
1

Emmett Witchel

The University of Texas At Austin

Q: When is everything

happening?

A: Now

A: Concurrently
2

 CS is at forefront of understanding

concurrency

 We operate near light speed

 Concurrent computer systems ubiquitous

 Multiprocessors

 Distributed systems

 Data centers

 Great recent progress, but more to go

3

 A concurrent program is different
computations occurring simultaneously that
share resources

 What is a parallel program?

 A single computation

 Controlled decomposition

 Orderly coordination

 E.g., bulk-synchronous computation

 Concurrent systems more difficult to
coordinate

4

 Green and blue thread increment counter

 Each thread on different processor

 Threads share memory

 So cfinal == cinit+ 2
5

load c to reg

increment reg

store reg to c

load c to reg

increment reg

store reg to c

load c to reg

increment reg

store reg to c

 Some parallel executions are wrong

 A bad interleaving causes cfinal == cinit+1

 Critical region needs special handling
6

load c to reg

increment reg

store reg to x

load c to reg

increment reg

store reg to c

 Global order

load c to reg

load c to reg

increment reg

increment reg

store reg to c

store reg to c

 Critical region – a code region requiring

special properties to protect it from

concurrent execution of other code

7

begin critical region

load c to reg

increment reg

store reg to x

end critical region

 Computer system

 State machine + Communication (I/O)

 Communication can happen at any time

 Direct (messages)

 Indirect (memory)

 But some states should remain private

 Concurrency a sword of Damocles

8

 Problem: concurrency, critical regions
 Solution

 Transactions

 Transaction processing system (TPS)

 Define the ACID properties

 ACID != transactions

 ACID is a single point, let’s see the space

 Scheduling concurrency

 Understand concurrency by eliminating it

9

 A transaction defines a critical region

 Begin transaction

 End transaction

 A transaction processing system (TPS)

specifies proper concurrent execution

 Transactions and TPS as generic

concurrency control

 Possibly the “simplest” idea to specify

concurrency

10

 Less specific than an algorithm

 Less specific than a data structure

 Less specific than a design pattern

11

 Transaction procedures

 txbegin

 txend

 txabort

 Transactions read and write rows

and tables

12

BEGIN TRAN T1;

UPDATE table1 ...;

SELECT * from table1;

COMMIT TRAN T1;

 Transaction

instructions

 txbegin

 txend

 Transactions read

and write cache

lines

 Increment a counter

13

 lea c, %rax

retry:

 SPECULATE

 jnz retry

 lock mov (%rax), %rbx

 incr %rbx

 lock mov %rbx, (%rax)

 COMMIT

 Some code is vulnerable to other
concurrently executing code

 Delimit critical region as a transaction
 Execute transaction in TPS
 WIN!
 …but what is the transaction processing

system (TPS) supposed to do?

 Traditional response: provide ACID properties

 My response: schedule transactions

14

 Atomicity: The transaction executes

completely or not at all

 Consistency: The transaction preserves

the internal consistency of the database

 Isolation: The transaction executes as if it

were running alone, with no other

transactions

 Durability: The transaction’s results will

not be lost in a failure [B&N 2009]

15

Consistency is

 Data structure invariants hold

 Some can be maintained by system

 E.g., referential integrity, roughly no dangling

pointers

 E.g., primary key values are unique

 Some externally enforced

 E.g., Salary cannot decrease unless demotion

 E.g., Number of widgets in DB equals physical

widgets in warehouse

16

 Processor (ISA) invariants

 E.g., 64-bit writes are indivisible

 Most externally enforced

 E.g., List pointers correct

▪ node->next->prev == node

 E.g., Total items on list kept up to date with list

membership

17

 A transaction system can’t guarantee

consistency!

 A transaction can violate a data structure invariant

 …the transaction processing system does its

part for the C in ACID only by guaranteeing

AID. [B&N 2009]

 It’s the application programmer’s

responsibility to ensure the transaction

program preserves consistency. [B&N 2009]

18

 Isolation refers to the requirement that no

transaction should be able to interfere with

another transaction. One way of achieving this

is to ensure that no transactions that affect the

same rows can run concurrently, since their

sequence, and hence the outcome, might be

unpredictable. This property of ACID is often

partly relaxed due to the huge speed decrease

this type of concurrency management

entails.[citation needed]

19

 A schedule consists of method invocations

and responses (also called a history)

 A scheduler generates legal global orders

 E.g., Methods should appear to happen in a

one-at-a-time, sequential order

20

r.write(7) r.write(-3) r.read(-3)

time

1 2 3

 Many schedules are legal

 r.read(-3) would also be “correct”

 But reads return latest writes

 Scheduler defines safety and liveness

 E.g., sequential consistency, serializability

 E.g., r.read(-7) too weak for most TPSs

 21

r.write(7)

r.write(-3)

r.read(7)
A

B

1

-3

1

2 3

2

 Two threads conflict…

 Restart for atomicity - it must appear that

either all of A's operations happened, or none.

 Restart for isolation - not seeing partial results

is an isolation property

22

txbegin(t1)

r.write(2)

r.write(8)
A

B
txbegin(t2)

txbegin(t1)
Transaction

restart

 A thread gets exclusive access and dies

 For atomicity, abort and roll back transaction

 For isolation, B cannot block indefinitely

because of A, so transaction must abort

23

txbegin(t1)

r.write(2)

r.write(8)
A

B

die

txbegin(t2)

 Last read should be -3

 Might be a durability failure

 Might be a isolation failure

 Resultant history looks bad

 Not sequentially consistent

24

r.write(7)

r.write(-3)

r.read(7) txbegin(t1) txend(t1)

txbegin(t2) txend(t2)

A

B

1

2

 Transactions have AID, not ACID

 Atomicity, isolation, and durability are

poorly differentiated

 Real situations are a superposition

 Distinction makes you see things that aren’t

there

 Subsumed by schedules

25

 Concurrent operations need to be
scheduled – TPS

 Traditional scheduling via locking

 Performance issues

 Generalize the notion of transaction and
transaction processing system.

 TPS: seq. consistency, linearizability,
dependent transactions

 Read-copy update: Radical future

26

 TPS schedules operations

 Operations have defined semantics

 E.g., read returns last written value

 Constrains correct executions

 Figuring out new scheduling models

and/or new operations ongoing work

 E.g., read_best_effort()

27

 Before reading data, acquire its read lock

 Before writing data, acquire its write lock

 Before searching (updating) a predicate, acquire

a read (write) lock on the predicate (DB only)
 Protects both real and (infinite) phantom items

 If locks from two transactions conflict, abort one
 Locks conflict if at least one is a write lock

 Hold all locks until transaction commit
 2 phase locking (acquire and release phases)

 28

 More legal schedules = More performance

 More concurrency

 More scalability

 Two phase locking often lacks performance

 Weak semantics = More schedules

 E.g., item appears to be on list twice

 Weak semantics = programming difficulty

▪ Try eventual consistency for distributed systems

29

 Sequential consistency used in

multiprocessors

 Methods appear one-at-a-time, sequentially

 Methods must appear in program order

 read(7) is not sequentially consistent

 Though legal for weaker models

30

r.write(7) r.write(-3) r.read(7)
1 2 3

 FIFO queue

 History is serializable, but does not

respect real time order

 Sequentially consistent, not linearizable

31

q.enq(x)

q.enq(y)

A

B

q.deq(y)

1

2 3

 Data written by t1 read by t2 (dirty read)

 t2 commits!

 Where did read data come from?

32

r.write(7)

r.read(7)

txbegin(t1) txabort(t1)

txbegin(t2) txend(t2)

A

B

1

2

3

4

r=0

 Data written by t1 forwarded to t2

 t1 must commit before t2

 If t1 aborts, t2 must abort (no dirty read)

 TPS accepts more schedules

 Cascading aborts? Only problem for DB systems

33

r.write(7)

r.read(7)

txbegin(t1) txend(t1)

txbegin(t2) txend(t2)

A

B

1

2

3

4

r=0

 Defines readers and writers

 Begin read-only transaction

 More like reader-writer lock than transaction

 Reduce read synchronization to nothing

 Avoids expensive atomic instructions & fences

 Make writers careful

 Readers always see a consistent view

 Specialized to lists (but that is changing)

34

A C D

B

Reader goes to B

B’s next
pointer is

uninitialized;
Reader gets a

page fault

This implementation
needs synchronization

A C D

B

Reader goes to C or B-
--either is ok

Garbage
collect C after

all readers
finished

 Create node B, with all outgoing pointers

 Then overwrite the pointer from A

 Either traversal is safe

 No atomic instruction needed

 Need compiler memory barrier

▪ HW memory barrier only on DEC Alpha

 List always readable

 Writers must take care

 Writers might wait for all current readers (quiesce)

 Remove item: pointer write
 Reclaim: memory free
 TPS lengthens quiescence period as needed

38

rcu_r()

remove()

A

C quiesce reclaim()

rcu_r()
B

rcu_r()

rcu_r()

rcu_r()

 Exercise: Describe RCU with ACID

 Heck, describe RCU

 Generalizing transactions and TPS

 Databases

 Transactional memory

 Distributed systems

39

40

 TxLinux & MetaTM [ISCA, SOSP ’07, CACM ‘08]
 Transactions if possible, locks when necessary (I/O)

 Dependent transactions [MICRO ’08, PPoPP ‘09]
 Committing conflicting transactions

 Synchronization in Linux [HotOS ’07, ISPASS ‘10]
 Will optimistic primitives scale? Data independence

 HW, SW coordinated transactions [ASPLOS ’09]
 OS transactions [SOSP ’09, Eurosys ‘12]
 Thanks to: Hany E. Ramadan, Christopher J.

Rossbach, Indrajit Roy, Donald E. Porter, Owen S.
Hofmann, Sangman Kim, Alan M. Dunn, Michael
Z. Lee, Mark Silberstein, Yuanzhong Xu

41

 The Transaction Concept: Virtues and Limitations [Jim Gray
1981 IEEE]

 Principles of Transaction-Oriented Database Recovery
[Haerder & Reuter 1983 ACM]

 Linearizability: a correctness condition for concurrent objects
[Wing & Herlihy 1990 TOPLAS]

 Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial [Fred Schneider 1990 ACM]

 Transaction Processing [Gray and Reuter 93 MK]
 *A Critique of ANSI SQL Isolation Levels [Berenson,

Bernstein, Gray, Melton, O’Neil, O’Neil 1995 MSR-TR]
 *The Art of Multiprocessor Programming [Herlihy & Shavit

2008]
 Principles of Transaction Processing [Bernstein & Newcomer

2009 MK]

42

43

 Concurrency management is fun

 Great need for progress

 Ample opportunities for progress

 Don’t use ACID as a crutch

 Schedule concurrency

 Search for meaning

44

