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Q: When is everything 

happening? 

 

A: Now 

 

A: Concurrently 
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 CS is at forefront of understanding 

concurrency 

 We operate near light speed 

 Concurrent computer systems ubiquitous 

 Multiprocessors 

 Distributed systems 

 Data centers 

 Great recent progress, but more to go 
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 A concurrent program is different 
computations occurring simultaneously that 
share resources 

 What is a parallel program? 

 A single computation 

 Controlled decomposition 

 Orderly coordination 

 E.g., bulk-synchronous computation 

 Concurrent systems more difficult to 
coordinate 
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 Green and blue thread increment counter 

 Each thread on different processor 

 Threads share memory 

 So cfinal == cinit+ 2 
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load c to reg 

increment reg 

store reg to c 

load c to reg 

increment reg 

store reg to c 

load c to reg 

increment reg 

store reg to c 



 Some parallel executions are wrong 

 A bad interleaving causes cfinal == cinit+1 

 Critical region needs special handling 
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load c to reg 

increment reg 

store reg to x 

load c to reg 

increment reg 

store reg to c 

  Global order 

load c to reg 

load c to reg 

increment reg 

increment reg 

store reg to c 

store reg to c 



 Critical region – a code region requiring 

special properties to protect it from 

concurrent execution of other code 
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begin critical region 

load c to reg 

increment reg 

store reg to x 

end critical region 



 Computer system 

 State machine + Communication (I/O) 

 Communication can happen at any time 

 Direct (messages) 

 Indirect (memory) 

 But some states should remain private 

 Concurrency a sword of Damocles 
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 Problem: concurrency, critical regions 
 Solution 

 Transactions 

 Transaction processing system (TPS) 

 Define the ACID properties 

 ACID != transactions 

 ACID is a single point, let’s see the space 

 Scheduling concurrency 

 Understand concurrency by eliminating it 
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 A transaction defines a critical region 

 Begin transaction 

 End transaction 

 A transaction processing system (TPS) 

specifies proper concurrent execution 

 Transactions and TPS as generic 

concurrency control 

 Possibly the “simplest” idea to specify 

concurrency 
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 Less specific than an algorithm 

 Less specific than a data structure 

 Less specific than a design pattern 
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 Transaction procedures 

 txbegin 

 txend 

 txabort 

 Transactions read and write rows 

and tables 
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BEGIN TRAN T1; 

UPDATE table1 ...; 

SELECT * from table1; 

COMMIT TRAN T1; 



 Transaction 

instructions 

 txbegin 

 txend 

 Transactions read 

and write cache 

lines 

 Increment a counter 
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  lea c, %rax 

retry: 

  SPECULATE 

  jnz retry 

  lock mov (%rax), %rbx 

  incr %rbx 

  lock mov %rbx, (%rax) 

  COMMIT 



 Some code is vulnerable to other 
concurrently executing code 

 Delimit critical region as a transaction 
 Execute transaction in TPS 
 WIN! 
 …but what is the transaction processing 

system (TPS) supposed to do? 

 Traditional response: provide ACID properties 

 My response: schedule transactions 
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 Atomicity: The transaction executes 

completely or not at all 

 Consistency: The transaction preserves 

the internal consistency of the database 

 Isolation: The transaction executes as if it 

were running alone, with no other 

transactions 

 Durability: The transaction’s results will 

not be lost in a failure [B&N 2009] 
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Consistency is 

 Data structure invariants hold 



 Some can be maintained by system 

 E.g., referential integrity, roughly no dangling 

pointers 

 E.g., primary key values are unique 

 Some externally enforced 

 E.g., Salary cannot decrease unless demotion 

 E.g., Number of widgets in DB equals physical 

widgets in warehouse 
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 Processor (ISA) invariants 

 E.g., 64-bit writes are indivisible 

 Most externally enforced 

 E.g., List pointers correct 

▪ node->next->prev == node 

 E.g., Total items on list kept up to date with list 

membership 
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 A transaction system can’t guarantee 

consistency! 

 A transaction can violate a data structure invariant 

 …the transaction processing system does its 

part for the C in ACID only by guaranteeing 

AID. [B&N 2009] 

 It’s the application programmer’s 

responsibility to ensure the transaction 

program preserves consistency. [B&N 2009] 
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 Isolation refers to the requirement that no 

transaction should be able to interfere with 

another transaction. One way of achieving this 

is to ensure that no transactions that affect the 

same rows can run concurrently, since their 

sequence, and hence the outcome, might be 

unpredictable. This property of ACID is often 

partly relaxed due to the huge speed decrease 

this type of concurrency management 

entails.[citation needed] 
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 A schedule consists of method invocations 

and responses (also called a history) 

 A scheduler generates legal global orders 

 E.g., Methods should appear to happen in a 

one-at-a-time, sequential order 
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r.write(7) r.write(-3) r.read(-3) 

time 

1 2 3 



 Many schedules are legal 

 r.read(-3) would also be “correct” 

 But reads return latest writes 

 Scheduler defines safety and liveness 

 E.g., sequential consistency, serializability 

 E.g., r.read(-7) too weak for most TPSs 
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r.write(7) 

r.write(-3) 

r.read(7) 
A 

B 

1 

-3 

1 

2 3 

2 



 Two threads conflict… 

 Restart for atomicity - it must appear that 

either all of A's operations happened, or none. 

 Restart for isolation - not seeing partial results 

is an isolation property 
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txbegin(t1) 

r.write(2) 

r.write(8) 
A 

B 
txbegin(t2) 

txbegin(t1) 
Transaction 

restart 



 A thread gets exclusive access and dies 

 For atomicity, abort and roll back transaction 

 For isolation, B cannot block indefinitely 

because of A, so transaction must abort 
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txbegin(t1) 

r.write(2) 

r.write(8) 
A 

B 

die 

txbegin(t2) 



 Last read should be -3 

 Might be a durability failure 

 Might be a isolation failure 

 Resultant history looks bad 

 Not sequentially consistent 
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r.write(7) 

r.write(-3) 

r.read(7) txbegin(t1) txend(t1) 

txbegin(t2) txend(t2) 

A 

B 

1 

2 



 Transactions have AID, not ACID 

 Atomicity, isolation, and durability are 

poorly differentiated  

 Real situations are a superposition 

 Distinction makes you see things that aren’t 

there 

 Subsumed by schedules 
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 Concurrent operations need to be 
scheduled – TPS 

 Traditional scheduling via locking 

 Performance issues 

 Generalize the notion of transaction and 
transaction processing system. 

 TPS: seq. consistency, linearizability, 
dependent transactions 

 Read-copy update: Radical future 
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 TPS schedules operations 

 Operations have defined semantics 

 E.g., read returns last written value 

 Constrains correct executions 

 Figuring out new scheduling models 

and/or new operations ongoing work 

 E.g., read_best_effort() 
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 Before reading data, acquire its read lock 

 Before writing data, acquire its write lock 

 Before searching (updating) a predicate, acquire 

a read (write) lock on the predicate (DB only) 
 Protects both real and (infinite) phantom items 

 

 If locks from two transactions conflict, abort one 
 Locks conflict if at least one is a write lock 

 Hold all locks until transaction commit 
 2 phase locking (acquire and release phases) 
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 More legal schedules = More performance 

 More concurrency 

 More scalability 

 Two phase locking often lacks performance 

 Weak semantics = More schedules 

 E.g., item appears to be on list twice 

 Weak semantics = programming difficulty 

▪ Try eventual consistency for distributed systems 
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 Sequential consistency used in 

multiprocessors 

 Methods appear one-at-a-time, sequentially 

 Methods must appear in program order 

 read(7) is not sequentially consistent 

 Though legal for weaker models 
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r.write(7) r.write(-3) r.read(7) 
1 2 3 



 FIFO queue 

 History is serializable, but does not 

respect real time order 

 Sequentially consistent, not linearizable 
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q.enq(x) 

q.enq(y) 

A 

B 

q.deq(y) 

1 

2 3 



 Data written by t1 read by t2 (dirty read) 

 t2 commits! 

 Where did read data come from? 
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r.write(7) 

r.read(7) 

txbegin(t1) txabort(t1) 

txbegin(t2) txend(t2) 

A 

B 

1 

2 

3 

4 

r=0 



 Data written by t1 forwarded to t2 

 t1 must commit before t2 

 If t1 aborts, t2 must abort (no dirty read) 

 TPS accepts more schedules 

 Cascading aborts?  Only problem for DB systems 
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r.write(7) 

r.read(7) 

txbegin(t1) txend(t1) 

txbegin(t2) txend(t2) 

A 

B 

1 

2 

3 

4 

r=0 



 Defines readers and writers 

 Begin read-only transaction 

 More like reader-writer lock than transaction 

 Reduce read synchronization to nothing 

 Avoids expensive atomic instructions & fences 

 Make writers careful  

 Readers always see a consistent view  

 Specialized to lists (but that is changing) 
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A C D 

B 

Reader goes to B 

B’s next 
pointer is 

uninitialized; 
Reader gets a 

page fault 

This implementation 
needs synchronization 



A C D 

B 

Reader goes to C or B-
--either is ok 

Garbage 
collect C after 

all readers 
finished 



 Create node B, with all outgoing pointers 

 Then overwrite the pointer from A 

 Either traversal is safe 

 No atomic instruction needed 

 Need compiler memory barrier 

▪ HW memory barrier only on DEC Alpha 

 List always readable 

 Writers must take care 

 Writers might wait for all current readers (quiesce) 



 Remove item: pointer write 
 Reclaim: memory free 
 TPS lengthens quiescence period as needed 

38 

rcu_r() 

remove() 

A 

C quiesce reclaim() 

rcu_r() 
B 

rcu_r() 

rcu_r() 

rcu_r() 



 Exercise: Describe RCU with ACID 

 Heck, describe RCU 

 Generalizing transactions and TPS 

 Databases 

 Transactional memory 

 Distributed systems 
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 TxLinux & MetaTM [ISCA, SOSP ’07, CACM ‘08] 
 Transactions if possible, locks when necessary (I/O) 

 Dependent transactions [MICRO ’08, PPoPP ‘09] 
 Committing conflicting transactions 

 Synchronization in Linux [HotOS ’07, ISPASS ‘10] 
 Will optimistic primitives scale? Data independence 

 HW, SW coordinated transactions [ASPLOS ’09] 
 OS transactions [SOSP ’09, Eurosys ‘12] 
 Thanks to: Hany E. Ramadan, Christopher J. 

Rossbach, Indrajit Roy, Donald E. Porter, Owen S. 
Hofmann, Sangman Kim, Alan M. Dunn, Michael 
Z. Lee, Mark Silberstein, Yuanzhong Xu 
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 The Transaction Concept: Virtues and Limitations [Jim Gray 
1981 IEEE] 

 Principles of Transaction-Oriented Database Recovery 
[Haerder & Reuter 1983 ACM] 

 Linearizability: a correctness condition for concurrent objects 
[Wing & Herlihy 1990 TOPLAS] 

 Implementing Fault-Tolerant Services Using the State 
Machine Approach: A Tutorial [Fred Schneider 1990 ACM] 

 Transaction Processing [Gray and Reuter 93 MK] 
 *A Critique of ANSI SQL Isolation Levels [Berenson, 

Bernstein, Gray, Melton, O’Neil, O’Neil 1995 MSR-TR] 
 *The Art of Multiprocessor Programming [Herlihy & Shavit 

2008] 
 Principles of Transaction Processing [Bernstein & Newcomer 

2009 MK] 
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 Concurrency management is fun 

 Great need for progress 

 Ample opportunities for progress 

 Don’t use ACID as a crutch 

 Schedule concurrency 

 Search for meaning 
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