct addressing,
andthe decodeenergy for the extra instructionswill con-
sumeextraenergy, andwe do notmodelthateffect.

Ourreductionin tagchecksyieldsa6–17%reductionin
datacacheenergy, andanoverallsavingsof 1–3.5%for the
entiresystem. The energy saving is highly dependenton
theprocessorandcacheimplementation.For example,in
our initial systemdesignthecachehad2KB subbanks,re-
sultingin alargeroverallsaving of 3–8.5%(anddatacache
energy savings from 13.7–34.6%).But the smaller1KB
subbankwechosefor ourbaselinereducestotalaccessen-
ergy, at thecostof anincreasein cachearea.

Theseinitial resultsareencouragingandwebelieve the
moreaggressive compileranalysisschemeswe aredevel-
opingcanreduceenergy further. But perhapsmoreimpor-
tant thanthe raw energy savings is the ideathateliminat-
ing tagcheckscanopenthedoorto morecomplicatedtag
searchschemes,sincetagchecksneednotbeperformedon
everyreference.
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Benchmark inst Tag checkseliminated cacheenergy Processor+ cache
count ld st ld + st reduction energy reduction

Compress 47582324 28.1%(2410368) 46.5%(2105908) 34.6% 17.0% 3.5%
db 338223648 14.8%(9277168) 26.9%(9224657) 19.1% 9.4% 1.9%
Jess 105221820 13.8%(2310078) 24.7%(2553688) 18.0% 8.8% 1.8%
Jack 671905543 10.2%(12755070) 20.0%(14073950) 13.7% 6.7% 1.4%

Table 2: SPECjvm98programswith the percentage(and count) of tag checkseliminatedusing a single direct address
register, live in a singlebasicblock. Thehigherstorenumbersaredueto theaggressive transformationof spill code.We
presentenergy savingsrelative to just thedatacache,andtheentireinstructionanddatacacheandprocessorsystem.

tag

tag

tag

tag

tag tagtag tag

Conventional cache

Span cache

Figure 4: On top is a conventionalcachestructurewith fixed
placetagsandfixed offset and length data. Below it is a span
cachestructurewith variably placed,word-lengthtagsandvari-
ablelengthdata. In bothfigures,the tagareais shaded,thedata
areais clear. The maximumlengthof datain the spancacheis
constrainedby aparticularimplementation.

5 Controlling line sizein a spancache

Thegoalof thespancacheis to make betteruseof the
cache—eitherby increasinghit ratesfor agivencachesize
or by maintaininga given hit rate while shrinking cache
area. The fixed size and alignmentof traditional cache
lines conflictswith the memoryaccesspatternsof appli-
cations,preventingsoftwarefrom fully utilizing thecache
area.By giving softwarecontrolovertheline sizeonaper-
accessbasis,thesoftwarecanmoreeffectively managethe
hardware.

Traditionalcachesmovedatain linesof fixedoffsetand
length. The spancachegeneralizesthis notion of lines
into spans.A spanis somenumberof wordsat someoff-
set. Softwarecancontrol thespanparameterswhenit has
knowledgeenoughto do so. Figure4 showsa comparison
betweena traditionalcachestructure,andthespancache.
Thechallengefor thecompileris finding enoughinforma-
tion aboutreferencesto make the softwarecontrolworth-

while. The challengefor the hardwareis a circuit design
thatis fastandallows this flexibility .

Thespancacheusesmorehardwaresupportto give the
compilertheability to determinethesizeandplacementof
datain thecache.Hardwaretagschemesaresimplefor two
reasons—thehit caseshouldhappenin a singlecycle,and
thetagsarecheckedon everyaccess.We wantto maintain
singlecyclehits for performance,but if tagsnolongerhave
to becheckedon every access,thatalleviatessomeof the
needto keeptag schemesvery simple. Fixing the offset
and length of cachelines makes them fast to accessand
easyto implement,but it wastesa lot of cachearea,asthe
measurementsin Table3 show.

Table3 shows a story familiar to computerarchitects.
Someprograms,likeijpeg, streamthroughdatawith unit
strideandhencecompletelyusecachelines. Theseappli-
cationsbenefitfrom long cachelinessincelong lineshelp
the applicationexploit spatiallocality. Applicationswith
morecomplicateddatastructuresandmorechaoticaccess
patternslikegcc andm88ksim show amorebimodalbe-
havior with many lineshaving only onewordaccessed,and
many lineshaving all eightwordsaccessed.This datawas
collectedon a CAM-tag cachewith 1KB subbanks,32-
way setassociativity anda FIFO replacementpolicy. The
StrongARMprimary cachealso hasa FIFO replacement
policy.

We proposeallowing softwareto specifyboththeloca-
tion of eachaccessandalsothesizeandshapeof theregion
of memorybeingaccessed(within somehardwarelimita-
tions of course). We will presentthe software interface,
thenexaminetwo possiblehardwareimplementations.

5.1 Software interface to a spancache

No changesare necessaryfor software to usea span
cache. Regular loadsandstoresdefault to cachelines of
traditionalsizeandalignment(which is 32 bytes,32-byte
aligned in our design). Direct addressregisterscan be
usedwith this default size and alignmentinformation as
well. Spancachesdistinguishthemselvesby allowing soft-
wareto specifytheoffsetandlengthof thememoryregion
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Benchmark 1–4 5–8 1 8
words words word words

pegwit enc 96.5% 3.5% 82.2% 2.6%
gcc 51.7% 48.3% 16.9% 33.3%
m88ksim 69.8% 30.2% 61.1% 23.0%
ijpeg 16.8% 83.2% 6.9% 74.0%

Table3: SPECINT 95 andMediabenchprogramssimu-
latedwith a 16 KB, 32 byte line primarydatacache.For
every line evicted,the tableshows thepercentageof lines
thathadlessthanhalf a line accessed(1–4words),andthe
percentagethat had more than half a line accessed(5–8
words). We alsopresentthe percentageof lines that had
only 1 word or all wordsaccessedastheseare important
specialcases.Datastreamingapplicationslike ijpeg tend
to fully utilize cachelineswhile complicatedintegercodes
look morebimodalwith many lines fully usedandmany
lineswith only onewordused.

fetchedon a missfor a particularaccess.The maximum
lengthof a spanis 64 bytesin ourdesign.

Eachreferencefor a spancachecan specify a virtual
address,direct addressregister, andshape. The shapeis
theshapeof thespanto befetchedif this accessmisses.It
consistsof an offset from the virtual addressspecifiedin
theinstruction,anda length.

The standard(non-DA) load andstoreinstructionsac-
cessthe 32 byte,32-byte-alignedcacheline on which the
referenceoccurred,providing thesamebehavior asa con-
ventionalcachescheme.

5.1.1 Cacheline shapeencoding

Specifyinga spanrequiresonebyte. We have a maximum
line length of 16 words (64 bytes). The minimum line
lengthis a word, sowe require4 bits for a lengthfield(1–
16). For full generality, we requirea 4-bit negative offset
(-15–0)which specifieswheretheline is supposedto start
relative to thecurrentword. Soanoffsetof -2 meansthis
wordis thethird in theline. Thisencodingallowsanaccess
to beanywherein a spanof up to 16words.

We are currently investigating several alternative
schemesfor encodingthis information in the instruction
stream. The most promisingapproachis to usevariable
length instructions,as thesehave a numberof additional
advantagesin a low power setting. Instructionfetch con-
sumesa lot of processorpower, andsomeinstructionsare
morepopularandeasierto encodethanothers,soavariable
lengthencoding,like the16-bit,32-bit,and48-bit instruc-
tionsin theIBM 360architecture,cansignificantlyreduce
staticcodesizeandinstructioncachebandwidthwhile eas-
ing theadditionof new instructionforms.

Sincetheshapeinformationis only neededon a missit
wouldalsobepossibleto setit up in advanceif we wished
to restrictourselvesto a fixed-lengthinstructionset. For
instance,an additionalinstructioncould set the shapein-
formationfor referencesvia a givenDA register. We need
moreinformationabouthow theseaddressingoptionsin-
teractbeforewe canknow whatwould be thebestencod-
ing.

5.1.2 Using the spancache

Assumingthatwe simply tack theoffsetandlengthinfor-
mation onto the memoryaccessinstruction,Table 4 is a
codeexamplein C showing how this interfacecanbeused.

Thecodeexampleshowsthecommoninterplayof word
orientedandarrayorienteddata.Theglobalstructcontrol
hasa frequentlyusedresult field, and someinfrequently
usederrorfields.Accessesto theresultfield areperformed
specifyingan offset of 0 wordsanda refill line sizeof 1
word. Accessesto thedataarrayspecifyarefill of thefetch
addressandthenext 15 words(16 wordstotal). Sincethe
accessto data[i+1] occursbeforethe accessto data[i], a
misson data[i+1] startsits missrefill at oneword before
its addressto includedata[i].

Theloop is unrolledto maintainalignmentinformation.
Thereare still checksbetweenunrolled instancesof the
loop sotheredoesnot have to beanadditionalfix-up pass
for any remainingiterations.Notice that the lastaccessto
A[i+1] is accessingthenext line, andsocannotuse$da1,
it mustusea regularload.

In a conventionalcache,this loop would execute80 tag
checkson the data array. Our versionexecutes10 tag
checkson it, assumingit wascachealignedon entryto the
function,if not,11 checksareperformed.
ctl->result getsregisterallocated,thoughif there

wereotherpointerwritesin theloop it wouldbelikely that
alias analysiswould fail and it would not be registeral-
located. If the compilercould not registerallocatectl-
>result, wewouldstill beableto eliminatethewrite tag
checkin the read-modify-writethathappenson eachloop
iteration,cuttingthetagcheckcountfor thatfield in half.

In a conventionalcache,this loop would fetchfive 32-
byte lines from the dataarray, andone32-byteline from
thecontrolstructure.Usinga spancache,this codewould
fetch three64-bytespansfrom the dataarray and a one
wordspanfrom thecontrolstructure.

We assumethat thebackingstorefor themiss(DRAM
in ourdesign)will only transferthewordsneededfor apar-
ticular access.Thusspancachesnot only increasecache
utilization, they also reducememorybandwidthrequire-
ments.A conventionalcachecoulduseper-worddirty bits
to reducebandwidthonwrite-backs,but thespancachecan
alsoreducefetchbandwidth.

7



C codederived fr om gsmin Mediabench

struct control {
int error_code[2];
int result;

};
void sample(struct control* ctl, int* data) {

ctl->result = 0;
for(int i = 0; i < 39; ++i) {

ctl->result += data[i] * -134 + data[i+1] * -374;
}

Machine codeequivalent usinga spancache

_sample:
li $t3, 0 # ctl->result = 0
add $t8, $a1, 4 * 39 # t8 == loop bound

_for_loop:
lwlda $t0, 4($a1), $da1,-1, 15 #
mult $t2, $t0, -374 # t2 = data[i+1] * -374
lwda $t0, 0($a1), $da1, 0, 15 #
mult $t1, $t0, -134 # t1 = data[i] * -134
add $t3, $t3, $t1 #
add $t3, $t3, $t2 # ctl->result += t1 + t2
add $a1, 4 # ++i
bge $a1, $t8, _exit # loop test
lwda $t0, 8($a1), $da1,-1, 15 #
mult $t2, $t0, -374 # t2 = data[i+1] * -374
lwda $t0, 4($a1), $da1, 0, 15 #
mult $t1, $t0, -134 # t1 = data[i] * -134

...another 5 copies of the body are unrolled..
lw $t0, 32($a1), -1, 15 #
mult $t2, $t0, -374 # t2 = data[i+1] * -374
lwda $t0, 28($a1), $da1, 0, 15 #
mult $t1, $t0, -134 # t1 = data[i] * -134
add $t3, $t3, $t1 #
add $t3, $t3, $t2 # ctl->result += t1 + t2
add $a1, 4 # ++i
blt $a1, $t8, _for_loop # loop test

_exit:
sw $t3, 8($a0), 0, 1 # update ctl->result

Table4: C codeandits assembly, unrolledandoptimizedby handto usea spancache.Thelwlda afterthe for loop:
label loadsdirectaddressregister$da1, which is usedby thelwda after themult instruction.Thelwda accessis tag-
unchecked. Thethird field of theaccessis theoffset,andthe last is the length. So thefirst lwlda instructionspecifiesa
line thatstartsoneword before4($a1) (i.e.,at0($a1)) andis 16wordslong.

In the next two sectionswe presentprototypedesigns
for a spancache. The first designis basedon a RAM
block, which reducesimplementationareabut hassignif-
icantoverheadon tag-checkedaccess.Theseconddesign
is basedonaCAM block,whichaddsadditionalareaover-

head,but hassinglecycle tag-checkedloads.Bothdesigns
enabledirect-addressedaccesseswith accessenergy com-
parableto a plainscratch-padRAM.

We havenotyetdonecircuit designfor eitherdirectad-
dressingor flexible line sizehardware,but we have done
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Figure 5: A spancacheimplementationin RAM. Eachword
hasa bit indicating if it is a tag. All tagsin a setaresearched
associatively in parallel,thoughthesearchcircuitry is only shown
for oneword. Thehighbitsof theaddressneedto matchthehigh
partof thetag,themiddlebits pick theset,andthelow bits need
to berangecheckedto seeif this offset is containedin this span.
Sincedatais storedin wordchunks,thelasttwo bitsarenotused.
Finally, the cachehasto mux out the correctword. The range
checkandmux make this cachemorechallengingto build thana
traditionalcache.

initial feasibility studiesto ensurethat both featuresare
compatiblewith ourcurrentlow-powercachelayout.

5.2 A RAM-basedspancache

Our first designfor thespancache,shown in Figure5,
holdsboth tagsanddatain the sameRAM. The RAM is
brokenintosetsof 16wordseachof whichhasabit indicat-
ing if it is tag(thet-bits in thefigure). Thetagsdivide the
set into spansof potentiallydifferent length. Every word
following atag(occupying acell atahigheraddress)is the
dataassociatedwith thetag. Thedatastopsat thenext tag
or at the endof a line. All possibilitiesfrom oneline of
60-bytesto 8 linesof 4-bytewordsaresupported.

Figure5 alsoshowshow anaddressis lookedup in the
spancache(the circuitry for only 1 word is shown, but
thereis parallelcircuitry for all 16words).Themiddlebits
of theaddresspick a set,just asin a directmappedcache.
Oncethe set is chosentwo operationshappenin parallel.
The upper18 bits of the addressarematchedagainstthe
upper18 bits of thetag. In parallel,thelow offsetbits are
rangecheckedwith thebaseof thetagandthelengthwhich
is determinedby finding thenext sett-bit or theendof the
set. Thesechecksareonly enabledif the t-bit is setfor a
givencell, andchecksfor all membersof thesethappenin
parallel.

Onedisadvantageof theRAM implementationis thatif
the tag checksucceeds,we thenhave to mux out the cor-

tag (26)

tag (26)

data (32)

data (32)

data (32)

t

t

t

t

t

x

x

Virtual address

off

off

off

da

da

Status bits

high tag (26) offset (4) xx

...

Figure6: Part of onesubbankof a spancacheimplementation
usingCAMs. Eachword hasa bit indicatingif it is a tag. Bits
5..2of the addressarematchedagainstthe offset field (bits 1..0
are ignoredsincedatais storedword aligned),while bits 31..6
arematchedagainstthetagfield. Thetagfield is matchedif thet
bit is set,otherwisetheoffset is matched.This is indictedby the
shadingin thefigure.

rect word for the CPU.This requiresfinding the offsetof
thegivenvirtual addressfrom thetagvalue,andhencean
additionalcycle of latency for cachehits. Like a conven-
tional cache,the RAM implementationneedstwo cycles
for a write (onecycle for tag check,followedby the data
write).

We keepa rotatingpointerwithin the sets,andreplace
spansin FIFOorder. Wethereforeneedto becarefulabout
maximumspanconflicts. Sinceassociativity is only pro-
videdwhenwehavesmallspans,usingthemaximumspan
sizeeffectively makesthecachedirectmapped.

5.3 A CAM-basedspancache

The RAM-approachto building a spancachesuffers
from largeoverheadson tag-checkedaccesses.We areex-
perimentingwith a CAM-baseddesignthat usesa fully-
associative searchto locatea word with a cacheline. Our
designis shown in figure6.

There are many similarities betweenthe RAM and
CAM implementations.Any word canbe a tag or a data
item. Thereis a high part of the tag, anda low part, but
thepartitioningis different,andbothpartsgetsearchedin
parallel,allowing singlecycle reads.If thet bit is set,then
the cell matches26 bits of the virtual addressagainstthe
tag,otherwiseit matches4 bits againsttheoffset.

If a word is a tag, it broadcastsits hit signaldown to
subsequentdatawords. The hit signalbroadcastchain is
stoppedby thenext settagbit. Thedataword andsthetag
hit signalwith its local offsetmatchandon a hit the data
is readout. Sincethematchlogic is local to theword, we
havesinglecycle readsandwrites.
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While we need comparatorsfor the tag and offset
checks,every tag must have at least one word of data,
so eachpair of wordscansharea singlecomparator. We
requireat most ����� comparatorsfor � words. We are
still workingon layoutdesigns,but estimatearounda20%
overall cacheareaoverheadversusa conventionalcache
for thisdesign.

Fromasoftwareperspective,spanscanbeatany offset,
anddonothaveto benaturallyaligned(e.g.,a2-wordspan
doesnot have to be2-wordaligned).This allows thecom-
piler to usea spanwhenit cannot establishthealignment
of a dataitem. But the hardwareneedsto keeptagsfor
naturallyaligneddata,andsomight split a singlesoftware
spaninto multiple hardwarespans.All of the datais still
accessible.

5.3.1 Dir ectaddressing

WeleveragetheCAM structurefor directaddressingto re-
move theneedfor CAM banksto have a separateaddress
decoder. TheDA registerpointsto thesubbankwhereit is
in use. We storethe DA registernumberin the tag offset
field. So a direct-addressedaccessdoesa 3-bit associa-
tive searchon the DA registernumber, andusesthe 5-bit
associative searchon the offset. A direct addresedaccess
doesnotperform26-bitassociativesearchontheuppertag.
Whena DA registeris invalidated,its numberis broadcast
to thesubbankwhereit is in usesoit canbeinvalidated.

Sincedirectaddressingusesa smallassociative search,
datawordsaccessedfrom a direct addressregisterdo not
needto bephysicallyadjacent.Thisallowsthehardwareto
breaksoftwarespansinto naturallyalignedpieceswithout
breakingsoftware’sview of non-alignedspans.

5.3.2 Incompatible, overlapping spans

Oneproblemfor the spancacheis incompatible,overlap-
ping spans.If we have a oneword spanat address0x104,
andwe bring in a two word spanat address0x108,what
happens?The dataat 0x104is in dangerof beingin two
differentplacesin the cache,andhaving differentvalues.
Referringto databy differentshapeswould only tend to
happenwhencompileranalysisfailed,sowedonotexpect
it to bethecommoncase.But it mustbedealtwith.

We have a simple,correctsolution,andwe presentan
optimizationfor the default case. On a miss, in parallel
with sendingthe miss addressto the DRAM (or second
level cache),we searchthe primary cachefor every word
in the new span. Any cleanmatchesare invalidated,and
any dirty matchesarereadout andput in thewrite buffer.
Theentriesin thewrite buffer, asalways,aremergedwith
theincomingdata.In thiswaydirty datafrom theold span
is preservedin thenew span.

While the latency of a missshouldgive usenoughcy-
clesfor awordbywordsearch,themechanismis unsatisfy-
ing sinceweexpectconflictsto besorare.An optimization
for naturallyalignedspansis thatby usingdon’t carebits,
asingleprobewill determineif thereis any datacontained
in thenew spanalreadyin thecache.Sincethedefault load
andstoreshapeis a32-bytealignedblock,wecantell with
a singleprobeif thereis no conflict. Only if the datais
alreadyresidentdo we needto go word by word.

6 Relatedwork

Therehasbeensomerelatedwork on techniquesto re-
movedatacachetagchecks.TheARM6 processoravoids
tag checksfor sequentialaccessesto the samecacheline
whenusingloadmultiple, andstoremultiple instructions.
Theseinstructionsonly needto checkthetagsfor thefirst
registerreador written,but aretypically only usedfor pro-
cedurecall/return. Our modelallows significantlygreater
flexibility .

Many architecturesallow somelimited form of software
control of the cache. For instancethe MIPS [11] hasa
cachecontrol instructionwhich allows softwareto marka
line asinvalid. Often the useof thesefacilities is not en-
couraged,e.g.,theMIPScachecontrolinstructionis privi-
leged.

Softwarecontrolledcachesarenot a new ideathough
what parameterssoftwarehascontrol over variesconsid-
erably. Oneearly, extremeform of softwarecontrol was
in [3] wherethecacherefill engineis implementedin soft-
ware,but herethe largesoftwareoverheadwashiddenby
usingverylongcachelineswhichareapoormatchto many
applications.

Onestrainof software-controlledcachesallow software
to partitionthecacheinto differentregions,oftenusingal-
readyexistinghardwarefor set-associativity. Thereconfig-
urablecacheproject [18], andthe column-cache[5] both
exploit this technique. A more limited form of this par-
tition is the StrongARM SA-1100’s mini-cache[20] de-
signedfor datawith only spatiallocality. The spancache
is orthogonalto thesetechniques,but we areinvestigating
how DA registerscanbeusedto control replacementpol-
icy.

Virtual lines [19] fetchesdata in large blocks from
memory to hide accesslatency, but only moves small
piecesinto the primary cacheasneeded.This technique
relieson excessbandwidthto fetch long lines from main
memory, andwouldcauseexcessenergydissipationfor ac-
cesseswith little spatiallocality.

Oneexampleof a specializedcachedesignis the vec-
tor data cacheof the Cray SV1 system[9], which em-
ploys singleword lines. Vectorapplicationsusingstrided
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or scatter/gatheraccesseshave limited spatiallocality, and
thesingleword cachedesignhelpshold moredatato cap-
tureany temporallocality. Thespancachein contrastcan
supportsingleword linesbut alsoallows increasedcapac-
ity for dataregionsthathave significantspatiallocality by
reducingtheamountof tagstorage.

Several systemssupport boot time configuration of
cacheline sizeover a limited setof values(e.g.,32 or 64
byte lines). Theline sizeis usuallyfixedat systemdesign
timeandcannotbevariedby software.

6.1 Application level alternatives to the span
cache

Thereare a variety of applicationlevel techniquesto
compressuserdatastructures. One survey [4] suggests
several alternativesof varying levels of programmerdif-
ficulty. Onecommonweaknessof theseapproachesis that
if accesspatternschangeduringthecourseof computation,
thensoftwarereorganizationcannot expressbothkindsof
locality. Thespancachecanadaptto differentaccesspat-
ternsfor thesamedata.

One techniqueis to augmentmalloc with anotherar-
gumenttaking a pointer likely to be accessedwhen the
pointerbeingallocatedis accessed.This canrequiresig-
nificantprogramunderstanding.In general,thesesolutions
aredifficult to automatefor pointer-basedcodessincecom-
piler analysisoften fails, and the transformationrequires
wholeprogramknowledge.

7 Summary

We have presenteddirect addressedcaches as a
hardware-softwarecachedesignthatallows low powerop-
eration.Softwaregiveshintsto thehardware,basedon its
understandingof theprogram’saccesspatterns,thatallow
thehardwareto avoid poweringupandsearchingtheCAM
tags. Evenwith simplecompileranalysis,14–35%of tag
checkscanbeeliminated.

We have presentedinitial ideasfor a spancache,that
would increasetheeffective capacityof a cacheby allow-
ing softwarecontrol over cacheline size individually for
eachaccess.Theadditionaldelayandenergy overheadof
locatinga dataword in the spancachecanbe avoidedby
usingdirectaddressing.We areworking on moreefficient
hardwareimplementationsof thespancacheandonacom-
pleteevaluation.

8 Acknowledgements

This work was funded by DARPA PAC/C award
F30602-00-2-0562.

References

[1] VikasAgarwal, M. S. Hrishikesh,StephenW. Keck-
ler, andDougBurger. Clock rateversusIPC: theend
of the road for conventionalmicroarchitectures.In
ISCA, pages248–259,June2000.

[2] Tom Burd. Energy-efficient processorsystemde-
sign. Ph.D. Thesis, Univeristy of California, Berke-
ley., 2001.

[3] D. R. Cheriton,G. A. Slavenberg, andP. D. Boyle.
Software-controlledcachesin theVMP multiproces-
sor. In Proc. of the 13th Annual Symp. on Computer
Architecture, pages367–374,New York NY (USA),
1986.

[4] Trishul M. Chilimbi, Mark D. Hill, and JamesR.
Larus. Cache-consciousstructurelayout. In SIG-
PLAN Conference on Programming Language De-
sign and Implementation, pages1–12,1999.cite-
seer.nj.nec.com/96477.html.

[5] Derek Chiou, Prabhat Jain, Larry Rudolph, and
Srinivas Devadas. Application-specific memory
managementfor embeddedsystemsusingsoftware-
controlledcaches.In Design Automation Conference,
pages416–419,2000.

[6] J.Montanaroet al. A 160-MHz,32-b,0.5-WCMOS
RISC microprocessor. IEEE JSSC, 31(11):1703–
1714,November1996.

[7] Martin Rinardet al. Theflex compilerinfrastructure.
1999–2001. http://www.flex-compiler.
lcs.mit.edu.

[8] Monica S. Lam et al. The suif compiler system.
1992–2001. http://www-suif.stanford.
edu.

[9] Greg Faanes.A CMOSvectorprocessorwith a cus-
tom streamingcache.In Proceedings Hot Chips 10,
pages103–110,August1998.

[10] Koji Inoue,Tohru Ishihara,andKazuakiMurakami.
A high-performanceand low-power cachearchitec-
turewith speculative way-selection.IEICE Transac-
tions on Electronics, 2000.

11



[11] GerryKaneandJoeHeinrich. MIPS RISC Architec-
ture (R2000/R3000). PrenticeHall, 1992.

[12] Ronny Krashinsky. Microprocessorenergycharacter-
ization andoptimizationthroughfast,accurate,and
flexible simulation.MIT Master’s thesis, May 2001.

[13] Ronny Krashinsky, SeongmooHeo,MichaelZhang,
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