
Considerations for Mondriaan-like Systems

Emmett Witchel
Department of Computer Science, The University of Texas at Austin

witchel@cs.utexas.edu

Abstract

Mondriaan memory protection is a hardware/soft-
ware system that provides efficient fine-grained
memory protection. Other researchers have em-
braced the Mondriaan design as an efficient way to
associate metadata with each 32-bit word of mem-
ory. However, the Mondriaan design is efficient only
when the metadata has certain properties. This paper
tries to clarify when a Mondriaan-like design is ap-
propriate for a particular problem. It explains how to
reason about the space overhead of a Mondriaan de-
sign and identifies the significant time overheads as
refills to the on-chip metadata cache and the time for
software to encode and write metadata table entries.

1 Introduction

Mondriaan memory protection (MMP) is hardware/-
software co-design for fine-grained memory protec-
tion. Like page tables, the heart of MMP is a
set of hardware structures and software-written data
structures that efficiently associate protection meta-
data with user data. Other researchers have used
Mondriaan-like structures when they need to effi-
ciently associate non-protection metadata with user
data [ZKDK08, CMvPT07]. However, MMP is only
efficient under certain assumptions about the meta-
data and data. This paper tries to clarify these as-
sumptions to guide researchers in when MMP can be
useful to address their problems.

While the computer science publication system is
effective at creating incentives for researchers to pub-
lish innovative results, it is less effective at encour-
aging researchers to reflect on, and publicly critique,
their own work. Students of the field are often left
wondering why a promising sounding idea was left

unimplemented. Or they wonder why certain ideas
from an early paper on a subject are left out of follow-
on work. Did those ideas fail or were they simply not
explored?

While journals provide some outlet to summarize
the progress of a research project, they often default
to extended versions of conference papers. This pa-
per is much shorter than a journal paper and tries to
convey insights and experience, rather than rigorous
quantitative evidence for its conclusions.

While providing a compact summary of MMP re-
search, this paper highlights the assumptions made by
various MMP implementations that are required for
high performance. These assumptions do not always
apply to systems developed by other researchers. The
purpose of this paper is to allow other researchers
to quickly determine if their application is likely to
perform well with MMP-like hardware or what they
would have to modify to make it perform well.

This paper discusses the interplay between the fol-
lowing design decisions.

1. Space overhead.The space overhead for MMP
is approximately the average number of meta-
data bits per data item. MMP keeps space over-
head low by storing 2 bits of protection informa-
tion per 32-bit word (approximately a 6% over-
head). Tables can be encoded for greater space
efficiency if there are long stretches of memory
with identical metadata values.

2. PLB reach. MMP includes an on-chip associa-
tive memory for its metadata called the protec-
tion lookaside buffer (PLB). For the PLB hard-
ware to be an effective cache, the metadata must
have particular properties, either much of it is
coarse-grained, or it has long segments with
identical metadata values.

3. Software overheads. MMP requires system
software to write the metadata tables. The meta-

1



data format must be simple enough and written
infrequently enough to prevent software from
significantly reducing performance.

2 MMP history

MMP started in 2002 as follow-on work to low-power
data caches [WLAA01]. Our idea was to automati-
cally migrate unused program data to a portion of the
cache/memory hierarchy that requires lower power to
maintain state. To track program objects, which tend
to be small and not naturally aligned, we needed a
data structure. The data structure would be written by
software and read by hardware because we thought
the hardware would make frequent decisions about
what data belongs in high-power fast memory and
what can reside in low-power slow memory.

During the design of the hardware data structure,
we realized that solving the basic problem of hav-
ing hardware track user-defined data structures was
more profound than the application of moving data to
save energy. We soon left that motivation and chose
fine-grained protection. The plugin model for pro-
gram functionality extension made the motivation for
fine-grained protection clear. Programs (like the OS
and a web browser) load user-supplied code directly
into their address space to extend functionality. The
problem with this approach is that a bug can crash the
entire program—plugins are fast, but not safe. Fine-
grained protection can restore the safety without re-
ducing the speed of the plugin extensibility model.

The first MMP paper focused on the format of the
hardware tables [WCA02]. This paper is most often
cited by those interested in MMP. It introduces the
basic idea of MMP and presents both a simple table
format and a more advanced table format, a technical
innovation explained in§3.2. It also contains a design
for fine-grained memory remapping, which allows a
user to stitch together bits of memory into a contigu-
ous buffer. The design for remapping is a bit compli-
cated, but provides good support for zero-copy net-
working. The issues for supporting protection dom-
inated the project after this paper and the remapping
was dropped, simply for lack of space.

The follow-on paper [WA03] describes how the OS
support for fine-grained protection domains would
work and how to support safe calling between pro-

tection domains. Though our experience was limited
at the time, much of our design ended up in our final
implementation. My thesis [Wit04] continued to re-
fine the OS support and added ideas for protecting the
stack. MMP culminated in an SOSP paper [WRA05],
which is the most complete implementation of the
system, though it is not often cited. Most of the inter-
est in MMP comes from computer architects, many of
whom do not regularly read the proceedings of SOSP.

3 MMP technical summary

This section provides a high-level summary of how
MMP works, with a focus on how MMP-like hard-
ware would be used for other applications. The
three main features of MMP are memory protection,
protected cross-domain calling, and stack protection.
The feature most attractive for other uses is a gen-
eralization of memory protection, which associates
metadata with every word of user data. This section
focuses on the general design of that protection mech-
anism.

3.1 CPU modifications

MMP consists of hardware and software to provide
fine-grained memory protection. MMP modifies the
processor pipeline to check permissions on every
load, store, and instruction fetch. MMP is designed
to be simple enough to allow an efficient implemen-
tation for modern processors, but powerful enough to
allow a variety of software services to be built on top
of it. The permissions information managed by MMP
could be generalized to any metadata.

Figure 1 shows the basics of the MMP hardware.
MMP adds aprotection lookaside buffer (PLB) that is
an associative memory, like a TLB. The PLB caches
entries of a memory-resident permissions (or meta-
data) table, just as a TLB caches entries of a memory-
resident page table. The PLB is indexed by virtual
address. MMP also adds two registers, the protection
domain ID, and a pointer to the base of the permis-
sions table. The protection domain ID identifies the
protection (or metadata) context of a particular kernel
thread to the PLB, just as an address space identifier
identifies a kernel thread to a TLB.

The protection domain ID register is not necessary,
but without it, the entire PLB must be flushed on

2



MEMORY

Permissions

Permissions Table Base

Protection Domain ID (PD−ID)

Protection

Buffer (PLB)
Lookaside

CPU

refill

Table

Figure 1: The major components of the Mondriaan
memory protection system.

every domain switch. For some kinds of metadata,
this might be acceptable. For example, if each ker-
nel thread is its own domain, then domain switches
only happen on context switches, which are relatively
rare. In this case, the protection domain ID can be
dispensed with, just as the x86 does not tag its TLB.
However, many consider the lack of tags in the x86
TLB a major design flaw.

On a memory reference, the processor checks the
PLB for permissions (or performs whatever metadata
check is specified by a system using an MMP-like
structure). If the PLB does not have the permissions
information, either hardware or software looks it up
in the permissions table residing in memory. The
reload mechanism caches the matching entry from
the permissions table in the PLB, and possibly writes
it to the address register sidecar registers. Sidecar
registers were a feature of the early MMP design.
They are a cache for the PLB, meant to reduce the
energy cost of indexing the PLB. They are simply an
energy optimization, and because they are inessential,
we do not mention them further.

Just like the TLB, the PLB is indexed by virtual
address. The PLB lookup can happen in parallel with
address translation because MMP stores its metadata
per virtual address. Virtual addresses that alias to the
same physical address can have different permissions
values in MMP.

One of the hardware efficiencies of MMP is that
the permissions check can start early in the pipeline
and can overlap most of the address translation stages
and computational steps of the pipeline. The permis-
sions check need finish only before instruction retire-

ment.

3.2 Permissions table

The MMP protection table represents eachuser seg-
ment, using one or moretable segments. A user seg-
ment is a contiguous run of memory words with a
single permissions value that has some meaning to
the user. For example, a memory block returned
from kmalloc would be a user segment. User seg-
ments start at any word boundary and do not have
to be aligned. A table segment is a unit of permis-
sions representation convenient for the permissions
table. MMP is not efficient for arbitrary user seg-
ments, it assumes certain properties of user segments
to achieve efficient execution (§3.2).

System software converts user segments into table
entries when permissions are set on a memory region.
As explained in§4.3, the frequency and complexity
of transforming user segments into table segments de-
termines whether software is an appropriate choice
for encoding table segments. Some table entry for-
mats are inefficient for software to write at the update
rates required of applications.

Mid Index (10) Leaf Index (6)

Effective address (bits 31−0)

Bits (21−12) Bits (11−6) Bits (5−0)Bits (31−22)

Leaf Offset (6)Root Index (10)

Figure 2: How an address indexes the trie.

MMP uses a trie to store metadata, just like a page
table. The top bits of an address index into a table,
whose entry can be a pointer to another table which
is indexed by the most significant bits remaining in
the address.

Figure 2 shows which bits of a 32-bit virtual ad-
dress are used to index a particular level of the
MMP permissions table trie. Three loads are suffi-
cient to find the metadata for any user 32-bit word.
The lookup algorithm (that can be implemented in
software or hardware, just like a TLB) is shown in
pseudo-code in Figure 3. The root table has 1024 en-
tries, each of which maps a 4 MB block. Entries in
the mid-level table map 4 KB blocks. The leaf level
tables have 64 entries, each providing individual per-
missions for at least 16 four-byte words. The table in-
dices are expanded for 64-bit address spaces [Wit04].

3



PERM_ENTRY lookup(addr_t addr) {
PERM_ENTRY e = root[addr >> 22];
if(is_tbl_ptr(e)) {
PERM_TABLE* mid = e<<2;
e = mid[(addr >> 12) & 0x3FF];
if(is_tbl_ptr(e)) {

PERM_TABLE* leaf = e<<2;
e = leaf[(addr >> 6) & 0x3F];

}
}
return e;

}

Figure 3:Pseudo-code for the trie table lookup algorithm.
The table is indexed with an address and returns a permis-
sions table entry. The base of the root table is held in a ded-
icated CPU register. The implementation ofis tbl ptr
depends on the encoding of the permission entries.

The granularity of the metadata is determined by
the level at which it appears. Each two-bit entry in
a leaf table encodes permissions for a user word of
memory. At one level higher, each mid-level entry
represents permissions for an entire 4KB page. Re-
gions of at least 4KB that share a single permissions
value can therefore be represented with less space
overhead. This space savings happens regardless of
the entry format.

MMP designs have used different permissions en-
try formats, notably bitmaps and run-length encoded
(RLE) entries (shown in Figure 4). Each leaf entry
in bitmap format has 16 two-bit values indicating the
permissions for each of 16 words. Run-length en-
coded entries encode permissions as 4 regions with
distinct permissions values, dedicating 8 out of 32
bits to metadata.

RLE entries cannot represent arbitrary word-level
metadata. They assume that contiguous words have
the same metadata value. For MMP’s RLE entries,
there can be no more than 4 distinct metadata regions
in the entry’s 16 data words. If each word has a meta-
data value distinct from its immediate neighbors, then
there are 16 metadata regions and that cannot be rep-
resented with an RLE entry. Bitmap entries are used
as backup in this case.

The permissions data in MMP run-length encoded
entries overlaps with previous and succeeding en-
tries. In addition to permissions information for the

16 words, they can also contain permissions for up
to 31 words previous and 32 words subsequent to the
16. In the best case a single RLE entry can contain
permissions from 5 distinct bitmap entries.

MMP uses RLE entries to overlap permissions in-
formation, but they can be used to save space in leaf-
level tables. A 32-bit RLE entry can represent per-
missions information about 79 words. Taking into
account alignment, each entry could encode permis-
sions for 64 words instead of 16, bringing down the
average space overheads for leaf-level tables from 6%
to 1.6%. Doing so would change the lookup algo-
rithm in Figure 3, because the leaf index would re-
quire only 4 bits, leaving 8 bits for the leaf offset.
This new RLE format would be more restrictive, only
allowing 4 permissions regions in every aligned 64
word block.

4 Requirements for good MMP per-
formance

This section distills our observations on the factors
salient for a particular instantiation of an MMP-like
system to have good performance.

4.1 Space overhead

While physical memory capacity continues to grow
at an impressive rate, MMP-like systems consume
memory in proportion to the virtual memory used by
a process. As processes use more memory, MMP
uses more memory to hold the metadata associated
with the data. Keeping the size of the metadata tables
reasonable is a first order concern for the practicality
of the system.

For the simplest Mondriaan system [WCA02], the
space overhead of the most fine-grained tables is ap-
proximately 6%, for 2 bits of metadata per 32-bit
data word. Both bitmaps and run-length encoded en-
tries dedicate two bits of table entry per user word in
leaf-level tables that manage permissions for 32-bit
words. The run-length encoding could be adjusted
for lower space overhead (§3.2). The mid-level en-
tries that manage permissions for 4KB pages specify
2 bits of metadata per aligned 512 bytes of data, for a
space overhead of 0.8%.

Mondrix [WRA05] (the application of Mondriaan

4



Perm (2) Offset (4)Offset (5) Perm (2) Offset (4) Perm (2) Offset (4) Perm (2)

mid0 mid1 lastfirstType (2)

1 1 Len (5)

Figure 4: The bit allocation for a run-length encoded (RLE) permission table entry.

memory protection to the Linux kernel), modifies the
kernel memory allocator to create larger, aligned data
regions. The slab [Bon94] allocator takes a memory
page and breaks it into equal sized chunks that are
doled out bykmalloc, the general-purpose kernel
memory allocator. By turning read/write permissions
on and off for the entire page, rather than for each in-
dividual call tokmalloc, Mondrix greatly reduced
the space overheads of the permissions. The cost is
less memory protection. A read or write into the unal-
located area of a page being used as a slab is an error
can be detected if the page’s permissions are man-
aged on a per-word basis. However, Mondrix forgoes
this protection, enabling read and write permissions
to the entire page once any of it is used.

Colorama [CMvPT07] uses a Mondriaan design
and extends the permission table entries with 12-bit
color identifiers that allow the processor to infer syn-
chronization for user data. The color identifiers bring
the overhead from 2 bits per 32-bit word to 14 bits per
32-bit word, which is a 44% space overhead. Run-
length encoding can bring down this overhead. Us-
ing MMP’s RLE entry expands the 8 permissions bits
to 48 for a 14% space overhead (though keeping en-
tries aligned, which is necessary for a realistic design,
would increase the space overhead to nearly 19%).
Furthermore, not every data item needs to be colored,
only those accessed by multiple threads. The Col-
orama implementation has a measured overhead of
0–28% space overhead.

Loki [ZKDK08] uses tagged memory to reduce the
amount of trusted code in the HiStar operating sys-
tem. Loki differs from MMP in that the tags are for
physical memory. Additionally, Loki maintains two
distinct maps, one from physical memory address to
tag and another from tag to access permissions.

Loki segregates pages on the basis of whether they
need fine-grained tags. Pages with fine-grained tags
have 100% space overhead (a 32-bit tag for a 32-bit
word), while pages without fine-grained tags (one tag
for the entire page) have 0.1% space overhead. The
authors see a variable fraction of memory pages that

use fine-grained tags, from 3–65%. For this scenario,
the fraction of memory pages using fine-grained tags
dictates the memory overhead, so the application that
uses fine-grained tags for 65% of its pages, experi-
ences a space overhead of 65%. Loki does not use an
MMP design for its tags, but the designers note that
MMP’s RLE entries could save space.

4.2 PLB reach

MMP uses a protection lookaside buffer (PLB) to
cache permissions information for data accessed by
the CPU, avoiding long walks through the memory
resident permissions table. A high hit rate for the
PLB is essential for low latency performance. With-
out a high hit rate, the processor is constantly fetch-
ing data from the permissions tables, which increases
memory pressure, cache area pressure and decreases
the rate at which instructions can retire.

MMP contains several features to enhance the hit
rate in the PLB that can be adopted as-is by other
projects. The PLB allows different entries to apply to
different power-of-two sized ranges. This mechanism
allows large granularity entries to co-exist with word-
granularity entries (much like super-pages in TLBs).
The PLB tags also include protection domain IDs to
avoid flushing the PLB on domain switches. Tags are
important for Mondrix because its fine-grained pro-
tection domains can be crossed as frequently as every
664 cycles [WRA05]. Other applications of MMP
might not have such frequent domain crossings.

The main technique for MMP to increase PLB
reach is to use large granularity entries (which is done
by Mondrix) or run-length encoded entries (e.g., vpr
and twolf from SPEC2000 [WCA02]). The PLB miss
rate for Mondrix was lower than 1% for all workloads
and the execution penalty for PLB refill was less than
4% of execution time because kernel text and data
sections are represented with a single entry, and as
mentioned in the previous section, the kernel mem-
ory allocator was modified to manage protections at
the granularity of a page.

5



When each user allocation for vpr and twolf is pro-
tected by inaccessible words at the start and end of
the allocation, the system spends 10–20% of its mem-
ory references refilling the PLB [WCA02] when us-
ing bitmap entries. Run-length encoded entries in-
crease PLB reach by effectively encoding large user
segments that share a permissions value with the start
of the entry and/or its end. Using run-length en-
coded entries, memory accesses to the permissions
table drop to 7.5% for both SPEC2000 benchmarks.
As §3.2 discusses, RLE entries encode overlapping
permissions information. A single RLE entry can
contain the permissions information from multiple
bitmapped entries, eliminating PLB refills.

Because Colorama only monitors shared data ac-
cesses, that decreases traffic to the on-chip meta-
data cache (the Colorama PLB). The Colorama im-
plementation uses run-length encoded entries (called
mini-SST entries in the original design [WCA02]),
which should be effective at making PLB reach large
enough for high performance. Additionally, the au-
thors mention that color metadata could be aggre-
gated into larger granularity chunks, by doing pooled
memory allocation.

Loki’s support for page-granularity metadata tags
is crucial to keeping its runtime overheads low. For
one fork/exec benchmark, page-granularity tags
reduces the time overhead from 55% to 1%. It has
an 8-entry cache to map from physical page to tag
or pointer to a page of fine-grained tags. The fine-
grained tags are stored in the CPU’s cache. The
physical address to tag map does not need to be
flushed on a context switch. Loki also has a 32-entry
2-way associative cache that maps tags to permis-
sions. This cache does need to be flushed on context
switches, but does not need to be flushed when mem-
ory changes tags.

4.3 Software overheads

In an MMP-like design, metadata is managed like
page tables are managed, software writes table entries
that are read by hardware. Mondrix writes protec-
tion tables frequently to protect memory allocations,
to protect network packets, and to protect arguments
to cross-domain calls. The time for software to write
the tables can become a significant performance cost,
up to 10% of the kernel execution time in one Mon-

drix workload.
It is possible that a given application for an MMP-

like system will have infrequent metadata updates.
Having software encode table entries is a good choice
for systems that update metadata infrequently be-
cause software is so flexible. However, we found that
the only reliable technique for evaluating the cost of
the software encoding is to implement it and run it
on realistic inputs. The software entry encoding does
not need to play a functional role in the system, but it
is necessary for benchmarking.

The MMP ASPLOS paper [WCA02] does not
evaluate the cost of writing table entries in software
as it is a typical hardware evaluation paper that lacks
system software support. In its defense, the sys-
tem software required years of development effort,
though effort to develop the table-entry encoder was
a small fraction of that time. One unexpected conse-
quence of writing the software to encode table entries
is measuring the high runtime cost of writing run-
length encoded entries. On one trace of memory pro-
tection calls extracted from Mondrix execution, writ-
ing run-length encoded entries is three times slower
than writing bitmap entries. The run-length encoded
entries are slow for software to write because they are
complicated to encode, and because they overlap up-
dates to an entry requires complicated logic for break-
ing and coalescing adjacent entries. While we devel-
oped and debugged the code to write run-length en-
coded entries (a task that required a solid month), we
never deployed it in Mondrix because of its poor per-
formance. Also, Mondrix had enough coarse-grained
allocations that it did not need run-length encoded en-
tries. Because of our experience with the software,
we believe that any MMP implementation with run-
length encoded entries will require hardware to en-
code the table entries.

Run-length encoded entries might be effective for
Colorama, because the metadata update rate should
be lower than Mondrix’s. Mondrix writes the permis-
sions table on memory allocations, and also during
data structure processing (e.g., packet reception) and
for cross-domain calls. The Colorama implementa-
tion measures low allocation rates for some applica-
tions (every 129K-288M instructions), and high rates
for others, every 2–4K instructions. The authors con-
servatively assume that every allocation is for colored
data, while the true rate for changing the color table

6



might be lower. The encoding costs for the run-length
encoded entries might be an issue if the color tables
are actually updated every 2–4K instructions.

Loki’s simple data layout can be efficiently written
by software. Page-granularity tags are held in an ar-
ray, and fine-grained tags occupy the same offset in a
page as their associated data.

Summary. The trade-offs among space overhead,
PLB reach and software overheads are complex for
a high-performance MMP-like system. Applying
MMP to SPEC2000 and to the Linux kernel resulted
in different trade-offs. For projects that only tangen-
tially involve an MMP-like structure, the details of
these trade-offs is out of scope. However, a high-level
argument for the plausibility of a specific application
is necessary to make an argument for the efficiencies
of an MMP implementation.

5 Conclusion

The hardware and software designs for Mondriaan
memory protection can be used to associate arbitrary
metadata with individual user words at reasonable
storage and execution time costs. However, keeping
those costs limited requires careful design. The orig-
inal MMP design makes assumptions that follow-on
work may violate.

We encourage others to use MMP-like structures,
and to include a discussion about space overhead,
PLB reach, and software overheads. We hope this pa-
per can act as a guide. The original MMP design lim-
its space overhead to 6% by using 2 metadata bits for
each data word. It increases PLB reach either by us-
ing run-length encoded entries or by relying on large
user segments. MMP limits software overheads by
writing bitmaps in software and run-length encoded
entries in hardware.

Acknowledgments

We thank Nickolai Zeldovich and Luis Ceze for their
considered comments on a draft of this paper. Thanks
also to Owen Hofmann and the anonymous referees
for their constructive comments.

References

[Bon94] Jeff Bonwick. The slab allocator: An
object-caching kernel memory alloca-
tor. In USENIX Summer, 1994.

[CMvPT07] Luis Ceze, Pablo Montesinos,
Christoph von Praun, and Josep Torrel-
las. Colorama: Architectural support
for data-centric synchronization. In
IEEE International Symposium on High
Performance Computer Architecture,
2007.

[WA03] Emmett Witchel and Krste Asanović.
Hardware works, software doesn’t: En-
forcing modularity with Mondriaan
memory protection. InHotOS, 2003.

[WCA02] Emmett Witchel, Josh Cates, and Krste
Asanovíc. Mondrian memory protec-
tion. In 10th International Conference
on Architectural Support for Program-
ming Languages and Operating Sys-
tems, Oct 2002.

[Wit04] Emmett Witchel. Mondriaan Memory
Protection. PhD thesis, Massachus-
setts Institute of Technology, January
2004.

[WLAA01] Emmett Witchel, Sam Larsen, C. Scott
Ananian, and Krste Asanović. Direct
addressed caches for reduced power
consumption. InProceedings of the
34th Annual International Symposium
on Microarchitecture (MICRO-34), De-
cember 2001.

[WRA05] Emmett Witchel, Junghwan Rhee, and
Krste Asanovíc. Mondrix: memory
isolation for Linux using Mondriaan
memory protection. InProceedings of
the twentieth ACM symposium on Oper-
ating systems principles, 2005.

[ZKDK08] Nickolai Zeldovich, Hari Kan-
nan, Michael Dalton, and Christos
Kozyrakis. Hardware enforcement
of application security policies using
tagged memory. InOperating Systems
Design and Implementation, 2008.

7


